多核素在长江口崇明东滩表层沉积物的分布及其环境指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以具有颗粒活性的放射性核素为工具,其中包括7Be137Cs、228Th.210Pb以及210po,通过了解各站位表层沉积物核素活度的分布,并对不同来源的核素活度比值进行比较,如大气来源径流来源,结合高、中、低潮滩表层沉积物的粒度特征,对崇明东滩沉积物进行初步的物源分析,为进一步了解该区泥沙的沉积特征积累信息。主要研究结果包括:
     (1)沉积物粒度的时空特征:在植被、泥沙来源水动力等多重因素的影响下,从北断面到南断面,从高潮滩到低潮滩,表层沉积物的平均粒径逐渐增大;崇明东滩各站位的沉积物样品粒度(除特别说明单位外,如Φ,均为um单位)呈现春夏小于秋冬的趋势。利用粒度分级装置对崇明东滩中断面高中低潮滩三站位的沉积物进行分级,得到A、B、C、D(从粗到细)四类粒径级别的样品,从A到D,粘土含量依次升高,粉砂含量依次降低,平均粒径依次减小,粗粒部分同一粒级的含量随离岸距离的增大而增高,细粒部分则反之。
     (2)核素活度的变化:7Be在春季呈现高值;137Cs的活度全年较小,137Cs210Pbex的活度随平均粒径的变化有较显著的相关性;210Po/210Pb比值大于1,表明210po相对于210pb过剩。210po活度:0Po/210Pb比值与样品烧失量呈现很好的相关性,说明210po易被有机物吸附。
     (3)核素活度与沉积物粒径的关系:表层沉积物随平均粒径增大,核素活度依次递减。对分级样品的平均粒径(①)与核素活度值做相关性分析发现,各核素活度与平均粒径(Φ)在P<0.01范围内显著相关,其中210pbex137Cs的相关系数(R)分别为0.820.78,高于228Thex(0.63)7Be(0.50)。
     (4)物源初探:中断面高、中、低潮滩表层沉积物的210Po/210Pb的平均值分别为1.07、1.081.04,与上海地区雨水的年平均值(0.22)差别很大,而接近于徐六泾悬浮颗粒物的210Po/210Pb)A.R的平均值(0.90),反映了崇明东滩表层沉积物的主要来源为陆源输送;表层沉积物中的7Be/210Pbex137Cs/210Pbex均与徐六泾颗粒态中的核素比值接近,进一步显示出崇明东滩沉积物受陆源控制;并通过7Be/210Pbex137Cs/210Pbex的关系图,发现高、中潮滩的陆源特征较为明显,低潮滩由于受水动力控制,陆源影响较小,但波动较大。
To evaluate the source of sediment in East Chongming Tidal Flat and further more understand the deposition characteristic of sediment in the Changjiang Estuary, particle-reactive radionuclides such as 7Be, 137Cs,228Th,210Pb and 210Po were used in this article by studying the distribution of radionuclides and their activity ratios from atmospheric deposition and river input, and the grain-size of sediment from high flat to low flat were also considered. The main results are showed below:
     (1) The temporal and spatial distribution of sediment grain-size:Under the influence of vegetation, sediment source and hydrodynamics, the sediment grain-size in the Tidal Flat showed temporal and spatial variations. The mean size of surface sediment increased from north section to south and increased from high flat to low flat. Compared to mean size of surface sediment in autumn and winter, the mean size is much smaller in spring and summer. By using a water elutriation apparatus, sediment in the Tidal Flat was devided into 4 grades called A(the most thick), B, C and D(the most fine) according to size of the sediment particle. From A to D, the content of clay increased while the grain-size and content of silt decreased. In the same grade of sediment the thick part exhibited an offshore increasing trend, and the fine part showed a decreasing trend.
     (2) The activities of radionuclides:7Be had a high value in activity in spring; 137Cs had a low value in activity in the whole year and its variation with the size of sediment particle is same as 210Pb. The 210Po/210Pb ratio was greater than 1, which meant 210Po was excess. The 210Po activity and 210Po/210Pb ratio correlated well with the loss on ignition meant a highly correlation between 210Po activity and organic material content.
     (3) Correction analysis between grain-size and radionuclide activities: Correlation analysis between grain-size and activities were done and it showed that all the correlation were significant at the 0.01 level. The activities of radionuclides decreased as the size of surface sediment increased. The correlation coefficient of 210Pbex,137Cs,228Thex and 7Be were 0.82,0.78,0.63 and 0.50 separately.
     (4) The radioactivitie ratios:The average 210Po/210Pb ratio of Chongming tidal flat from high to low flat were 1.07,1.08 and 1.04 separately, which were closed to those of suspended particulate matter from XuLiuJing (0.90). The average values from atmospheric deposition of Shanghai was 0.22. The 7Be/210Pbex and 137Cs/210Pbex ratio of surface sediment were both closed to XuLiuJing. These revealed that the sediment of the Chongming tidal flat was mainly controlled by the supply of the Changjiang River. Further study on 7Be/210Pbex and 137Cs/210Pbex ratio showed that the terrial characteristic of high flat and middle flat were stronger than low flat, which had less value of nuclide ratio due to the influence of hydrodynamics.
引文
[1]YANG S L, CHEN J Y. Coastal saltmarshes and mangrove swamp in China [J]. Chinese Journal of Oceanology and Limnology,1995,13 (4):318-324.
    [2]陆健健.河口生态学[M].北京:海洋出版社,2003:318.
    [3]吉晓强,何青,刘红,等.崇明东滩水文泥沙过程分析[J].泥沙研究,2010,(1):46-57.
    [4]CHEN J Y, ZHU H F, DONG Y F. Development of the Changjiang Estuary and its submerged delta [J]. Continental Shelf Research,1985,4:47-56.
    [5]YANG S L, ZHANG J, XU X J. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications Yangtze River [J]. Geophysical Research Letters,2007,34, L10401.
    [6]An Zhisheng, Kukla G, Porter S C, et al.. Late quaternary dust flow on the Chinese loess plateau[J]. Catana,1991,18(2):125-132.
    [7]何华春,丁海燕,张振克,等.淮海中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义[J].地理科学,2005,25(5):590-596.
    [8]王君波,朱立平.藏南沉错沉积物的粒度特征及其古环境意义[J].地理科学进展,2002,21(5):459-467.
    [9]Kendall C, McDonnell JJ. Isotope Tracers in Catchment Hydrology[J]. Amster-dam:Elsevier Science.1998, pp.839.
    [10]张敬.长江口及邻近海域沉积速率比较研究[D].华东师范大学硕士论文,2008.
    [11]Papastefanou C., Ioannidou A., Stoulos S. Atmospheric deposition of cosmogenic 7Be and 137Cs from fallout of the Chernobyl accident [J]. The Science of the Total Environment,1995,170:151-156.
    [12]Rosner G., Hotzl H., Winkler R. Continuous wet-only and dry-only deposition measurenments of 137Cs and 7Be:an indicator of their origin[J]. Applied Radistion and Isotopes,1996,47(9/10):1135-1139.
    [13]Mats Isaksson, Bengt Erlandsson, Soren Mattsson. A 10-year study of the 137Cs distribution in soil and a comparison of Cs soil inventory with precipitation-determined deposition [J]. Journal of Environmental Radioactivity, 2001,55:47-59.
    [14]Lee Sang-Han, Jerome J., La Rosa, et al.. Recent inputs and budgets of 90Sr,137Cs, 239,240pu and 241Am in the northwest Mediterranean Sea [J]. Deep-Sea Research Ⅱ,2003,50:2817-2834.
    [15]John Pfitzner, Gregg Brunskill, Irena Zagorskis.137Cs and excess 210Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon, north-eastern Australia [J]. Journal of Environmental Radioactivity,2004,76:81-102.
    [16]Alonso-Hernandez C. M., Cartas-Aguila H., Diaz-Asencio. M., et al.. Atmospheric deposition of 137Cs between 1994 and 2002 at Cienfuegos, Cuba[J]. Journal of Environmental Radioactivity,2006,88:199-204.
    [17]Hideshi Fujiwara, Taijiro Fukuyama, Yasuhito Shirato, et al.. Depositon of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002[J]. Science of the Total Environment,2007,384:306-315.
    [18]Silker W B. Beryllium-7 and fission products in the GEOSECS II water column and applications of their oceanic distribution [J]. Earth and Planetary Science Letters,1972,16:131-137.
    [19]Yong J A, Silker W B. Aerosol depositon velocities on the Pacific and Atlantic oceans calculated from 7Be measurements [J]. Earth and Planetary Science Letters,1980,50:92-104.
    [20]贾成霞,刘广山.杨伟锋等.厦门地区7Be210Pb的大气沉降通量.厦门大学学报(自然科学版),2003,42(3):352-357.
    [21]Wogman N A, Thomas C W, Cooper J A, et al. Cosmic ray produced radionuclides as tracers of atmospheric precipitation processes [J]. Science,1968, 159:189-192.
    [22]Perkins R W, Thomas C W, Yong J A. Application of short-lived cosmogenic radionuclides as tracers of in cloudscavenging processes [J]. Journal of Geophysical Research,1970,75:3076-3086.
    [23]Gavini M B, Holloway R W, Sherrill R D, et al. Temporal variations of 210Pb in thunderstorms [J]. Journal of Geophysical Research,1976,81:1148-1152.
    [24]Poet S E, Moore H E, Martell E A.210Pb,210Bi, and 210Po in theatmophere: Accurate measurement and application to aerosol residence time determination [J]. Journal of Geophysical Research,1972,77:6515-6527.
    [25]Moore H E, Poet S E, Martell E A. Vertical profiles of 222Rn and its long-lived daughters over the eastern Pacific [J]. Environmental Science Technology,1977, 11:1207-1210.
    [26]Crecelius E A. Prediction of marine atmospheric deposition rates using total 7Be deposition velocities [J]. Atmospheric Environment,1981,15:579-582.
    [27]Graustein W C, Turekian K K.210Pb as tracer of the deposition of sub-aerosols. Precipitation Scavenging, Day Deposition and Resuspension [M]. New York, 1983,Elsevier:1315-1324.
    [28]David Kadko. Modeling the evolution of the Arctic mixed layer during the fall 1997 Surface Heat budget of the Arctic Ocean (SHEBA) Project using measurements of 7Be[J]. Journal of Geophysical Research,2000,105:3369-3378.
    [29]Claudia R Benitez-Nelson, Ken O Buesseler, Glenn Crossin. Upper ocean carbon export, horizontal transport and vertical eddy diffusivity in the southwestern Gulf of Marine[J]. Continental Shelf Research,2000,20:70-736.
    [30]赵峰.长江口及黄海海域中210po210pb的环境分布及其活性不平衡现象[D].华东师范大学硕士论文,2010.
    [31]Nozaki, Y., Ikuta, N., Yashima, M.. Unusually large 210Po deficiencies relative to 210Pb in the Kuroshio Current of the East China and Philippine Seas [J]. Journal of Geophysical Research,1990,95,5321-5329.
    [32]Nozaki, Y, Tsubota, H., Kasemsupaya V., et al.. Residence times of surface water and particle reactive 210Pb and 210Po in the East China and Yellow seas. Geochimica et Cosmochimica Acta,1991,55,1265-1272.
    [33]Nozaki Y, Dobashi F, Kato Y, et al. Distribution of Ra isotopes and the 210Pb and 210Po balance in surface seawaters of the mid Northern Hemisphere. Deep-Sea Research I,1998,45,126-1284.
    [34]Nozaki Y, Tsunogai S.226Ra,210Pb and 210Po disequilibria in the Western North Pacific. Earth and Planetary Science Letters,1976,32:313-321.
    [35]Spencer D W, Bacon M P, Brewer P G. The distribution of Pb-210 and Po-210 in the North Sea. Thalassia Jugoslavica,1980,16:125-154.
    [36]Cherry R D, Heyraud M. Polonium-210 and lead-210 in Antarctic marine biota and sea water. Marine Biology,1987,96:441-449.
    [37]Bacon, M.P., Spencer, D.W., Brewer, P.G..210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter.Earth Planet. Science. Letter.1976,32,277-296.
    [38]Bacon, M.P., Belastock, R.A., Tecotzky, M., et al.. Lead-210 and polonium-210 in ocean water profiles of the continental shelf and slope south of New England. Cont. Shelf Res.1988,8,841-853.
    [39]Nozaki Y, Zhang J, Takeda A.210Pb and 210Po in the equatorial Pacific and the Bering Sea:the effects of biological productivity and boundary scavenging. Deep-Sea Research II,1997,44(9-10),2203-2220.
    [40]Bernat M, Church T M. Uranium and Thorium Decay Series in the Modern Marine Environment in "Handbook of Environmental Isotope Geochemistry" eds. by Fritz P and Fontes J Ch, Elsevier,1989, chap.10.
    [41]中国科学院南极考察队(专题负责人,黄奕普),南沙群岛海域的同位素海洋化学,北京:海洋出版社,1996.
    [42]杨世伦.长江口沉积物粒度参数的统计规律及其沉积动力学解释[J].泥沙研究,1994,(3):23-31.
    [43]贾海林,刘苍字.长江口北支沉积物粒度特征与沉积环境[J].上海地质,2000,(4):16-20.
    [44]周开胜,孟翊,刘苍字,等.长江口北支沉积物粒度特征及其环境意义[J].海洋地质动态,2005,21(11):1-7.
    [45]唐建华,何青,刘伟祎,等.长江口南槽沉积物粒度的分形特性分析[J].泥沙研究,2007,(3):50-56.
    [46]刘红,何青,王元叶,等.长江口表层沉积物粒度时空分布特征[J].沉积学报,2007,25(3):445—455.
    [47]Feng Huan, Cochran J. Kirk, Hirschberg David J.234Th and 7Be as tracers for transport and sources of particle-associated contaminants in the Hudson River Estuary[J]. The Science of the Total Environment,1999,237/238:401-418.
    [48]Per Roos, Jens R. Valeur. A sediment trap and radioisotope study to determine resuspension of particle reactive substance in the second between Sweden and Denmark[J]. Continental Shelf Research,2006,26:474-487.
    [49]Baskaran M., Swarzenski P. W. Seasonal variations on the residence times and partitioning of short-lived radionuclieds (234Th,7Be and Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida[J]. Marine Chemistry,2007, 104:27-42.
    [50]杨世伦.崇明东部滩涂沉积物的理化特性[J].华东师范大学学报(自然科学版),1990,3:110-112.
    [51]DU J Z, WU Y F, HUANG D K, et al.. Use of 7Be,210Pb and 137Cs tracers to the transport of surface sediment of the Changjiang Estuary, China [J]. Journal of Marine Systems,2010. doi:10.1016/j.jmarsys.2010.06.003.
    [52]D.E. Walling and J.C. Woodward. Use of a field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment[J]. Volume 27, Issue 9, September 1993, Pages 1413-1421.
    [53]Follmer L. R. and Beavers A. H. (1973) An elutriation method for particle size analysis with quantitative silt fractionation. J. Sediment, Petrol.43,544-549.
    [54]Dyer, K. R. Coastal and Estuarine Sediment Dynamics.John Wiley&Sons, Chichester,339pp.
    [55]复旦大学,清华大学,北京大学.原子核物理实验方法.北京:原子能出版社.1985.pp 344-345.
    [56]吴云锋,杜金洲,黄德坤,等IAEA国际比对样品的γ谱分析.核化学与放射化学,2009,31(3):157-162.
    [57]Jia, G., Belli, M., Blasi, M., Marchetti, A., Rosamilia, S., Sansone, U.,2001. Determination of 210Pb and 210Po in mineral and biological environmental samples. J. Radioanal. Nucl. Chem.247,491-499.
    [58]Vrecek, P., Benedik, L., Pihlar, B.,2004. Determination of 210Po and 210Pb in sediment and soil leachates and in biological materials using a Srresin column and evaluation of column reuse. Appl. Radiat. Isotopes 60,717-723.
    [59]Nozaki Y, Tsunogai S,1976.226Ra,210Pb and 210Po disequilibria in the Western North Pacific. Earth and Planetary Science Letters,32:313-321.
    [60]汤洁,王炳忠.全球大气观测监测指南.北京:气象出版社,2003.33~36.
    [61]Larsen I L and Cutshall N H. Direct determination of Be in sediments[J]. Earth and Planetary Science Letters,1981,54:379-384.
    [62]Kim G, Hussain N, Scudlark J R, et al. Factors influencing the atmospheric depositional fluxes of stable Pb,210Pb and 7Be into Chesapeake Bay[J]. Journal of Atmospheric Chemistry,2000,36:65-79.
    [63]Todd, J.F., Wong, GT.F., Olsen, C.R., et al.. Atmospheric depositional characteristics of Be and Pb along the southeastern Virginia coast. Journal of Geophysical Research,1989,94:11106-11116.
    [64]Baskaran M, Coleman C H, Santschi P H. Atmospheric deposition fluxes of 7Be and 210Pb in Galveston and College Station, Texas[J]. Journal of Geophysical Research,1993,98:20555-20571.
    [65]Koch D.M., Jacob D.L., Graustein W.C.. Vertical transport of troposphere aerosols as indicated by 7Be and 210Pb in a chemical tracer model. Journal of Geophysical Research,1996,101:18651-18666.
    [66]Baskaran M.. A search for the seasonal variability on the depositional fluxes of 7Be and 210Pb, Journal Geophysical Research,1995,100:2833-2840.
    [67]张利权,雍学葵.海三棱藨草种群的物候与分布格局研究[J].植物生态学与地植物学学报,1992,16(1):43-51.
    [68]刘清玉,戴雪荣,何小勤.崇明东滩沉积环境探讨[J].海洋地质动态,2003,19(12):1-4.
    [69]杨世伦,时钟,赵庆英.长江口潮沼植物对沉积动力过程的影响[J].海洋学报,2001,23(4):75-80.
    [70]刘清玉.近40年来长江口崇明东滩沉积记录与环境过程研究[D].华东师范大学硕士论文.2004,17-19.
    [71]杨世伦.中国淤泥质海岸的发育特点[J].华东师范大学学报(自然科学版)1990,4:85-91.
    [72]杨世伦,赵庆英,丁平兴等.上海岸滩动力泥沙条件的年周期变化及其与滩均高程的统计[J].海洋科学,2002,26(2):37-41.
    [73]Yang S.L., Li H., Ysebaert T. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science,2008,77:657-671.
    [74]上海市海岛资源综合调查报告编写组.上海市海岛资源综合调查[M].上海:上海市科学技术出版社,1996.
    [75]严镜海.长江河口段水文特征、泥沙运动及河道演变.长江三角洲现代沉积研究[M].上海:华东师范大学出版社,1987.217-231.
    [76]Lane, E. W.1947. "Report of the Subcommittee on Sediment Terminology," Transactions, American Geophysical Union, Vol.28, No.6, Washington, DC. pp 936-938.
    [77]KRUMBEIN W C. Size frequency distributions of sediments [J]. Journal of Sedimentary Petrology,1934,4:65-77.
    [78]吴梅桂,杜金洲,张敬等.210Pbex、228Thex、7Be137Cs在崇明东滩表层沉积物的季节性特征及其环境指示意义[J],海洋环境科学(录用),2011.
    [79]DU J Z, ZHANG J, ZHANG J, et al. Deposition patterns of atmospheric 7Be and 210Pb in Coast of East China Sea, Shanghai, China [J]. Atmospheric Environment, 2008,42:5101-5109.
    [80]LIU H, HE Q, WANG Z B, et al.. Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China [J]. Estuarine, Coastal and Shelf Science,2010,86(3):322-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700