小流域产流产沙过程的模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支离破碎的黄土高原可以由不同大小的(小)流域组成,是黄河泥沙的主要来源区。研究小流域产流产沙过程机理,可深入理解小流域土壤侵蚀的时空分布规律,为小流域侵蚀预报模型研究水土流失防治提供思路数据,为此,在室内构建的投影面积65.9m~2的模型上进行了流域人工降雨侵蚀试验。
     利用中国科学院水土保持研究所降雨大厅内建立的模型流域进行研究。为精确描述小流域地貌,自制了高程测量仪,对流域模型高程进行0.1m×0.1m测量,用GIS软年生成模型流域的DEM。处理所得DEM与原模型流域地形特征点数据比较误差范围为±0.005m,通过流域降雨侵蚀前后高程的对比,得到室内小模型流域的侵蚀分布。
     研究了不同雨强降雨历时下的流域产流及产沙过程,采用的雨强为:25、50、75、100mm/hr,降雨历时为:5、10、20、40 min。采用传感器测量流域及其分支沟道山口的含沙量变化过程,采用量水堰水位传感器测量相应点的流量过程,采用薄层水流流速传感器测量沿沟道的水流流速。试验结果表明:(1)产流过程与雨强降雨历时的关系为:随着雨强的增加,起流过程变得陡峭,产流过程线的峰值与雨强成比例,降雨历时在室内模型降雨产流上更多地表现为产流平稳段时间拉长;(2)产沙过程与雨强降雨历时的关系为:水流含沙量随雨强的增加而增大,在小雨强时含沙量随降雨历时有增加的趋势;(3)产流与产沙的耦合关系为:在起流阶段产流产沙过程具有很好的一致性;(4)沟道流速随雨强的增加而增加,降雨历时对沟道流速的影响不显著。
     室内模型流域试验揭示了小流域的产流产沙过程、流域侵蚀发育过程利侵蚀分布,为土壤侵蚀机理研究提供了室内可控实验系统,对预测土壤侵蚀模型研究预防水土流失具有一定的科学指导作用。
The Loess Plateau was morphologically formed with various small watersheds, which deliver enormous sediments into the Yellow River. The studies on the erosion mechanism and runoff and sedimentation processes is of great significance to the prediction of soil and water losses and to the implementations of soil and water conservational practices.A series of laboratory rain simulation experiments were conducted at the State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Chinese Academy of Sciences, with a watershed model of 66 m2. To accurately present the watershed, a special device was developed to measure the topographic elevation of the watershed at a resolution of 0.1 by 0.1 m. The DEM of the watershed was generated with GIS software. Comparison of the representative points of the watershed with the measured data found the accuracy of the measurements to be ±0.005 m. The difference between the elevations before and after a rainfall event was used to estimate the soil erosion distribution in the watershed.The runoff and sedimentation processes were investigated under different rainfall intensities and durations, with rainfall intensities at 25, 50, 75 mm/hr and at durations of 5, 10, 20 and 40 min. Sediment sensors were used to measure the suspended sediment concentrations (process) at the outlets of the watershed and the branch channels. Weirs and water level sensors were used to measure the runoff processes at the same locations where sediment measurements were taken. The flow velocities in the channels were measured with the sensors for shallow water flow velocity. The results indicated that with increase in rainfall intensity, faster increase in runoff was induced and the peak runoff volume was proportional to the rainfall intensity, and longer rainfall duration was associated with prolonged stable runoff. Sediment concentration increased with rainfall intensity, with continuous increase trend with time under lower rainfall intensity. The runoff processes were well coupled with the runoff processes. The flow velocities at the stable stage in the channels increased with rainfall intensity, with no significant influences from the rainfall duration.The investigation presents the runoff, sedimentation, erosion development processes and erosion distribution, which supplies a controllable experimental system for the study on watershed erosion mechanism, which is of great importance to watershed erosion model and soil and water conservation practices.
引文
[1] 王会昌.世界古典文明兴衰与地理环境变迁.华中师范大学学报,1995,(1):114~120
    [2] 蔡强国,王平贵.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998
    [3] 吴发启.中国西部生态环境建设.水土保持研究,2000,3(1):2~5
    [4] 唐克丽.中国水土保持.北京:科学出版社,2004
    [5] 水利部水土保持监洲中心全国水土流失数据发布中心.全国水土保持现状(一)(二)(三)(四).水利部水土保持监测中心全国水土流失数据发布中心,2002年4月26日
    [6] 陈永宗,景可.黄土高原现代侵蚀与治理.北京:科学出版社,1988
    [7] 唐克丽,熊贵枢.黄河流域的侵蚀与径流泥沙变化.北京:中国科技出版社,1993
    [8] 黄河水利史编写组.黄河水利史述要.北京:水利出版社,1982
    [9] 黄河水利委员会黄河志总编辑室.黄河水土保持志.郑州:黄河人民出版社,1993
    [10] N.W哈德逊.土壤保持.科学出版社,1975
    [11] 库兹敏科AS.土壤侵蚀的防止.中国科学院土壤研究所译,北京:科学出版社,1956
    [12] Meyer L. D. Evaluation of the universal soil loss equation. Journal of Soil Water Conservation. 1984, 39, 99~104
    [13] Wischmeier W. M, Smith D. D. Predicting rainfall erosion losses. USDA Agriculture Hand Book 537, Washington D. C, 1987
    [14] Wischmeier W. M, Smith D. D. Predicting rainfall erosion losses from cropland, East of the Rocky Mountains Guide for selection of practices for soil and water conservation. USDA Agriculture Hand Book 537, Washington, D. C, 1965
    [15] 王礼先.水土保持学.北京:中国林业出版社,1995
    [16] Wischmeier W. M, Smith D.D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains. USDA Agricultural Handbook No. 537, 1978,
    [17] Renard K. G, Foster G. R, Weesies G. A etc. Prediction rainfall erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)[Z]. USDA Agricultural Handbook No. 703, 1997
    [18] Nearing M. A. Forster G. R, Lane L. J, Finkner S. C. A process- based soil erosion model for USDA- Water Erosion Prediction Project Technology [J]. Trans. ASAE, 1989, 32:1587~1593
    [19] Morgan, R. P. C., Quinton, J. N., The European Soil Erosion Model: documentation and user guide. Version 3.6, July 1998
    [20] De Roo A, Wesseling C.G. A single-event, physical based hydrological and soils erosion model for drainage basin. Theory, input and output. Hydrological processes,1996,10:1107~1117
    [21] Rose C.W, Williams J.R. A mathematical model of soil erosion and deposition processes: Theory for a plane land element. Soil Sci. of Am,1983, 43 (5): 991~995
    [2
    
    [22] 梭颇.中国之土壤概述.土壤季刊,1941,1(2):94~95
    [23] 朱显谟.甘肃中部土壤侵蚀调查报告.土壤专集,1958,32:53~109
    [24] 黄乘维.编制黄河中游流域土壤侵蚀分区图的经验教训.科学通报,1995,(12):15~21
    [25] 朱显谟.黄土区士壤侵蚀的分类.土壤学报,1956,4(2):99~114
    [26] 窦保章,周佩华.雨滴的观测与计算方法.水土保持通报,1982,(2):43~47
    [27] 牟金泽.雨滴速度计算公式.中国水土保持,1983,(3):40~41
    [28] 卜兆宏.降雨侵蚀力因子的算法.土壤学报,1992,29:408~417
    [29] 陈明华.周伏建.土壤可蚀性因子的研究.水土保持学报,1995,9(1):19~24
    [30] 孔亚平,张科利.坡长对侵蚀产沙过程的模拟研究.水土保持学报,2001,15(2):36~41
    [31] 张志强,王礼先.森林植被影响径流形成机制研究进展.自然资源学报,2001,16(1):79~83
    [32] 吴长文,王礼先.林地坡面的水动力学特性及其阻延地表径流的研究.水土保持学报,1995,9(2):32~39
    [33] 牟金泽,孟庆枚.陕北中小流域年产沙量计算.黄土高原水士流失综合治理科学讨论会资料汇编,1981
    [34] 谢树楠,王孟枚.黄河中游黄土沟壑区暴雨产沙模型的研究.北京:清华大学出版社,1990
    [35] 汤立群,陈国祥.黄土丘陵小流域产沙数学模型.河海大学学报,1990,18(6):10~16
    [36] Wischmeier W. M. Smith D. D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture Handbook 282.U.S.Department of Agriculture, Washington, D.C., 1965
    [37] Wischmeier W. M. Smith D. D. Predicting rainfall erosion losses a guide to conservation planning. Agriculture Handbook 537.U.S. Department of Agriculture, Washington, D.C. 1978
    [38] Renard K.G, Foster G.R, Weesies G.A, McCool D.K. and Yoder D.C..Predicting soil erosion by water. A guide to conservation planning with the revised universal soil loss equation (RUSLE).U.S. Dep. Agric., Agric. Handb. No. 703. 1993
    [39] Horton R. E. Erosional development of streams and there drainage basins: hydrophysical approach to quantitative morghology. Bulletin of the Geological Society of Amerimca, 1945,56:275~370
    [40] Kirkby M. J. Hilslope Hydrology. John wiley and sons, Ltd., 1977
    [41] Abrahams A. D. Hillslope Processes. Allen and Unwin Inc.,1986, 21:35~47
    [42] Parson A. J, Abrahams A. D. Overland flow hydraulics and erosion mechanic. UCL Press, 1982
    [43] Slaymaker. Field experiments and measurement programs in geomorphology. University of British Columbie Press, 1991
    [44] 牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究.中国水土保持,1983,(6):23~27
    [45] 江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力地形因子的研究.中国科学院西北水土保持研究所集刊,1988,(7):40~45
    
    [46] 金争平,史培军.黄河皇甫川流域土壤侵蚀系统模型治理模式.北京:海洋出版社,1992
    [47] 张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1~9
    [48] 周伏建,陈明华,黄炎,等.福建省土壤流失预报研究.水土保持学报,1995,9(1):25~30
    [49] 杨子生.滇东北山区坡耕地土壤流失方程研究.水土保持通报,1999,19(1):1~9
    [50] 江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算.见:第一次河流泥沙国际学术讨论会论文集.北京:光华出版社,1980,63~72
    [51] 牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算.见:第一次河流泥沙国际学术讨论会论文集.北京:光华出版社,1980,73~82
    [52] 尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式.地理学报,1989,44(1):32~45
    [53] 王星宇.黄土地区流域产沙数学模型.泥沙研究,1987,(3):41~46.
    [54] 包为民,陈耀庭.中大流域水沙耦合模拟物理概念模型.水科学进展,1994,5(4):287~292.
    [55] 汤立群,陈国祥,蔡名扬.黄土丘陵区小流域产沙数学模型.河海大学学报,1990,18(6):10~16
    [56] 陈国祥,谢树楠,汤立群.黄土高原地区流域侵蚀产沙模型研究.见:黄土高原水土保持.郑州:黄河水利出版社,1996:213~229
    [57] 蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,1996,51(2):108~116
    [58] 石辉,田均良,刘普灵,等.利用REE示踪法研究小流域泥沙来源.中国科学,1996,26(5):474~480
    [59] 石辉,田均良,刘普灵,周佩华.小流域侵蚀产沙空间分布的模拟试验研究.水土保持研究,1997,4(2):75~85
    [60] 石辉.小流域侵蚀产沙研究方法进展.西北林学院学报,1997,12(3):102~108
    [61] 雷阿林,唐克丽,王文龙.土壤侵蚀链概念的科学意义及其特征.水土保持学报,2000,14(3):79~83
    [62] 张光东.数字化地形测量的实践.地矿测绘.2000,2(3):36~42
    [63] 唐小明,李长安.土壤侵蚀速率研究方法综述.地球科学进展,1999,14(3):274~285
    [64] 赵军,雷廷武,张晴文等.激光微地貌扫描仪的开发研制及在坡面侵蚀研究应用初步.山东大学学报,2001,32(2):201~206
    [65] 汤国安,陈正江,赵牡丹等.ArcView地理信息系统空间分析法.北京:科学出版社,2002,10:99~150
    [66] 李德仁,龚健雅,边馥苓.GIS的数据组织与处理.测绘通报,1994,(1):28~30
    [67] Rictchie, J.C. and MeHenry, J.R.. Fallout 137Cs a tool in Conservation research. J. Soil and Water Conservation, 1975, (30):228~286
    [6
    
    [68] 张信宝,李少龙,王成华.~(137)Cs法测算梁峁坡农耕地土壤侵蚀量初探.水土保持通报,1988,8(5):18~22
    [69] 丁晋利,郑粉莉.~7Be示踪技术在土壤侵蚀研究中的应用.水土保持研究,2004,11(4):121~123
    [70] 石辉,田均良,刘普灵,等.小流域侵蚀产沙空间分布的模拟试验研究.水土保持研究,1997,4(2):75~85
    [71] 石辉,田均良,刘普灵,等.小流域侵蚀产沙时间分布的模拟试验研究.水土保持研究,1997,4(2):85~91
    [72] 窦葆璋,周配华.雨滴的观测计算方法.水土保持通报,1982,2(1):44~47
    [73] 吴普特,周配华.坡面薄层水流流速影响因子及计算.水土保持研究.1994,1(5):26~31
    [74] 石辉,田均良,刘普灵.小流域坡沟关系的模拟试验研究.土壤侵蚀与水土保持学报,1997,3(1):30~33
    [75] 布朗格RJ.澳大利亚新南威尔士的沟坡演变.见:黄河水利委员会水土保持处编.土壤侵蚀与水土保持,1988:371~376
    [76] 蒋德麟.黄河中游小流域泥沙来源初步分析.地理学报,1966,32(4):24~28
    [77] 蔡强国.坡长对坡耕地侵蚀产沙过程的影响.云南地理环境研究,1998,10(1):34~43
    [78] 许炯心.黄土高原丘陵沟壑区坡面—沟道系统中的高含沙水流(Ⅰ)—地貌因素重力侵蚀的影响.自然灾害学报,2004,13(1):55~60
    [79] G. R. Foster, L. D. Meyer and C. A. Onstad. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Transactions of the ASAE, 1977, 20(4):683~687.
    [80] G. Govers. Spatial and temporal variability in rill development processes at the Huldenberg Catena Supplement 8, 1987:17~34
    [81] 雷志辉,于起峰.亚像素图像处理技术及其在网格法中的应用.国防科技大学学报,1996,18(4):17~20
    [82] 权铁汉,于起峰.摄影测量系统的高精度标定与修正.自动化学报,2000,26(6):748~755
    [83] 邓文怡,吕乃光,董明利,等.数字摄影测量技术在三维测量中的应用.光电子.激光,2001,12(7):697~704
    [84] 吴震.光干涉测量技术.北京:中国计量出版社,1995:414~418
    [85] 王永昭.光学全息.北京:机械工业出版社,1981:250~252
    [86] 李田泽.二次曝光全息技术及其应用.微细加工技术,1997,(3):27~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700