长期施肥对红壤不同来源有机碳组分及周转的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田土壤有机碳(SOC)不仅与土壤肥力和作物产量密切相关,还是大气CO2的潜在碳汇。了解和掌握长期施肥对土壤有机碳组分及周转特征的影响,对于指导农田土壤培肥与固碳具有重要意义。本文依托江西进贤红壤旱地长期定位试验,采用土壤有机碳颗粒分组和自然丰度13C同位素示踪技术:(一)研究了长期施肥对红壤有机碳及其组分的数量变化;(二)估算了长期施肥红壤有机碳及其组分的来源和周转特征;(三)采用培养实验研究了添加外源有机物料后外源碳、氮在土壤颗粒中的去向,结果表明:
     (1)长期不同施肥下红壤总有机碳及不同组分中有机碳含量存在显著差异。与不施肥相比(CK),施肥24年后,施肥显著增加了红壤总有机碳含量,施用化肥(NPK、2NPK)和有机肥(M、NPKM)分别平均增加了17.6%和35.6%;施用化肥使砂粒中有机碳含量平均增加了0.3倍,细粉粒有机碳含量平均增加了14.0%,粘粒有机碳含量平均提高了15.1%;施用有机肥使砂粒中有机碳含量增加了0.9倍,细粉粒有机碳含量平均增加了42.3%,粘粒有机碳含量提高了31.4%;施用化肥粗粉粒没有显著变化,而施用有机肥显著降低了粗粉粒有机碳含量,降低比例达18.9%~20.5%。另外,施有机肥显著提高了有机碳在砂砾和粘粒中的分配比例,有机无机配施(NPKM)下有机碳在砂粒和粘粒中的分配比例分别达到了约19.8%和51.1%。综上所述,NPKM是一种最佳的施肥模式。
     (2)系统碳投入是影响土壤有机碳周转的一个至关重要的因素。分析结果表明,随着碳投入增加,土壤有机碳的总的固定量与投入量之间存在着极显著的正相关关系,但不同粒径组分碳储量与碳投入之间的相关关系存在一定的差异。随着碳投入的增加,粘粒和砂粒碳储量逐渐增加,但粘粒的增加速率(202.6%)要显著高于砂粒(97.6%),可见粘粒是红壤有机碳固持主要组分。碳投入的平均转化效率为8.1%。以上结果表明红壤有机碳并没有达到饱和,还具有一定的固碳潜力。
     (3)运用13C自然丰度法分析表明,随着种植时间的增加,红壤中来源于玉米残茬的比例逐渐增加,施肥24年后CK、NPK处理中有机碳的更新速率比例分别达到了28.5%和29.6%。粒级由大到小,红壤颗粒的δ13C值逐渐增加。与1992年CK相比,施肥24年后CK和NPK处理中各个粒级的δ13C值都有了明显的提高,且NPK增加速率要高于CK处理,这表明颗粒中来源于玉米秸秆新碳比例逐渐增加,施肥能加速红壤各粒级有机碳更新变化。
     (4)添加等碳量有机物料中,添加高量玉米秸秆(1%S)碳矿化率最大,达到了25%以上,显著高于添加猪粪处理。添加猪粪处理对于红壤有机碳固定和提高土壤肥力具有重要的意义。
     (5)运用13C自然丰度示踪方法研究表明,添加的玉米秸秆新碳主要集中在2000-250μm的大团聚体中,有机碳在大粒级团聚体中比小粒级团聚体中周转速率快。运用15N标记猪粪的方法研究表明了外源氮主要储存在250-53μm粒级中。
     综上所述,NPKM是一种最佳的施肥模式。施肥加速了土壤有机碳的周转。外源碳主要进入大的团聚体中。
Soil organic carbon (SOC) is not only closely related to soil fertility and crop yield, but alsorepresents a potential carbon sink or source of atmospheric CO2.Understanding long-term effects ofdifferent fertilizations on soil organic carbon fractions and turnover characteristics is significant forimproving soil fertility and sequestering carbon. Based on a long-term fertilization experiment locatedon the red soil in Jiangxi province, by using soil organic carbon particle-size fractio method and13Cnatural abundance technology, the objective of this study was (1) to investigate effects of long-termfertilizations on SOC and its fractions;(2) to assess sources and turnover characteristics of SOC and itsfractions under long-term fertilizations and (3) to determine the allocation of new carbon and nitrogenin different particle-size fractions after organic material addition by using a laboratory incubationexperiment.Results showed that:
     (1)The contents of total SOC and its different fractions showed significant differences amonglong-term different fertilizations in the red soil. Compared with no fertilizer control (CK), total SOCcontent was significantly increased by17.6%and35.6%under chemical fertilizer applications (NPK&2NPK) and organic fertilizer applications (M&NPKM), respectively. Compared to CK, SOC content insand, fine silt and clay fractions were significantly increased30%,14.0%and15.1%, respectively underthe chemical fertilizer treatments, and90%,42.3%and31.4%, respectively under the mannuetreatments. Compared to CK, coarse silt-C content was not significantly changed under chemicalfertilizer treatments, but was significantly decreased18.9%~20.5%under the organic fertilizertreatments. In addition, the allocation proportion of C in sand and clay fractions reached up to19.8%and51.1%, respectively under the treatments of manure combined with inorganic fertilizer(NPKM).The optimum fertilization strategy is manure combined with inorganic fertilizer in this region.
     (2)Carbon input is a crucial factor to affect the turnover of SOC. A significant positivecorrelation between carbon sequestration and carbon input was found in our study. But the correlationwas not consistent for different particle-size fractions. Carbon stocks in clay and sand fractionsgradually increased with increasing carbon input, but the increase rate (202.6%) in clay fraction wassignificantly higher than in sand fraction (97.6%). This indicated that clay was the main components forcarbon sequestration in the red soil. Mean conversion efficiency of carbon input into SOC was8.1%。The results suggest that SOC did not reach saturation in the red soil and it had the potential for carbonsequestration.
     (3)The result showed that the rate of carbon derived from corn for CK and NPK treatmentgradually increased with the time, reaching28.5%and29.6%, respectively, which indicated that the rateof carbon derived from corn may reach a stable after24year. δ13C values gradually increased from largeparticles to small particles. Compared with CK in1992, δ13C values of CK and NPK treatments indifferent fractions was significantly improved, suggesting that the content from corn increased and theupdate change of SOC was accelerated by fertilization in different particle-size fractions.
     (4)The incubation experiment results showed carbon mineralization rate (CMR) was highest inthe treatment of adding a high amount of corn straw (1%S), reaching to25%.CMR in the treatment of adding corn straw was higher than that in the treatment of adding carbon-equal pig manure. There was asignificance for carbon sequestration and improving soil fertility.
     (5)Carbon derived from added corn straw was mostly allocated in250-2000μm aggregates.13Cnatural abundance revealed that turnover rate of organic carbon in large aggregates was faster than thatin small aggregates. Nitrogen derived from15N-labeled pig manure was mostly stored in53-250μmsize aggregates.
     In conclusion, the optimum fertilization strategy was manure combined with inorganic fertilizer inred soil.The update change of SOC was accelerated by fertilization. Carbon derived from adding cornstraw was mostly allocated in large aggregates.
引文
[1]蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报,1999,36(4):484-491.
    [2]慈恩,杨林章,马力,等.长期耕作水稻土的有机碳分布和稳定碳同位素特征.水土保持学报,2007,21(5):72-75.
    [3]张亚丽,张娟,沈其荣,等.秸秆生物有机肥的施用对土壤供氮能力的影响.应用生态学报,2002,13(12):1575-1578.
    [4]代静玉,周江敏,秦淑平.几种有机物料分解过程中溶解性有机物质化学成分的变化.土壤通报,2004,35(6):724-727.
    [5]戴万宏,刘军,王益权,等.不同培肥措施下土壤释放及其动力学.研究植物营养与肥料学报,2002,8(3):292-297.
    [6]丁昌濮,Ceecanti B.Nobili M D, Tarsitano R.紫云英和稻草在分解过程中水溶性有机物质的变化.土壤,1991,3(1):19-23.
    [7]丁昌濮,Ceccanti B.土壤中水溶性有机物质的数量性质及其变化.土壤学报,1987,24(3):210-217.
    [8]窦森,lichtfouse E,Mariotti A.C3和C4植物条件下HA的水解、热解和GC-MS的δ13C、δ15N研究.土壤通报,1995,26(6):271-273.
    [9]窦森,张晋京.用δ13C方法研究玉米秸秆分解期间土壤有机质数量的动态变化.土壤学报,2003,40(3):328-334.
    [10]窦森,张晋京.用δ13C值研究土壤有机质周转的方法及其评价.吉林农业大学学报,2001,23(2):64-67.
    [11]韩晓日,郭鹏程,陈恩风,等.土壤微生物对施入肥料氮的固持及其动态研究.土壤学报,1998,35(3):412-418.
    [12]黄昌勇.土壤学.北京:中国农业出版社,2000.
    [13]黄东迈,朱培立.有机氮各化学组分在土壤中的转化与分配.江苏农业学报,1986,2(2):17-25.
    [14]黄鸿翔.我国土壤资源现状、问题及对策.土壤肥料,2005,1:3-6.
    [15]黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750-763.
    [16]姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子.生态学杂志,2007,26(2):278-285.
    [17]寇太记,朱建国,谢祖彬,等.大气CO2浓度升高和氮肥水平对麦田土壤有机碳更新的影响.土壤学报,2009,46(3):459-465.
    [18]李博,赵斌,彭容豪,等.陆地生态系统生态学原理.高教出版社,2005,88-89.
    [19]李世清,李生秀.有机物料和氮肥相互作用对微生物体氮的影响.微生物学通报,2000,27(3):157-162.
    [20]李忠佩,林心雄.瘠薄红壤中有机物质的分解特征.生态学报,2002,22(8):1224-1230.
    [21]练成燕,张桃林,王兴祥.有机物料对红壤几种形态碳氮及酸度的影响.中国农业科学,2009,42(11):3922-3932.
    [22]刘启明,朴河春,郭景恒,等.应用δ13C值探讨土壤中有机碳的迁移规律.地质地球化学,2001,29(1):32-35.
    [23]刘忠翰,彭江燕.化学N素在水稻田中的迁移与淋失的模型.农村生态环境,2000,16(2):9-13.
    [24]马俊永,陈金瑞,李科江,等.施用化肥和秸秆对土壤有机质含量及性质的影响.河北农业科学,2006,10(4):44-47.
    [25]朴河春,余登利,刘启明,等.林地变为玉米地后土壤轻质部分有机碳的13C/12C比值的变化.土壤与环境,2000,9(3):218-222.
    [26]强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,2004,15(3):469-472.
    [27]全国农业技术推广服务中心编著.中国有机肥料养分志.中国农业出版社,1994.
    [28]任秀娥,童成立,孙中林,等.温度对不同粘粒含量稻田土壤有机碳矿化的影响.应用生态学报,2007,18(10):2245-2250.
    [29]苏永中,赵哈林,张铜会.不同退化沙地土壤碳的矿化潜势.生态学报,2004,24(2):372–378.
    [30]佟小刚,徐明岗,张文菊,等.长期施肥对红壤和潮土颗粒有机碳含量与分布的影响.中国农业科学,2008,41(11):3664-3671.
    [31]涂成龙,刘丛强,武永锋.应用δ13C值探讨林地土壤有机碳的分异.北京林业大学学报,2008,30(5):1-5.
    [32]王家玉.稻田土壤中N素淋失的研究.土壤学报,1996,33(1):28-35.
    [33]王晶,张旭东,解宏图,等.现代土壤有机质研究中新的量化指标概述.应用生态学报,2003,14(10):1809-1812.
    [34]王玲莉,韩晓日,杨劲峰,等.长期施肥对棕壤有机碳组分的影响.植物营养与肥料学报,2008,14(1):79-83.
    [35]王玲莉.长期轮作施肥对棕壤有机碳组分、周转及其来源的影响.沈阳农业大学硕士学位论文,2007.
    [36]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用.气象出版社,2006,55.
    [37]武天云,JeffJ.Schoenau,李风民,等.土壤有机碳概念和分组技术研究进展.应用生态学报,2004,15(4):717-722.
    [38]徐明岗.中国土壤肥力演变.中国农业科学技术出版社,2006,3.
    [39]杨兰芳,蔡祖聪.玉米生长和施氮水平对土壤有机碳更新的影响.环境科学学报,2006,26(2):280—286.
    [40]杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响.生态学杂志,2005,24(8):887-892.
    [41]尹云峰,蔡祖聪.利用13C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率.土壤学报,2007,44(6):1022-1026.
    [42]于建光,李辉信,胡锋,等.施用秸秆及接种蚯蚓对土壤颗粒有机碳及矿物结合有机碳的影响.生态环境,2006,15(3):606-610.
    [43]余贵芬,吴泓涛,魏永胜,等.氮在紫色土中的移动和水稻氮素利用率的研究.植物营养与肥料学报,1999,5(4):316-320.
    [44]张晋京,窦森.土壤有机质研究中的δ13C方法.土壤通报,1999,30(5):495-502.
    [45]张旭博,徐明岗,张文菊,等.添加有机物料后红壤CO2释放特征与微生物生物量动态变化.中国农业科学,2011,44(24):5013-5020.
    [46]郑立臣.玉米秸秆还田对黑土有机碳库特性的影响.中国科学院沈阳应用生态研究所博士论文,2006.
    [47]中国科学院南京土壤研究所.土壤理化性质.上海科学技术出版社,1978,514-518.
    [48] Anderson D W., Saggar S., Bettany J R., et al. Particle size fractions and their use in studies ofsoil organic matter I. The nature and distribution of forms of carbon, nitrogen and sulfur. SoilScience Society of America Journal,1981,45:767-772.
    [49] Angela Y. Y.Kong, Johan Six, Dennis C. Bryant, et al.The Relationship between Carbon Input,Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Sci.Soc. Am. J,2005,69:1078–1085.
    [50] B.Volkoff, C.C. Cerri.Carbon isotopic fractionation in subtropical Brazilian grassland soils:Comparison with tropical forest soils. Plant and soil,1987,102:27–31.
    [51] B. Amos, D T Walters. Maize Root Biomass and Net Rhizodeposited Carbon.Soil Sci. Soc. Am.J,2006,70(5):1489-1503.
    [52] Balesden J.,Wagner G H., Mariotti A. Soil organic matter turnover in long-term field experimentsas revealed by carbon-13natural abundance.Soil Society American Journal,1988,52:118-124.
    [53] Balesdent J,Mariotti A,Guillet B. Natural13C abundance as a trace for studies of soil organicmatter dynamics. Soil Biology and Biochemistry,1987,19:25-30.
    [54] Batjes NH. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science,1996,47:151-163.
    [55] Becker H P.,Scharpenseel H W. Thin-layer δ13C and D14C monitoring of lessive soilprofiles.Radiocarbon,1986,28:83-390.
    [56] BELESDENT J.,MARIOTTI A.,BISGONTIER D.Effect of tillage on soil organic carbonmineralization estimated from13C abundance in maize fields. Journal of SoilScience,1990,41:587-596.
    [57] BENDER M M. Variations in the13C/12C ratios of plants in relation to the pathway ofphotosynthetic carbon dioxide fixation.Phytochemistry,1971,10:1239-1244.
    [58] BENNER R.,FOGEL M L.,SPRAGUE K., et al. Depletion of13C in lignin and its implicationsfor stable carbon isotope studies.Nature,1987,329:708-710.
    [59] Bohn, H.L.J.A.Estimate of organic carbon in world soils. Soil Sci.Soc,1976.40:468-470.
    [60] Cadisch G.,Imhof Hurquiagas,et al. Soil Biology and Biochemistry.1996,28:1555-1567.
    [61] Cai Z C.,Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilizationexperiment in the Huang-Huai-Hai Plain of China. Geoderma,2006,136:708–715.
    [62] Cao M K., Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to globalclimate change.Nature,1998,393.
    [63] Chan K Y., Heenan D P., Oates A. Soil carbon fractions and relationship to soil qualityunder different tillage and stubble management.Soil and Tillage Research,2002,63(324):133-139.
    [64] Chander K., S Goyal., M C Mundra, et al. Organic matter, microbial biomass and enzymeactivity of soils under different crop rotations in the tropics.Biology and Fertility of Soils,1997,24(3):306-310.
    [65] Cheshire MV., MuI1die CM.The distribution of labeled sugars in soil particle-size fractions as ameans of distinguishing plant and microbial carbohydrate residues. J Soil Sci,1981,32:605~618.
    [66] CHRIST M J. Temperature and moisture effects on the production of dissolved organic carbon ina spodosol. Soil Biol Biochem,1996,28(9):1191-1199.
    [67] Christensen BT.,Sorensen LH.The distribution of native and labeled carbon between soilparticle-size fractions isolated from long-term incubation experiments. J Soil Sci,1985,36:219-229
    [68] Davidson E A.,Trumbore S E.,Amundson R. Soil warming and organic carbon content. Nature,2000,408(14):789-790.
    [69] DeNiro M J., Epstein S. Mechanism of carbon isotope fractionation associated with lipidsynthesis.Science,1977,197:261-263.
    [70] Diekow J., Mielniczuk J., Knicker H., et al. Carbon and nitrogen stocks in physical fractions of asubtroptical Acrisol as influenced by long-term cropping systems and N fertilization. Plant andSoil,2005,268:319-328.
    [71] Ehleringer JR., Buchmann N., Flanagan L B. Carbon isotope ratios in belowground carbon cycleprocess. Ecological Application,2000,10:412-422.
    [72] Hassink J. Decomposition rate constants of size and density fractions of soil organic matter. SoilScience Society of America Journal.1995,59:1631-1635.
    [73] Huang Y., Yu Y Q., Zhang W., et al. Agro-C: A biogeophysical model for simulating the carbonbudget of agroecosystems. Agricultural and forest meteorology,2009,149:106–129.
    [74] Hutchinson J J.,Campbell C A.,Dejardins,R L. Some perspectives on carbon sequestration inagriculture.Agr Forest Meteorol,2007,142:288–302.
    [75] Hütsch B W., Augustin J., Merbach W. Plant rhizodepositon an important source for carbonturnover in soils.J Plant Nutr Soil Sci2002.165:397–407.
    [76] Jawson M D., Elliott L F.Carbon and nitrogen transformations during wheat straw and rootdecomposition.Soil Biology and Biochemistry.1986,18:15–22.
    [77] Jenkinson D S., Adams D E., Wild A. Model estimates of CO2emissions from soil in response toglobal warming. Nature,1991,351(23):304–306.
    [78] Jolivet C., Arrouays D., Andreux F.,et al. Soil organic carbon dynamics in cleared temperateforest spodosols converted tomaize cropping. Plant and Soil,1997,191(2):225–231.
    [79] Kemmitt S J., Lanyon C V., Waite I S., et al. Mineralization of native soil organic matter is notregulated by the size, activity or composition of the soil microbial biomass—a new perspective.Soil Biology&Biochemistry,2008,40:61–73.
    [80] Kirschbaum M U F.Will changes in soil organic carbon act as a positive or negative feedback onglobal warming. Biogeochemistry,2000,48:21-51.
    [81] Kumar K., Goh KM. Nitrogen release from crop residues and organic amendments as affected bybiochemical composition. Communication in Soil Science and Plant Analysis,2003,34:2441-2460.
    [82] Kuzyakov Y., G Domanski. Carbon input by plants into the soil.Journal of Plant Nutrition andSoil Science,2000,163(4):421-431.
    [83] Kuzyakov Y., Raskatov A., Kaupenjohann M. Turnover and distribution of root exudates ofZeamays. Plant and Soil,2003.354:317-327.
    [84] Lal R. Soil carbon sequestration to mitigate climate change. Geoderma,2004,123:1–22.
    [85] MALH I S S., HARAPIAK J T.,NYBORGM. Total and light fraction organic C in a thin BlackChernozemic grassl and soil as affected by27annual app lications of six rates of fertilizer.Fertilizer Research,2003,66:33-41.
    [86] Manna M C., Swarup A., Wanjari R H.,et al. Long-term effect of fertilizer and manureapplication on soil organic carbon storage, soil quality and yield sustainability under sub-humidand semi-arid tropical India. Field Crops Res.2005,93:264–280.
    [87] Mrabet R., N Saber, A El-Brahli., et al. Total, particulate organic matter and structural stability ofa Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area ofMorocco.Soil and Tillage Research,2001,57(4):225-235.
    [88] O'Leary, Marion H. Carbon isotope fractionation in plants. Phytochemistry,1981.20(4):553-567.
    [89] PARSHOTAM A., SAGGAR S., SEARLE P L., et al. Carbon residence times obtained fromlabeled ryegrass decomposition in soils under contrasting environmental conditions.Soil Biology&Biochemistry,2000,32:75-83.
    [90] Pathak H., Byjesh K., Chakrabarti B., Aggarwal P K. Potential and cost of carbon sequestrationin Indian agriculture: Estimates from long-term field experiments. Field Crops Research,2011,120:102–111.
    [91] PUGET.P.,CHENU.C.,BALESDEN T.Total and young organic matter distributions in aggregatesof silty cultivated soils. European Journal of Soil Science,1995,46(3):449-456.
    [92] Rasmussen P E., R R Allmaras, C R Rohde, et al. Crop residue influences on soil carbon andnitrogen in a wheat-fallow system.Soil Sci. Soc. Am. J.,1980,44(3):596-600.
    [93] Schulten H R., P Leinweber. Influence of long-term fertilization with farmyard manure on soilorganic matter: Characteristics of particle-size fractions. Biology and Fertility of Soils,1991,12(2):81-88.
    [94] Sheldrick B H., Wang C P. Particle size distribution was determined using the hydrometermethod. Society of Soil Science,1993,499-511.
    [95] SMITH B N.,EPSTEIN S. Two categories of13C/12C ratios for higherplants.PlantPhysiology,1971,47:380-384.
    [96] SOLLINS P.,HOMANN P.,CALDWELL B A.Stabilization and destabilization of soil organicmatter: mechanisms and controls. Geoderma,1996,74:65-105.
    [97] STUART G A., PORTER G A., ER ICH M S. Organic amendment and rotation crop effects onthe recovery of soil organic matter and aggregation in potato cropping systems.Soil ScienceSociety of America Journal,2002,66:1311-1319.
    [98] Summerell B A., Burgess L W. Decomposition and chemical composition of cereal straw.SoilBiology and Biochemistry.1989,21:551-559.
    [99] T Desjardins, F Andreux, B Volkoff. Organic carbon and13C contents in soils and soilsize-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia.Geoderma, February1994,61:103-118.
    [100] Tnmbore S. Age of soil organic matter and soil respiration: Radio-carbon constraints onbelowground C dynamic. Ecological Application,2000,10(2):399-411.
    [101] Trolier M., White JW C., Tans P P. Monitoring the isotopic composition of atmosphericCO2:Measurements from the NOAA Global Air Sampling Network. Journal of GeophysicalResearch,1996,101(25):897-916.
    [102] Vitorello V A., Cerri C C., Andreux F. Soil Science Society American Journal,1989,53:773-778.
    [103] Wang W J., Dalal R C., Moody P W., et al. Relationships of soil respiration to microbial biomass,substrate availability and clay content. Soil Biology&Biochemistry,2003,35:273–284.
    [104] West T O.,Marland G. Net carbon flux from agricultural ecosystems: Methodology for fullcarbon cycle analyses. Environ Pollut,2002.116:439-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700