下辽河平原地下水水质实时预报模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对下辽河平原地下水水质实时预报模型展开专题研究。采用转移概率地质统计理论,建立了研究区地质结构模型,明确了研究区含水层分布特征;根据长时间序列地下水实测长观资料,采用数值模拟技术建立了研究区地下水流数值模型,明确了研究区地下水流场的时空演化特征;采用反向水文地球化学模拟技术,对研究区沿地下水流向三条典型反应路径进行了模拟,确定了反应路径上发生的矿物溶解/沉淀作用及阳离子交换作用,分析了它们对于地下水化学组分变化的影响;采用数值模拟技术建立了研究区考虑对流——弥散作用、混溶作用及蒸发浓缩作用的地下水溶质运移模型,明确了研究区地下水溶质浓度场的时空演化特征;采用VB语言编程技术,以研究区地下水流数值模型和地下水溶质运移数值模型为基础,MF2K和MT3DMS为内核计算程序,开发了模型与地下水实时监测系统的接口,集成建立了下辽河平原地下水水质实时预报模型,并开发了操作界面下的操作系统,实现了下辽河平原地下水水质的实时预报功能。
The thesis is supported by two subjects of National Key Technology R&D Program in the 11th five-year Plan which are "Groundwater numerical model of central plain in Liaoning Province" (No.2007BAB28B04-03) and "Real time groundwater prediction model of central urban agglomeration in Liaoning Province" (No.2006BAB04A09-02) and one subject of Doctoral Fund of Education Ministry which is "Release rule of fluorine in water and soil of fluorine highly concentrated lake in diversion project from Nenjiang to Baicheng City" (No.200801830044). The central urban agglomeration of Liaoning Province located in Lower Liaohe Plain is the economic centre of northeast Asia and also an important grain producing area, using huge quantity of industrial water and agricultural water. Groundwater quality is gradually getting worse under human activities. How to predict groundwater quality properly and fast is very significant to guarantee groundwater development in Lower Liaohe Plain. Geo-statistics method was used to analyze the distribution of Quaternary Aquifer. Groundwater flow numerical model was built with numerical simulation technique. The main types of hydro-geochemical processes along groundwater flow path were determined by inverse hydro-geochemical simulation. Groundwater solute transport model considering of main hydro-geochemical processes were built on the basis of groundwater flow model. The two models were coupled by computer programming, and the function of collecting and dealing with groundwater real time monitoring data was also developed. Finally, the real time groundwater quality prediction system under operation interface was established.
     In order to determine the distribution of Quaternary aquifers and whether stable clayey existing in a wide range of the study area, the lithology are generalized into four types of clayey, silt clay, sand and gravels, and geological structure model was established with T-Progs, which is a transition probability geo-statistic software. The study area was meshed into 126 rows,80 columns 94 layers, and 536458 grids in total. The length and width of horizontal grids were both 2000 m, and the maximum length was 5 m in vertical. The transition probability of different lithology along vertical, strike and dip direction was calculated, and the geological structure model was established finally. From joint geological cross sections and probability distribution chart, it is shown that there is only small range of clayey layers existing in Quaternary aquifers. The clayey layers can not form an aquitard; therefore, the whole Quaternary aquifers can be generalized into one large aquifer.
     After determination of aquifer distribution, the groundwater flow characteristics and boundary conditions were generalized, and the conceptual hydro-geological model was established. The mathematical model of heterogeneous isotropic Quaternary aquifer and transient flow was built. The model was calculated with groundwater modeling code MODFLOW 2000, which is also the kernel program of GMS. The study area was meshed into 230 columns,221 rows, and 30808 grids in total. The length and width of each grid were both 1000 m, with the area of 1 km2. Seven years groundwater data from January 2000 to January 2007 were used to calibrate and validate the model with setting the stress period of one month and time step of 15 days. The model was run after inputting all sources and sinks data into the model. The calculated and actual measured groundwater levels were fitted. It is shown from the regional and single well fitting curve of groundwater level that the calculated and actual measured levels were fitted well. The nodes with fitting errors lower than 0.5 m took up more than 80% of all known nodes. The model could truly reflect the actual features of Quaternary aquifer in Lower Liaohe Plain, and the calibrated parameters were reliable. The groundwater flow numerical model provided the hydro dynamic model basis for real time groundwater quality prediction model.
     The MT3DMS code would be used to build groundwater solute transport model, which can consider of advection-dispersion, mix and evaporation concentration processes, but can not describe the water-rock interaction along groundwater flow path. Inverse hydro-geochemical simulation method was used to determine the mineral dissolution/precipitation and cation exchange processes. The dissolution and precipitation of calcite, dolomite and gypsum occurred all over the study area. The main process of halite is dissolution, and the precipitation of halite only occurred near saline water area. The cation exchange process mainly occurred in the middle and lower of flow path. The processes of mineral dissolution/precipitation and cation exchange made little contribution to variation of groundwater compositions from the time scale of several years to decades and the macro spatial area of whole Lower Liaohe Plain. Therefore, the advection-dispersion, mix and evaporation concentration processes were mainly considered during building groundwater solute transport model.
     The chloridion and TDS were selected as simulation factors. The chloridion and TDS carried by rainfall, river and irrigation water were treated as external sources. Also, the impact on ion concentration by evaporation concentration was considered. The groundwater solute transport model of Lower Liaohe Plain was built and calculated by kernel code MT3DMS of GMS. The calculation of transport model was based on groundwater flow model; therefore, the spatial and temporal discretization was set as the same as flow model. The model was calibrated and validated according to actual measured data. The calculated and measured concentration contours were fitted well, indicating the high precision and reliability of the model. Groundwater solute transport model and groundwater flow model of Lower Liaohe Plain were the basis of real time groundwater quality prediction model.
     The MF2K and MT3DMS code were partially modified and compiled according to actual demands on the basis of fully mastering their structures. The two models were used as the kernel programs of real time groundwater quality prediction model. The calibrated and validated groundwater flow model and groundwater solute transport model were the basis of the final prediction model. The VB language was used to program a code to link and couple the two models, and the interfaces between these two models and the real time groundwater monitoring system were developed separately, achieving the function of collecting and dealing with real time data. The real time groundwater quality prediction system was finally established with the integration of groundwater flow model, groundwater solute transport model and the interfaces to real time groundwater monitoring system. The system can collect real time data of groundwater level and quality, and predict future groundwater level and groundwater solute concentration immediately, providing technique support for scientific decision of groundwater resources managers.
引文
[1]林学钰,廖资生,赵勇胜等.现代水文地质学[M].北京:地质出版社,2005.
    [2]王大纯,张人权,史毅虹等.水文地质学基础[M].北京,地质出版社,1995.
    [3]肖长来,梁秀娟,王彪等.水文地质学[M].北京:清华大学出版社,2010.
    [4]陈梦熊,马凤山.中国地下水资源与环境[M].北京,地震出版社,2002.
    [5]林柞顶.我国地下水开发利用状况及其分析[J].水文,2004,24(1):18-21.
    [6]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003,(6):1-5.
    [7]张宗祜,施德鸿,沈照理等.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报,1997,18(4):337-344.
    [8]肖长来.吉林省西部地下水资源评价与水资源可持续开发利用研究[D].吉林大学,2001.
    [9]盛海洋,孟秋立,朱殿华等.我国地下水开发利用中的水环境问题及其对策[J].水土保持研究,2006,13(1):51-53.
    [10]Manik Chandra Kundu, Biswapati Mandal. Nitrate enrichment in groundwater from long-term intensive agriculture:Its mechanistic pathways and prediction through modeling [J]. Environ. Sci. Technol.,2009,43:5837-5843.
    [11]杜超.基于Bossel框架的双城市地下水资源可持续利用评价[J].吉林大学学报(地球科学版),2010,40(2):331-336.
    [12]水利部水资源司,南京水利科学研究院水资源研究所.21世纪初期中国地下水资源开发利用[M].北京:中国水利水电出版社,2004.
    [13]莫凤珍,潘明杰.辽宁中部城市群水资源问题与对策[J].辽宁经济,2001,(2):15-16.
    [14]周秀艳,孙洪雨,李培军.辽宁中部城市群生态环境问题与可持续发展[J].安全与环境学报,2005,5(3):51-53.
    [15]樊杰,盛科荣.辽宁中部城市群发展的经济基础分析[J].城市规划,2004,28(1):37-41.
    [16]孙永平.辽宁中部城市群功能关系优化研究[D].东北师范大学,2006:13-20.
    [17]姚欣,常禹,刘淼等.浑河太子河流域景观格局时空动态分析[J].湖南农业科学,2010,(13):70-74.
    [18]张远,郑丙辉,王西琴等.辽河流域浑河、太子河生态需水量研究[J].环境科学学报,2007,27(6):937-943.
    [19]林岚,迟宝明,戴长雷.浑河太子河流域1956-2000年地下水动态特征分析[J].吉林水利,2004,(10):1-4.
    [20]单丽,王宇丽.辽宁省地下水水质现状变化趋势[J].东北水利水电,2008,26(3):68-70.
    [21]杨小南,李宇斌,胡成等.浑河、太子河污染物监控断面优化分析[C].中国环境科学学会学术年会优秀论文集(2007),2007:1561-1568.
    [22]钱会,马致远.水文地球化学[M].北京:地质出版社,2005.
    [23]曹玉清,胡宽瑢,李振拴.地下水化学动力学与生态环境区划分[M].北京:科学出版社,2009.
    [24]郝立波,戚长谋.地球化学原理[M].北京:地质出版社,1993.
    [25]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,(5):1.3.
    [26]文冬光,沈照理,钟佐燊.地球化学模拟及其在水文地质中的应用[J].地质科技情报,1995,14(1):99-104.
    [27]Reynolds, J H. Geochemistry [J]. Science,1979,203(4384):998-9.
    [28]Wixson, B G. Geochemistry and pollution [J]. Philos Trans R Soc Lond B Biol Sci,1979, 288(1026):179-184.
    [29]Buckley, D E. Terrains under water:geology and geochemistry of abyssal plains [J]. Science, 1988,240(4853):819.
    [30]Farooq A, Yousafzai MA, Jan MQ. Hydro-geochemistry of the Indus Basin in Rahim Yar Khan District, Central Pakistan [J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN,2007,29(6):525-537.
    [31]叶思源,孙继朝,姜春永.水文地球化学研究现状与进展[J].地球学报,2002,23(5):477-482.
    [32]Ellis A J, Mahon W A J.Geochemistry and geothermal systems [M]. New York:Academic Press:1977.
    [33]Chapelle F H. Groundwater geochemistry and calcite cementation of the Aquifer in Southern Maryland [J]. Water Resources Research,1983,19(2):545-558.
    [34]Mangold D L, Tsang C F. A summary of subsurface hydrological and hydrochemical models [J]. Water Resource Journal,1991.3:36-63.
    [35]Liu C W, Chen J F. The simulation of geochemical reactions in the Heng-Chun limestone formation, Taiwan [J].AppI.Math.Modelling,1996,20(7):549-558.
    [36]RALPH D. LINDBERG and DONALD D. RUNNELLS. Ground Water Redox Reactions: An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modeling [J]. Science,1984,225(4665):925-927.
    [37]Zhang GX, Zheng ZP, Wan JM. Modeling reactive geochemical transport of concentrated aqueous solutions [J]. WATER RESOURCES RESEARCH,2005:41(2).
    [38]Dai ZX. Samper J, Ritzi R. Identifying geochemical processes by inverse modeling of multicomponent reactive transport in the Aquia aquifer [J]. GEOSPHERE,2006:2(4): 210-219.
    [39]张建立,潘懋,贾国东等.大庆齐家水源地水文地球化学环境的模拟[J].地球学报,2003.24(3):267-272.
    [40]王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水—岩相互作用的随机水文地球化学模拟[J].水文地质工程地质,2000,(3):9-12.
    [41]Uliana MM. Identifying the source of saline groundwater contamination using geochemical data and modeling [J]. ENVIRONMENTAL & ENGINEERING GEOSCIENCE.2005, 11(2):107-123.
    [42]钱会,王晓娟,李便琴.地下水系统平衡化学模型的研究现状及发展方向[J].地球科学与环境学报,2005.27(1):60-64.
    [43]王丽,王金生.林学钰.水文地球化学模型研究进展[J].水文地质工程地质.2003,(6):105-109.
    [44]陈宗宇.水文地球化学模拟的研究现状[J].地球科学进展,1995,10(3):278-282.
    [45]M. Sekhar, Jean-Jacques Braun, K. V. Hayagreeva Rao. Hydrogeochemical modeling of organo-metallic colloids in the Nsimi experimental watershed, South Cameroon [J]. Environmental Geology,2008,54:831-841.
    [46]姚锦梅.周训,周海燕.天津市宁河北奥陶系灰岩水源地的水文地球化学模拟[J].现代 地质,2006,20(3):494-499.
    [47]董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[D].吉林大学,2005.
    [48]曹德福.鄂尔多斯盆地南区洛河组地下水演化水文地球化学模拟[D].长安大学,2005.
    [49]Freedman V L, Ibarak M. Coupled reactive mass transport and fluid flow:issues in model verification [J]. Advances in Water Resources,2003,26:117-127.
    [50]N. Abu-Jaber, Ismail. Hydrogeochemical modeling of the shallow groundwater in the northern Jordan Valley [J]. Environmental Geology,2003,44:391-399.
    [51]Ali El Naqa, Mustafa Al Kuisi. Hydrogeochemical modeling of the water seepages through Tannur Dam, southern Jordan [J]. Environmental Geology,2004,45:1087-1100.
    [52]C. J. Brown, M. A. A. Schoonenb and J. L. Candela. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer [J]. Journal of Hydrology,2000,237:147-168.
    [53]Xu TF, Pruess K. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks:1. Methodology [J]. AMERICAN JOURNAL OF SCIENCE,2001:301(1):16-33.
    [54]Xu TF, Sonnenthal E, Spycher N, etal. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks:2. Applications to supergene copper enrichment and hydrothermal flows [J]. AMERICAN JOURNAL OF SCIENCE,2001:301(1):34-59.
    [55]Simunek J, Jacques D, van Genuchten MT, etal. Multicomponent geochemical transport modeling using HYDRUS-1D and HP1 [J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION,2006,42(6):1537-1547.
    [56]Postma D, Larsen F, Hue NTM, etal. Arsenic in groundwater of the Red River floodplain, Vietnam:Controlling geochemical processes and reactive transport modeling [J]. GEOCHIMICA ET COSMOCHIMICA ACTA,2007,71 (21):5054-5071.
    [57]Sharif MU, Davis RK, Steele KF, etal. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA) [J]. JOURNAL OF HYDROLOGY,2008,350(1-2):41-55.
    [58]Ball J W, Jenne E A, and Cantrell M W. WATEQ3-a geochemical model with uranium added [R]. U. S. Geol. Surv. Open File Report,1981.
    [59]韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟[D].中国地质大学,2007.
    [60]Parkhurst D L, Plummer L N and Thorstenson D C. BALANCE-A computer program for geochemical calculations [J]. Water Resources Invest.,1982,14:33.
    [61]Plummer L N, Prestenrnon E C and Parkhurst D L. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path [R]. U.S.G.S. Water Resources Investigations,1991.
    [62]Parkhurst D L. User's guide to PHREEQC, A computer model for speciation, reaction path, advective transport and inverse geochemical calculations [R]. U.S.G.S. Water Resources Investigations,1992.
    [63]侯印伟,束龙仓,李广贺.关于地下水水质模拟中模拟因子选择的研究——以济宁市地下水水质模型为例[J].长春地质学院学报,1990,20(3):297-300.
    [64]杨维.陈曦,李晨霞.回灌条件下地下水质模拟与预测[J].工程勘察,2002,(4):23-25.
    [65]宋海波.华北平原典型区地下水质及咸淡水界面变化研究[D]中国地质科学院,2006.
    [66]Ratnakar Dhakate, V.S. Singh, G.K. Hodlur. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India [J]. Journal of Hazardous Materials,2008:535-547.
    [67]Andrzej ANISZEWSKI. Mathematical modeling and practical verification of groundwater and contaminant transport in a chosen natural aquifer [J]. Acta Geophysica,2009,57(2): 435-453
    [68]姚磊华.地下水水质模型及一种改进的特征有限元解法[J].长春地质学院学报,1993,23(1):64-68.
    [69]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社.2007.
    [70]彭泽洲,杨天行,梁秀娟等.水环境数学模型及其应用[M].北京:化学工业出版社,2007.
    [71]薛红琴.地下水溶质运移模型应用研究现状与发展[J].勘察科学技术,2008,(6):17-22.
    [72]成建梅,胡进武.饱和水流溶质运移问题数值解法综述[J].水文地质工程地质,2003,(2):99-106.
    [73]崔振东,唐益群,严学新等.地下水流与水质联合数值模拟应用研究[J].土木建筑与环境工程.2009,31(1):120-124.
    [74]刘建霞,袁西龙.数值模型在大沽河水源地地下水水质预测中的应用[C].地球科学与社会可持续发展——2005年华东六省—市地学科技论坛,2005:218-224.
    [75]Carl Christian Hoffmann a, Peter Berg, Mette Dahl. Groundwater flow and transport of nutrients through a riparian meadow-Field data and modeling [J]. Journal of Hydrology, 2006,331:315-335.
    [76]Genevieve Bordeleau, Richard Martel, Dirk Schafer, etal. Groundwater flow and contaminant transport modelling at an air weapons range [J]. Environmental Geology,2008, 55:385-396.
    [77]朱学愚.谢春红.地下水运移模型[M].北京:中国建筑工业出版社.1990.
    [78]周仰效.国外地下水流及物质传输的模拟现状与趋势[C].工程地质、水文地质、环境地质论文集,北京:地震出版社,1993.
    [79]Chunmiao Zheng. MT3DMS V5.2 Supplemental User's Guide [R]. Department of Geological Sciences, University of Alabama,2006.
    [80]Zheng, Chunmiao. MT3D, A modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems [C]. Report to the U.S. Environmental Protection Agency,1990.
    [81]Zheng, Chunmiao and P. Patrick Wang. MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems [C]. U.S. Army Engineer Research and Development Center Contract Report,1999.
    [82]Henning Prommer. PHT3D-A Reactive Multicomponent Transport Model for Saturated Porous Media [C]. Contaminated Land Assessment and Remediation Research Centre, The University of Edinburgh, UK,2002.
    [83]Tianfu Xu, Eric Sonnenthal, Nicolas Spycher, etal. TOUGHREACT User's Guide:A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media [C]. Earth Sciences Division. Lawrence Berkeley National Laboratory. University of California. Berkeley,2006.
    [84]Tianfu Xu, Eric Sonnenthal, Nicolas Spycher, etal. TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media:Applications to geothermal injectivity and CO2 geological sequestration [J]. Computers & Geosciences 2006,32:145-165.
    [85]吴吉春,薛禹群,谢春红等.含水层中考虑水—岩间阳离子交换的溶质运移方程[J].水科学进展,1996,7(2):93-98.
    [86]蒋辉.河南沁阳市地下水水质的数值模拟[J].水文地质工程地质,1996,(2):14-15,20.
    [87]岳梅.淮南市区浅层地下水水质污染预测模型探讨[J].地下水,2002,24(2):77-78.
    [88]李艳梅.辽河油田地区地下水水质模拟与预测[D].吉林大学,2005.
    [89]程东会.北京城近郊区地下水硝酸盐氮和总硬度水文地球化学过程及数值模拟[D].中国地质大学,2007.
    [90]赵勇,裴源生,于福亮.黑河流域水资源实时调度系统[J].水利学报,2006,(1):82-89.
    [91]李会安,黄强,沈晋等.黄河干流上游梯级水量实时调度自优化模拟模型研究[J].水力发电学报,2000,(3):55-60.
    [92]张保祥,刘青勇,孟凡海.基于GIS的黄水河地下水库实时调度管理系统与数值模拟研究[J].地下水,2005,27(3):162-165.
    [93]杨小冬.基于WebGIS的地下水资源实时模拟与评价系统设计及应用[D].武汉大学,2005.
    [94]董哲仁,陈明忠,闰继军等.建设水资源实时监控管理系统——水利现代化的技术方向[J].中国水利,2000,(7):27-38.
    [95]谢新民,蒋云钟,闫继军等.水资源实时监控管理系统理论与实践[M].北京:中国水利水电出版社,2004.
    [96]吴浩天.大型平原河网地区水量水质耦合模拟及联合调度研究[D].河海大学,2006.
    [97]叶艳妹.矿坑涌水量随机序列的状态空间实时预报模型[J].成都地质学院学报,1991,18(3):80-88.
    [98]张勇,赵云云.基坑降水过程中地下水位实时预测[J].人民黄河,2008,30(1):75-78.
    [99]杨小东.基于WebGIS的地下水资源实时模拟与评价系统设计及应用[D].武汉大学,2005.
    [100]冯波.下辽河平原地下水可更新能力及水量实时预报模型研究[D].吉林大学,2009.
    [101]Philip Loden, Qi Han, Lisa Porta. A wireless sensor system for validation of real-time automatic calibration of groundwater transport models [J]. The Journal of Systems and Software,2009:1-10.
    [102]李杨,唐仲华,方琼.含水层非均质结构的马尔可夫链地质统计方法及应用[J].地质科技情报,2006,25(5):92-96.
    [103]何芳,吴吉春.基于马尔可夫链的多元指示地质统计模型[J].水文地质工程地质,2003,(5):28-32.
    [104]靳萍,邵景力,李长青等.基于T-PROGS的地下水三维数值模拟及应用[J].水文地质工程地质,2009(4):21-26.
    [105]Du Chao, Xiao Changlai, Liang Xiujuan, etal. Numerical Simulation of Groundwater Flow for Sustainable Utilization in Jixi City, China. The 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu,2010.
    [106]杜超,肖长来,王益良等.GMS在双城市城区地下水资源评价中的应用[J].水文地质工程地质.2009,36(6):32-36.
    [107]DU Chao, XIAO Chang-lai. LIANG Xiu-juan. Groundwater Numeric Simulation in the Water Source Site of Shuangcheng City [C]. Flow in Porous Media--From Phenomena to Engineering and Beyond Conference Paper from International Forum on Porous Flow and Applications, Sydney Australia:Orient Academic Forum,2009:794-798.
    [108]H. K. Shrestha, R. Yatabe, N. P. Bhandary. Groundwater flow modeling for effective implementation of landslide stability enhancement measures-A case of landslide in Shikoku, Japan [J]. Landslides,2008, (5):281-290.
    [109]Medhat A, El-Bihery. Groundwater flow modeling of Quaternary aquifer Ras Sudr, Egyp [J]. Environ Geol,2009,58:1095-1105.
    [110]Simon Jusseret, Vu Thanh Tam, Alain Dassargues. Groundwater flow modelling in the central zone of Hanoi, Vietnam [J]. Hydrogeology Journal,2009,17:915-934.
    [111]M. U. Igboekwe, V. V. S. Gurunadha Rao, E. E. Okwueze. Groundwater flow modelling of Kwa Ibo River watershed, southeastern Nigeria [J]. Hydrological Process,2008,22: 1523-1531.
    [112]Roger Gonzalez-Herrera, Ismael Sanchez-y-Pinto. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico [J]. Hydrogeology Journal,2002,10:539-552.
    [113]Houcyne El Idrysy, Florimond De Smedt. Modelling groundwater flow of the Trifa aquifer, Morocco [J]. Hydrogeology Journal,2006,14:1265-1276.
    [114]Nguyen Cao Don, Hiroyuki Araki, Hiroyuki Yamanishi, etal. Simulation of groundwater flow and environmental effects resulting from pumping [J]. Environmental Geology,2005. 47:361-374.
    [115]杨维,王恩德,李勇.浑河冲洪积扇中下游地下水中氮转化与水文地球化学特征的研究[J].水文地质工程地质,2005,(2):39-41.
    [116]童海涛,宋汉周.水——岩作用系统的随机水文地球化学模拟[J].水科学进展,2004,15(2):211-215.
    [117]李义连,干焰新,张江华.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析[J].地球科学——中国地质大学学报,2000,25(5):467-471.
    [118]张宗祜,施德鸿,沈照理等.人类活动影响下华北平原地下水环境的演化与发展[J].1997,18(4):337-344.
    [119]X. Liang, C. Xiao, C. Du, etal. Transfer and transformation mechanism of fluoride in water-sediment environment of Yangshapao reservoir. Western Jilin Province, China [C]. Proceedings of the 13th International conference on Water-Rock Interaction, Taylor & Francis Group, LONDON, UK,2010:295-298.
    [120]XIAO Changlai, LIANG Xiujuan, XU Xiaoling, etal. Impact and Forecast of Ice layer on Fluorine Distribution in Yangshapao Lake [C]. The 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu,2010.
    [121]Liang Xiujuan. Xiao changlai, Feng Bo, etal. Experiment on Dynamic Release of Fluorine from Sediment in Yangshapao Reservoir of Western Jilin Province [C]. Proceedings of 2009 International Conference on Environmental Science and Information Application Technology ESIAT,2009:233-235.
    [122]Changlai Xiao, Xiujuan Liang, Chao Du, etal. Numerical Simulation and Improvement Measures of Water Quality in Yangshapao Lake [C]. The 3rd International Conference on Bioinformatics and Biomedical Engineering,2009.
    [123]毛晓敏,刘翔.Barry D A. PHREEQC在地下水溶质反应运移模拟中的应用[J].水文地质工程地质,2004,(2):20-24.
    [124]徐文彬,柴军瑞,方涛.地下水溶质运移数值模拟弥散问题再探[J].地下水2007,29(3):20-24.
    [125]Chin-Fu Tsang.非均质介质中地下水流动与溶质运移模拟——问题与挑战[J].地球科学——中国地质大学学报,2000,25(5):443-450.
    [126]朱学愚,孙克让.关于潜水含水层的二维(平面)的溶质运移方程——兼答张效先先生[J].水科学进展,1997,8(4):392-394.
    [127]吴夏懿,束龙仓.开采条件下的地下水溶质运移规律的研究[J].工程勘察,2006,(2):27-30.
    [128]吴吉春,薛禹群,谢春红.越流含水层系统中的溶质运移方程[J].水文地质工程地质,1998,(1):30-31.
    [129]赵勇胜.弥散度及其在地下水污染模型中的作用[J].长春地质学院学报,1992,22(2):208-211.
    [130]林丽蓉,唐仲华.地下水及溶质运移数值模拟系统[J].地质科技情报,2003,22(2):103-106.
    [131]By Arlen W. Harbaugh, Edward R. Banta, Mary C. Hill, etal. MODFLOW-2000, The U.S. Geologcial Survey modular groundwater model-user guide to modularization concepts and the groundwater flow process [R]. U.S. Geologcial Survey,2000,1-121.
    [132]张闻波,朱星明,范宏等.太子河流域水资源实时监控管理系统集成技术研究[J].中国水利水电科学研究院学报,2005,3(2):143-149.
    [133]谢新民,蒋云钟,闫继军等.流域水资源实时监控管理系统研究[J].水科学进展,2003,14(3):255-259.
    [134]柴福鑫,张世宝,谢新民.城市水资源实时调度与管理理论框架研究[J].水利学报,2009,40(3):340-347.
    [135]赵慧敏.水流数值模拟后处理的方法与实现[D].合肥工业大学,2007:40-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700