低温诱导的马铃薯块茎特异融合启动子的构建及低温调控因子St-CBF的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯是世界第四大粮食作物,其块茎除用作鲜食外,还作为工业原料加工各种食品和其它淀粉产品,其中薯片和薯条等加工产品的生产在马铃薯加工业中占据重要位置。为了延长加工周期,低温贮藏是最经济有效的方法,然而低温导致还原糖的大量累积,使得在高温油炸时还原糖与自由氨基酸发生褐化反应,严重影响了加工产品的品质。马铃薯油炸加工品质改良的基因工程目前已作为重要的育种途径在国内外展开研究,为使目的基因在不干扰马铃薯正常生长而只在贮藏期间低温诱导表达,低温诱导的块茎特异表达启动子成为油炸加工品质基因工程育种的迫切需要。本研究在克隆相关低温诱导表达基因启动子的基础上,构建具有低温诱导活性的块茎特异表达融合启动子,评价其在马铃薯基因工程中潜在的应用价值。并在此基础上,对马铃薯中调控低温诱导启动子活性的蛋白质因子进行了初步研究,取得的主要研究结果如下:
     1.低温启动子诱导活性分析:采用PCR方法分别从拟南芥和马铃薯中克隆了低温诱导cor15α基因的启动子和ci21A基因的启动子。序列比较分析显示,cor15α基因的启动子含有目前研究确定的低温响应元件“LTRE”,而ci21A基因的启动子中没有该元件。将cor15α基因启动子和ci21A基因启动子分别与GUS基因连接,构建了表达载体pLB和pCI21A,采用根癌农杆菌介导的转化技术转化烟草并获得转基因植株。转基因烟草的GUS染色和GUS活性荧光定量分析结果显示,cor15α基因启动子和ci21A基因启动子在烟草中都具有表达功能,总体表达强度分析显示,ci21A基因启动子表达强度高于cor15α基因启动子,但cor15α基因启动子对低温诱导的敏感性强于ci21A基因启动子。
     2.cor15α基因启动子在马铃薯中表达活性鉴定:为了检测cor15α基因启动子在马铃薯中是否具有低温诱导活性,本研究将表达载体pLB通过农杆菌介导转化马铃薯“鄂马铃薯3号(E3)”并获得转化再生植株。转基因马铃薯的GUS染色和GUS活性荧光定量分析结果证明,cor15α基因启动子在马铃薯中仍具有低温诱导表达特性。在没有低温处理的对照组中,各被测样品组织中均检测不到GUS的酶活性,低温处理后,在茎,叶,块茎和匍匐茎组织中均可以检测到不同强度的GUS活性,其中叶片和块茎中的活性相对较高。
     3.cor15α基因启动子和块茎特异启动子(CIPP)的特异核心启动子区域表达活性鉴定:实验将cor15α基因启动子的-297/+70(含有一个低温响应元件LTRE)与GUS基因连接,构建了转化载体pL297-121,将CIPP启动子的-340/+19(含有块茎特异表达调控序列TSSR)与GUS基因连接,构建了转化载体pC340-121。pL297-121和pC340-121分别转化马铃薯E3获得转基因植株,分析显示,载体pL297-121在除根以外所有被检测的组织中均具有低温诱导表达功能,但表达强度低于完整cor15α基因启动子。pC340-121在块茎中的表达活性明显高于茎,根和匍匐茎,而在叶片中则始终未检测到它的活性。同时低温处理后,pC340-121的活性在所有被测组织中均没有变化,表明该TSSR序列的调控活性不受低温环境的影响。
     4.低温诱导的马铃薯块茎特异启动子构建与表达功能鉴定:以低温诱导cor15α基因的启动子和马铃薯块茎特异启动子CIPP为基础,采用重叠延伸PCR的方法,将cor15α基因启动子中含有低温响应元件LTRE的-297/-42和-297/+70片段分别与CIPP启动子中含有块茎特异表达序列TSSR的-340/+19和-340/-28片段进行融合,按照核心序列相对于TATA-box位置的不同,构建了2个融合启动子pCL(TSSR靠近TATA-box)和pLC(LTRE靠近TATA-box),并将2个融合启动子分别与GUS基因连接,通过农杆菌介导的基因转化,将融合启动子pCL和pLC导入E3获得转基因植株。分析结果显示,融合启动子pCL和pLC均具有表达功能,但核心功能序列相对于TATA-box的位置不同其表达强度具有显著差异。块茎特异表达序列TSSR靠近TATA-box的pCL,GUS表达强度显著高于低温诱导核心启动子序列LTRE靠近TATA-box的pLC,特别是在块茎和匍匐茎中表现更为突出。
     5.马铃薯St-CBF转录因子的鉴定:本研究根据已报道的EST序列设计引物,采用基于PCR的技术从马铃薯两个基因型(E3和CW2-1)中克隆到St-CBF基因的蛋白质编码区序列。序列分析显示该片段长600bp,编码199个氨基酸,具有CBF/DREB转录因子的保守结构域ERF/AP2,同时还具有一个富含丝氨酸/苏氨酸的保守区域,一个核定位信号NLS(PKRPAGRKKFRETRHP)和一个保守的DSAW-Motif。该St-CBF具备CBF1/DREB1类转录因子的典型特征。氨基酸序列比对分析表明,St-CBF与许多植物中的CBF/DREB转录因子蛋白具有较高的同源性。将St-CBF基因克隆到pGEX-6P-1上与谷胱苷肽-S-转移酶进行融合,并在大肠杆菌中BL21(DE3)中成功进行了融合蛋白的表达。凝胶阻滞实验表明,该融合蛋白能够与cor15α基因启动子中的LTRE序列发生特异地结合,初步证明马铃薯St-CBF蛋白具有CBF/DREB类转录因子的功能。Southern杂交显示St-CBF基因在马铃薯基因组中只有一个位点。RT-PCR结果显示St-CBF基因在低温处理15min即开始在叶片中表达,而且在整个低温处理期间(12h)持续表达,表明马铃薯St-CBF基因可能参与调节低温诱导基因的表达。
The potato (Solarium tuberosum L.) is the fourth food crop in the world. In addition to its table use, potato tubers are important industrial materials for producing food and starch product. The production of chips and fries have taken an important position in potato precessing industry. To extend its processing period, storing tubers at low temperature is the most efficient and economic way. However, in cold-stored tubers, the accumulation of reducing sugar caused by low temperature results in an unacceptable dark and bitter product because of the browning reaction between reducing sugars and free amino acid groups at high frying temperatures. Now, gene engineering approaches have been important breeding strategies for the improvement of processing quality of potato products (fries and chips) worldwide. However, these approaches require gene expression in tubers at low temperature in order to avoid potential pleiotropic effects on the growth and development of potato plants. To achieve this gene expression manner, promoters with specificity to tubers as well as inducible activity under low temperature are definitely required in potato gene engineering to improve the processing quality of potato products.
     Based on the cloning of cold-induced promoters, present research constructed synthetic promoters with tuber-specific and cold-responsive patterns, investigated their performance in transgenic potato and their potential applications in potato gene engineering. Moreover, present research performed pilot study to explore putative transcription factors regulating the activities of cold-induced promoters in potato. The main results achieved are as following:
     1. The cold-inducibility analysis of cold-inducible promoters: By PCR, the cold-inducible promoters of cor15a gene and ci21A gene were amplified from Arabidopsis thaliana (cv. Columbia) genomic DNA and that of Solarium tuberosum (cv. E3) respectively. Promoter sequences analysis showed that cor15a promoter contained the identified low temperature responsive element "LTRE", while ci21A gene promoter did not. Expression vectors, pLB and pCI21A, were constructed by inserting the cor15a promoter and the ci21A promoter into the upstream of GUS gene followed by NOS terminator in pBI121 respectively. Then the pLB and pCI21A were transformed separately into tobacco via Agrobacterium mediated transformation. Transgenic plants were confirmed by PCR and Southern blot. Histochemical staining and fluorescent quantitative analysis of GUS activity in the tested transgenic plants indicated that both the two promoters could be functional in tobacco. The promoter strength and cold-inducibility analysis showed that the expression strength of ci21A promoter was higher than that of corl5a promoter, but the cold-inducibility of cor15a promoter was higher than that of ci21A promoter.
     2. The functional identification of cor15a promoter in potato: to investigate whether cor15a promoter could be cold-induced in potato, the construct of pLB was introduced into potato "E3" genome via Agrobacterium mediated transfermation of microtubers. The transgenic potato plants were analyzed by PCR and Southern blot. GUS histochemical staining and GUS fluorescent quantitative analysis of the tested transgenic potato plants proved that cor15a promoter could maintain its cold-inducibility in potato. Without cold treatment, no GUS activity could be detected in all of the potato tissues. After cold treatment, various GUS activities were detected in stems, leaves, tubers and stolons, moreover the GUS activities in leaves and tubers were relatively high.
     3. The functional investigation of the LTRE from cor15a promoter and the TSSR from tuber-specific promoter CIPP: The -297/+70 fragment of cor15a promoter containging LTRE (low temperature responsive element) and the -340/+19 fragment of CIPP containing TSSR (tuber-specific and sucrose responsive sequence) were cloned into the upstream of GUS in pBI121 to generate transformation constructs pL297-121 and pC340-121 respectively, which were subsequently introduced into potato "E3" genome via Agrobacterium mediated transfermation of microtubers. The transgenic potato plants were analyzed by PCR and Southern blot. GUS fluorescent quantitative analysis in transgenic potatoes showed that pL297-121 had cold inducibility in all the tested potato tissues except roots, but its promoter strength was less than that of the full length cor15a promoter. pC340-121 showed higher promoter activity in tubers than in stems, roots and stolons, and no activity was detected in leaves. After cold treatment, the promoter activity of pC340-121 did not show obvious change, indicating the function of TSSR was not affected by low temperature.
     4. Construction and functional identification of cold-induced and tuber-specific synthetic promoters in potato: By overlapping extension PCR, two chimeric promoters, pCL and pLC, were constructed with different combinations of cor15a promoter fragments, -297/-42 and -297/+70, containing the LTRE (low temperature responsive element) and CIPP promoter fragments, -340/+19 and -340/-28, containing the TSSR (tuber-specific and sucrose-responsive sequence).The TSSR in pCL is closer to the TATA-box than in pLC, in which the LTRE is close to the TATA-box. The two synthetic promoters were cloned into the upstream of GUS gene in pBI121 respectively and then introducede into potao "E3" via Agrobacterium mediated transfermation of microtubers. The transgenic potato plants were obtained by PCR and Southern blot. The cold-inducible and tuber-specific activities of synthetic promoters were investigated by quantitative analysis of GUS activity in transgenic potatoes and the results showed that both the two synthetic promoters could be functional in potato. But pCL with the TSSR closer to the TATA-box showed substantially higher promoter activity than pLC with the LTRE closer to the TATA-box at either normal (20℃) or low temperature (2℃), especially in tubers and stolons. This result suggested that the promoter activity was closely associated with the position of the two functional cis-elements, TSSR and LTRE, to the TATA-box.
     5. The indentification of St-CBF thanscription factor in potato: An encoding sequence of St-CBF gene was amplified from leaves of potato (E3 and CW2-1) by RT-PCR, using primers designed according to the released EST sequence (accession number CK860811). The DNA sequence of St-CBF is of 600bp in length, encoding a protein of 199 amino acids. The analysis of deduced amino acids sequences of St-CBF showed it was high homologous to other CBF/DREB proteins and contained a typical domain ERF/AP2 of CBF/DREB-type proteins. Moreover, three conserved sequences were also found: the conserved Ser/Thr-rich region located at the N-end, the conserved CBF1/DREB1-type NLS and the conserved DSAW-motif surrounding the ERF/AP2 domain. Tthe St-CBF gene was classed into the CBF1/DREB1 category for the presence of conserved NLS and DSAW-motif, which distinguishing CBF1/DREB1-type proteins from other ERF/AP2 proteins. The encoding sequence of St-CBF was cloned into the expression vector of pGEX-6P-1 and expressed successfully as GST (Glutathione S-Transferase) fusion protein in E. coli. The GST-St-CBF fusion protein could bind specifically to the LTRE sequence from cor15a promoter in vitro, indicating that the St-CBF protein could act as CBF/DREB transcription factors. The Southern blot results showed the St-CBF gene had only one allele in potato genome. In leaves, the expression of St-CBF gene was detected within 15min after potato plants exposed to low temperature (2℃) and remained detectable during low temperature treatment (up to 12h). This result indicted that the St-CBF gene was involved in the gene expression of potato in response to the low temperature stress.
引文
1.成善汉.马铃薯块茎低温糖化机理及转化酶抑制子基因的克隆与功能鉴定。[博士学位论文].武汉:华中农业大学图书馆,2004
    2.纪颖彪,屈冬玉,金黎平,连勇,卞春松,徐利群,杨琳.马铃薯块茎低温变甜的及其防止策略的研究进展.中国马铃薯研究进展,1999:51-57
    3.金冬雁,黎孟枫等译.《分子克隆》实验指南(第二版).<美>J.莎姆布鲁克E.F.弗里奇,T.曼尼阿蒂斯著.科学出版社,2002
    4.孔凤真.马铃薯产品开发大有可为.粮油食品科技,1990,2:8
    5.刘粉霞,谭振波,朱建清,邓晓建.拟南芥CBF1与植物对低温和干旱的抗性.遗传,2004,26-394-398
    6.刘宏.马铃薯休闲食品-一个潜力巨大的新兴产业.高科技与产业化,2003,(6):55-58
    7.柳俊,谢从华,黄大恩.马铃薯杂志马铃薯试管块茎形成机制的研究暗处理与光照时间对试管块茎形成的影响.马铃薯杂志,1994,8:138-141
    8.路静,赵华燕,何奕昆,宋艳茹.高等植物启动子及其应用研究进展.自然科学进展,2004,14(8):856-862
    9.牛志敏,兰青义.马铃薯炸条、炸片资源材料筛选.马铃薯杂志,2001,15(3):156-157
    10.屈冬玉,金黎平,谢开云,卞春松.中国马铃薯产业现状、问题和趋势.马铃薯产业与西部开发,2001:1-8
    11.司怀军,谢从华,柳俊.根癌农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义Class Ⅰ patatin基因的导入.作物学报,2003,29:801-805
    12.宋波涛,谢从华,柳俊.马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响.中国农业科学,2005,38.1439-1446
    13.宋波涛.马铃薯腺苷二磷酸葡萄糖焦磷酸化酶小亚基基因的克隆与功能研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    14.宋国安.马铃薯的营养价值及开发利用前景.河北工业科技,2004,21(4):55-58
    15.王关林,方宏筠主编.植物基因工程.科学出版,2002
    16.王瑞云,贺润喜,岳文斌,任有蛇.植物抗寒性基因工程研究进展.中国生态农业学报,2004,12:26-29
    17.信溪.美国马铃薯工业简况.中外食品工业,2003,8:18-19
    18.张迟.抑制马铃薯Acid invertase基因转录表达对块茎淀粉-糖代谢的影响研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    19.张毅,戴俊英,苏正淑,徐世昌,陈军.孕穗期低温对玉米雌穗的伤害作用.作物学报,1995b,21:235-239
    20.张毅,戴俊英,苏正淑.灌浆期低温对玉米籽粒的伤害作用.作物学报,1995a,21:71-75
    21.Adachi N,Lieber M R.Bidirectional gene organization:a common architectural feature of the human genome.Cell,2002,109:807-809
    22.Agarwal P K,Agarwal P,Reddy M K,Sopory S K.Role of DREB transcription factors in abiotic and biotic stress tolerance in plants.Plant Cell Rep,2006,25:1263-1274
    23.Amendola M,Venneri M A,Biffi A,Vigna E,Naldini L.Coordinate dual-gene transgenesis by lentivirl vectors carrying synthetic bidirectional promoters.Nat Biotechnol,2005,23:108-116
    24.Anderson J V,Li Q B,Haskell D W,Guy C L.Structural organization of the spinach endoplasmic reticulum-luminal 70KD heat-shock cognate gene and expression of 70KD heat-shock genes during cold acclimation.Plant Physiol,1994,104:1359-1370
    25.Antikainen M,Griffith M.Antifreeze protein accumulation in freezing-tolerant cereals.Physiol Plant,1997,99(3):423-432
    26.Ap Rees T.Prospects of manipulating plant metabolism.Trends Biotechnol,1995,13:375-378
    27.Arakawa T,Chong D K X,Langridge W H R.Efficacy of a food plant based oral cholera toxin B subunit vaccine.Nature Biotechnol,1998a,16:292-297
    28.Arakawa T,Yu J,Chong D K X,Hough J,Engen P C,Langridge W H R.A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes.Nature Biotechnol,1998b,16:934-938
    29.Artus N N,Uemura M,Steponkus P L,Gilmour S J,Lin C,Thomashow M F.Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance.Proc Natl Acad Sci,1996,93:13404-13409
    30.Bachem C W B,Speckmann G J,van der Linde P C G,Verheggen F T M,Hunt M D,Steffens J C,Zabeau M.Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers.Nature Biotechnol,1994,12:1101-1105
    31.Baker S S,Wilhelm K S,Thomashow M F.The 5`-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold,drought-and ABA-regulated gene expression.Plant Mol Biol,1994,24:701-713
    32.Banerjee N S,Rivera AA,Wang M,Chow L T,Broker T R,Curiel D T,Nettelbeck D M.Analyses of melanoma-targeted oncolytic adenoviruses with tyrosinase enhancer/promoter-driven E1A,E4,or both in submerged cells and organotypic cultures.Mol Cancer Ther,2004,3:437-449
    33.Baron U,Freundlieb S,Gossen M,Bujard H.Co-regulation of two gene activities by tetracycline via a bidirectional promoter.Nucleic Acids Res,1995,23:3605-3606
    34.Barrientos M,Mol E,Peruzzo A,Contreras A,Alberdi M.Responses to cold of Chilean wild Solanum species.Environ Exp Bot,1994,34:47-54
    35.Benfey P N,Ren L,Chua N H.Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development.EMBO J,1990,9:1677-1684
    36.Berman B P,Nibu Y,Pfeiffer B D,Tomancak P,Celniker S E,Levine M,Rubin G M,Eisen M B.Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome.Proc Natl Acad Sci,2002,99:757-762
    37.Bevan M W,Flavell R B,Chilton M D.A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation.Nature,1983,304:184-187
    38.Bevan M,Barker R,Goldsbrough A,Jarvis M,Kavanagh T,Iturriaga G.The structure and transcription start site of a major potato tuber protein gene.Nucl Acids Res,1986, 14: 4625-4637
    39. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma P K. Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol, 2003,132: 988-998
    40. Birch RG. Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol, 1997,48: 297-326
    41. Bohner S, Gatz C. Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes. Mol Gen Genet, 2001, 264: 860-870
    42. Bohner S, Lenk I, Rieping M, Herold M, Gatz C. Transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. Plant J, 1999,19(1): 87-95
    43. Bradford, M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    44. Bradshaw J E, Mackay G R. Potato genetics. Cambridge: Cambridge University Press, 1994.
    45. Buchanan B B. Genetic engineering and the allergy issue. Plant Physiol, 2001, 126: 5-7
    46. Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoterse quences. J Mol Biol, 1990, 212(4): 563-578
    47. Butler J E, Kadonaga J T. The RNApolymerase II core promoter: a key component in the regulation of gene expression. Genes Dev, 2002,16(20): 2583-2592
    48. Cao G, Zhang X, He X, Chen Q, Qi Z. A safe, effective in vivo gene therapy for melanoma using tyrosinase promoter-driven cytosine deaminase gene. In Vivo, 1999, 13: 181-187
    49. Cao Z F, Li J, Chen F, Li Y Q, Zhou H M, Liu Q. Effect of two conserved amino-acid residues on DREB1A function. Biochem, 2001,66: 623-627
    50. Cardi T K, Puite K S, Ramulu Dambriosio F D, Frusciante L. Production of somatic hybrid between frost tolerant Solanum commersonii and Solanum tuberosum: protoplast fusion, regeneration and isoenzyme analysis. Am Potato J, 1993, 70: 753-764
    51. Castanon S, Marin M S, Martin-Alonso J M, Boga J A, Casais R, Humara J M, Ordas R J, Parra F. Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J Virol, 1999, 73: 4452-4455
    52. Castanon S, Martin-Alonso J M, Marin M S, Boga J A, Alonso P, Parra F, Ordos R J. The effect of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci, 2002, 162:87-95
    53. Cave J W, Loh F, Surpris J W, Xia L, Caudy M A. A DNA transcription code for cell-specific gene activation by Notch signaling. Curr Biol, 2005, 15: 94-104
    54. Chaleff R S. Further characterization of picloram tolerant mutance of Nicotinana tabacum.Theor Appl Genet,1980,58:91-95
    55.Chattopadhyay S,Puente P,Deng X W,Wei N.Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis.Plant J,1998,15:69-77
    56.Chen T H H,Li,P H.Characteristics of cold acclimation and deacclimation in tuber-bearing Solanum species.Plant Physiol,1980,65:1146-1148
    57.Christense A H,Sharrock R A.Maize polyubiqauitin genes:struture,thermal perturbation of expression and transcript splicing and promoter activity following transfer to protoplasts by electroporation.Plant Mol Biol,1992,18:675-681
    58.Classen P A M,Budde M A W,van Calker M H.Increase in phosphorylase activity during cold-induced sugar accumulation in potato tubers.Potato Res,1993,36:205-217
    59.Comai L,Moran P,Maslyar D.Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements.Plant Mol Biol,1990,15:373-381
    60.Cottrell J E,Duffus C M,Paterson L,Mackay G R,Allison M J,Bain H.The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato,Solanum tuberosum L.Potato Res,1993,36:107-117
    61.Coulombe B.DNA wrapping in transcription initiation by RNA polymerase Ⅱ.Biochem Cell Biol,1999,77:257-264
    62.Davies H V,Viola R.Regulation of sugar accumulation in stored potato tubers.Postharvest News and Information,1992,3:97-100
    63.Dinkins R,Pflipsen C,Thompson A,Collins G B.Expression of an Arabidopsis single zinc finger gene in tobacco results in dwarf plants.Plant Cell Physiol,2002,43(7):743-750
    64.Donald R G K,Cashmore A R.Mutation of either G box or Ⅰ box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter.EMBO J,1990,9:1717-1726
    65.Dubouzet J G,Sakuma Y,Ito Y,Kasuga M,Dubouzet E G,Miura S,Seki M,Shinozaki K,Yamaguchi-Shinozaki K.OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression.Plant J,2003,33:751-763
    66.Dure Ⅲ L.A repeating 11-mer amino acid motif and plant desiccation.Plant J,1993,3:363-369
    67.Edelman G M,Meech R,Owens G C,Jones F S.Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity.Proc Natl Acad Sci,2000,97:3038-3043
    68.Edwards D,Murray J A H,Smith A G.Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidoosis.Plant Physiol,1998,117:1015-1022
    69.Edwards K,Johnstone C,Thompson C.A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.Nucl Acids Res,1991,19:1349
    70.Elliot R C,Betzner A S,Huttner E,Oakes M P,Tucker W Q,Gerentes D,Perez P, Smyth D R. ANITEGUMENTA, an APETALA2-type gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8: 155-168
    71. Emerman M, Temin H M. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol, 1986,6: 792-800
    72. Estrada N, Garcia W, Carrasco J, Carrasco E. Breeding potato for tolerance to frost and resistance to late blight. Am Potato J, 1993, 70: 809-810
    73. FAO. Database, http://faostat.fao.org, 2004
    74. FAO. Database, http://faostat.fao.org, 2005
    75. Fernie A R, Stitt T M, Willmitzer L, Geigenberger P. Altered metabolic fluxes result from shifts in metabolite levels in sucrose phosphorylase-expressing potato tubers. Plant Cell Environ, 2002,25: 1219-1232
    76. Fridlender M K, Harrison J D, Jones G, Levy A A. Repression of the Ac transposase gene promoter by Ac transposase. Plant J, 1996, 9:911-917
    77. Fu H, Park W. Sink and vascular associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell, 1995, 7: 1369-1385
    78. Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49(5): 459-471
    79. Garay-Arroyo A, Colmenero-Flores J M, Gareiarrubio A, Covarrubias A. Highly hydrophilic proteins in prokaryote and eukaryotes are common during conditions of water deficit. J Biol Chem, 2000,275: 5668-5674
    80. Gatz C, Lenk I. Promoter that respond to chemical inducers. Trends Plant Sci, 1998, 3(9): 352-358
    81. Gehrke S, Jerome V, Muller R. Chimeric transcriptional control units for improved liver-specific transgene expression. Gene, 2003, 322: 137-143
    82. Gibson S, Arondel V, Iba K, Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana. Plant Physiol, 1994,106(4): 1615-1621
    83. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854-1865
    84. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis thaliana CBF gene family of AP2 transcriptional activator as an early step in cold induced COR gene expression. Plant J, 1998, 16(4): 433-442
    85. Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J K. RNA helicase like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci, 2002, 99(17): 11507-11512
    86. Gotor C, Romero L, Inouye K, Lam E. Analysis of three tissue-specific elements from the wheat Cab-1 enhancer. Plant J, 1993, 3: 509-518
    87. Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nature Biotechnol, 1999,17: 708-711
    88.Grierson C,Du J S,Zabala M T,Beggs K,Smith C,Holdsworth M,Bevan M.Separate cis sequences and trans factors direct metabolic and developmental regulation of a patato tuber storage protein gene.Plant J,1994,5:815-826
    89.Grosschedl R,Birnstiel M L.Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo.Proc Natl Acad Sci,1980,77:1432-1436
    90.Grosveld G C,Shewmaker C K,Jat P,Flavell R A.Localization of DNA sequences necessary for transcription of the rabbit β-globin gene in vitro.Cell,1981,25:215-226
    91.Guy C L,Niemi K J,Brambl R.Altered gene expression during cold acclimation of spinach.Proc Natl Acad Sci,1985,82:3673-77
    92.Haake V,Cook D,Riechmann J L,Pineda O,Thomashow M F,Zhang J Z.Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis.Plant Physiol,2002,130(2):639-648
    93.Hajela B K,Horvath D P,Gilmour S J,Thomashow M F.Molecular cloning and expression of cor(cold-regulated) genes in Arabidopsis thaliana.Plant Physiol,1990,93:1246-1252
    94.Halfon M S,Gard Y,Church G M,Michelson A M.Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model.Genome Res,2002,12:1019-1028
    95.Hammer K,Mijakovic I,Jensen P R.Synthetic promoter libraries-tuning of gene expression.Trends Biotechnol,2006,24(2):53-55
    96.Handa S,Bressan R A,Handa A K,Carpita N C,Hasegawa P M.Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress.Plant Physiol,1983,73:834-843
    97.Herbers K,Sonnewald U.Production of new/modified proteins in transgenic plants.Curt Opin Biotechnol,1999,10:163-168
    98.Higo K,Ugawa Y,Iwamoto M,Korenaga T.Plant cis-acting regulatory DNA elements(PLACE) database:1999.Nucleic Acids Res,1999,27(1):297-300
    99.Horton R M,Hunt H D,Ho S N,Pullen J K,Pease L R.Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension.Gene,1989,77(1):61-68
    100.Hsieh T S,Lee J T,Yang P T,Chiu L H,Charng Y Y,Wang Y C,Chan M T.Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato.Plant Physiol,2002,129:1086-1094
    101.Ingram J,Barrels D.The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403
    102.Iovene M,Barone A,Frusciante L,Monti L.Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from S.commersonii.TheorAppl Genet,2004,109:1139-1146.
    103.Isherwood F A.Starch-sugar interconversion in Solanum tuberosum.Phytochem,1973,12:2579-2591
    104.Ishige F,Takaichi M,Foster R,Chua NH,Oeda K.A G-box motif(GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants.Plant J,1999,18:443-448
    105.Ishitani M,Xiong L,Stevenson B,Zhu J K.genetic analysis of osmotic and cold stress signal transduction in Arabidopsis:interactions and convergence of ABA-dependent and ABA-independent pathways.Plant Cell,1997,9:1935-1949
    106.Jaglo K R,Kleff S,Amundsen K L,Zhang X,Haake V,Zhang J Z,Deits T,Thomashow M F.Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.Plant Physiol,2001,127:910-917
    107.Jaglo-Ottosen K R,Gilmour S J,Zarka D G,Schabenberger O,Thomashow M F.Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.Science,1998,280:104-106
    108.James RM,Neil C,Webster J,Roos S,Clark AJ,Whitelaw CB.Multiple copies of β-lactoglobulin promoter do not function as LCR.Biochemical and Biophysical Research communication,2000,272,284-289
    109.Jarillo J A,Capel J,Leyva A,Martinez-Zapater J M,Salinas J.Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins,a family of putative kinase regulators.Plant Mol Biol,1994,25:693-704
    110.Javahery R,Khachi A,Lo K,Zenzie-Gregory B,SmaleST.DNA sequence requirements for transcriptional initiator activity in mammalian cells.Mol Cell Biol,1994,14:116-127
    111.Jefferson R A,Kavanagh T A,Bevan M W.GUS fusions:β-Glucuronidase as a sensitive and versatile gene fusion maeker in higher plants.EMBO J,1987,6:3901-1907
    112.Jefferson R,Goldsbrough A,Bevan M.Transcriptional regulation of a patatin-1 gene in potato.Plant Mol Biol,1990,14:995-1006
    113.Jiang C,Iu B,Singh J.Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus.Plant Mol Biol,1996,30:679-684
    114.Jofuku K D,Boer B G W,Montagu M V,Okamuro J K.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.Plant Cell,1994,6:1211-1225
    115.Kanaya E,Nakajima N,Morikawa K,Okada K,Shimura Y.Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana.J Biol Chem,1999,274(23):16068-16076
    116.Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nat Biotechnol,1999,17:287-292
    117.Kasuga M,Miura S,Shinozaki K,Yamaguchi-Shinozaki K.A combination of the Arabidopsis DREBIA gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer.Plant Cell Physiol,2004,45:346-350
    118.Kavi-Kishor P B,Hong Z,Miao G H,Hu C A A,Verma D P S.Over-expression of △~1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiol,1995,108:138-1394
    119.Kim S Y,May G D,Park W D.Nuclear protein factors binding to a class Ⅰ patatin promoter region are tuber-specific and sucrose-inducible.Plant Mol Biol,1994,26(2):603-615
    120.Kiyosue T,Yoshiba Y,Yamaguchi-Shinozaki K,Shinozaki K.A nuclear gene encoding mitochondril proline dehydrogenase,an enzyme involved in proline metabolism,is upregulated by proline but downregulated by degydration in Axabidopsis.Plant Cell,1996,(8):1323-1335
    121.Klucher K M,Chow H,Reiser L,Fischer R L.The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2.Plant Cell,1996,8:137-153
    122.Kodama H,Horiguchi G,Nishiuchi T,Nishimura M,Iba K.Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves.Plant Physiol,1995,107:1177-1185
    123.Koster-Topfer M,Frommer W B,Rocha-Sosa M,Rosahl S,Schell J,Willmitzer L.A class Ⅱ patatin promoter is under developmental control in both transgenic potato and tobacco plants.Mol Gen Genet,1989,219(3):390-396
    124.Krajewski W A.Enhancement of transcription by short alternating C·G tracts incorporated within a Rous sarcoma virus-based chimeric promoter:in vivo studies.Mol Gen Genet,1996,252:249-254
    125.Kreps J,Budworth P,Goff S,Wang R.Identification of putative plant cold responsive regulatory elements by gene expression profiling and a pattern enumeration algorithm.Plant Biotech J,2003,1:345-352
    126.Krishna P,Sacco M,Cherutti J F,Hill S.Cold-induced accumulation of hsp90transcripts in brassica napus.Plant Physiol,1995,107:915-923
    127.Kume S,Kobayashi F,Ishibashi M,Ohno R,Nakamura C,Takumi S.Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance.Genes Genet Syst,2005,80:185-197
    128.Kurkela S,Franck M.Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene.Plant Mol Biol,1990,15:137-144
    129.Kurkela S,Franek M.Structure and expression of kin2:one of two cold and ABA-induced genes of Arabidopsis thaliana.Plant Mol Biol,1992,16:689-692
    130.Kwissa M,Unsinger J,Schirmbeck R,Hauser H,Reimann J.Polyvalent DNA vaccines with bidirectional promoters.J Mol Med,2000,78:495-506
    131.Lang V,Palva E T.The expression of a rab-related gene,rab18,is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana.Plant Mol Biol,1992,20:951-962
    132.Leone A,Costa A,Consiglio F,Massarelli I,Dragonetti E,De Palma M,Grillo S.Tolerance to abiotic stresses in potato plants:a molecular approach.Potato Res,1999,42:333-351
    133.Lescot M,Dehais P,Thijs G,Marchal K,Moreau Y,Van de Peer Y,Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30(1): 325-327
    134.Lessard P A, Kulaveerasingam H, York G M, Strong A, Sinskey A J. Manipulating gene expression for the metabolic engineering of plants. Metabolic Eng, 2002, 4: 67-69
    135.Levine M, Tjian R. Transcription regulation and animal diversity. Nature, 2003, 424: 147-151
    136.Levitt J. Responses of Plants to Environmental Stress. Chilling, Freezing, and High Temperature Stresses. Ed2, Academic Press, New York, 1980.
    137.Li X Y, Eastman E M, Schwartz R J, Draghia-Akli R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol, 1999, 17:241-245
    138.Ligr M, Siddharthan R, Cross F R, Siggia E D. Gene expression from random libraries of yeast promoters. Genetic, 2006,172: 2113-2122
    139.Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406
    140.Liu X J, Part S, Willmitzer L, Frommer W B. Cis-regulatory elements directing tuber-specific and sucrose inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet, 1990,223 (3): 401- 406
    141.Lo K, Smale S T. Generality of a functional initiator consensus sequence. Gene, 1996, 182:13-22
    142.Lorberth R, Ritte G, Willmitzer L, Rossmann J. Inhibition of a starch- granule- bound protein leads to modified starch and repression of cold sweetening. Nature Biotechnol, 1998,16: 473-477
    143.Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol, 1970,45: 386-389
    144.Lyons J M. Chilling injury in plants. Annu Rev Plant Physiol, 1973, 24: 445-466
    145.Markstein M, Markstein P, Markstein V, Levine M S. Genome-wide analysis of clustered Dorsal binding sites indentifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci, 2002,99: 763-768
    146.Marples B, Scott S D, Hendry J H, Embleton M J, Lashford L S, Margison G P. Development of synthetic promoters or radiation-mediated gene therapy. Gene Ther, 2000,7:511-517
    147.Martinelli R and De Simone V. Short and highly efficient synthetic promoters for melanoma-specific gene expression. FEBS Lett, 2005, 579: 153-156
    148.McElroy D, Zhang W. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell, 1990,2: 163-171
    149.McGurl B, Orozco-Cardenas M, Pearce G, Ryan C A. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces Proteinase inhibitor synthesis. Proc Natl Acad Sci, 1994, 91 (21):9799-9802
    150.Mckendree W L,Ferl R J.Functional elements of Arabidopsis Adh promoter include the G-box.Plant Mol Biol,1992,19:859-976
    151.Medina J,Bargues M,Terol J,Perez-Alonso M,Salinas J.The Arabidopsis CBF gene family is composed of three gene encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration.Plant Physiol,1999,119:463-469
    152.Menendez C M,Ritter E,Schafer-Pregl R,Walkemeier B,Kalde A,Salamini F,Gebhardt C.Cold sweetening in diploid potato:mapping quantitative trait loci and candidate genes.Genetics,2002,162:1423-1434
    153.Michelson A M.Deciphering genetic regulatory codes:a challenge for functinal genomics.Proc Natl Acad Sci,2002,99:546-548
    154.Miflin B.Crop improvement in the 21st century.J Exp Bot,2000,51:1-8
    155.Mijakovie I,Petranovic D,Jensen P R.Tunable promoters in systems biology.Curr Opin Biotechnol,2005,16:329-335
    156.Minamikawa T,Akazawa T,Uritani I.Mechanism of cold injury in sweet potatoes Ⅱ.Biochemical mechanism of cold injury with special reference to mitochondrial activities.Plant Cell Physiol,1961,3:301-309
    157.Mizoguchi T,Hayashida N,Yamaguchi-Shinozaki K,Kamada H,Shinozaki K.ATMPKs:a gene family of plant MAP kinases in Arabidopsis thaliana.FEBS Lett,1993,336:440-444
    158.Moffat A S.Finding new ways to protect drought stricken plants.Science,2002,296:1226-1229
    159.Molnar A,Lovas a,Banfalvi z,Lakatos L,Polgar Z,Horvath S.Tissue-specific signal(s) activate the promoter of a metallocarboxypeptidase inhibitor gene family in potato and berry.Plant Mol Biol,2001,46:301-311
    160.Moose S P,Sisco P H.Glossy15,an APETAL2-like gene from maize that regulates leaf epidermal cell identity.Genes Dev,1996,10:3018-3027
    161.Morell S,ap Rees T.Control of the hexose content of potato tubers.Phytochem,1986,25:1073-1076
    162.Muller-Rober B,La Cognata U,Sonnewald U,Willmitzer L.A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants.Plant Cell,1994,6(5):601-612
    163.Mullins E,Milbourne D,Petti C,Doyle-Prestwich B M,Meade C.Potato in the age of biotechnology.Trends Plant Sci,2006,11:254-260
    164.Murashige T,Skoog F.A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol Plant,1962,15:473-479
    165.Nakagawa H,Ohmiya K,Hattori T.A rice bZIP protein,designated OSBZ8,is rapidly induced by abscisic acid.Plant J,1996,9(2):217-222
    166.Nanji T,Kobayashi M,Yoshiba Y,Kakubari Y,Yamaguchi-Shinozaki K,Shinozaki K.Antisense suppression pf proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.FEBS Lett,1999,461:205-210
    167.Ni M,Cui D,Einstein J,Narasirnhulu S,Vergara CE,Gelvin SB.Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J, 1995, 7: 661-676
    168.Nuccio M L, Rhodes D, McNeil S D, Hanson A D. Metabolic engineering of plants for osmotic stress resistance. Cur Opin Plant Biol, 1999,2: 128-134
    169.Odell J T, Nagy F, Chua N H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985, 313: 810-812
    170.Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182
    171.Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D. The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci, 1997, 94: 7076-7081
    172.Paleg I G, Stewart G R, Bradbeer J W. Proline and glycine betaine influence protein solvation. Plant Physiol, 1984, 75: 974-978
    173.Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13(5): 1035-1046
    174.Pavek J, Corsini D L. Utilization of potato genetic resources in variety of development. Am J Potato Res, 2001, 78: 433-441.
    175.Pedersen AG, Baldi P, Chauvin Y, Brunak S. DNA structure in human RNA polymerase II promoters. J Mol Biol, 1998,281: 663-673
    176.Peng Z, Liu Q, Uerma DP S. Reciprocal regulation of A'-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet, 1996, 253: 334-341
    
    177.Pennisi E. Transferred gene helps plants weather cold snaps. Science, 1998, 280: 36
    178.Pino M, Skinner J S, Park E, Jeknic Z, Hayes P M, Thomashow M F, Chen T H H. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J, 2007, 5, online
    179.Polisensky D H, Braam J. Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol, 1996, 111: 1271-1279
    180.Praz V, Perier R, Bonnard C, Bucher P. The eukaryotic promoter database, EPD: new entry types and linkes to gene expression data. Nucleic Acids Res, 2002, 30: 322-324
    181 .Rance I, Norre F, Gruber V, Theisen M. Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants. Plant Sci, 2002, 162: 833-842
    182.Richter L J, Thanavala Y, Arntzen C J, Mason H S. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nature Biotechnol, 2000, 18: 1167-1171
    183.Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factor: genome wide comparative analysis among eukaryotes. Science, 2000,290: 2105-2110
    184.Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L. Both developmental and metabolic signals activate the promoter of a class Ⅰ patatin gene.EMBO J,1989,8:23-29
    185.Rodriguez-Garcia A,Combes P,Perez-Redondo R,Smith M C,Smith M C.Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces.Nucleic Acids Res,2005,33,e87
    186.Rohini VK,Rao KS.Transformation of peanut(Arachis hypogea L.) with tobacco chitinase gene:variable response of transformants to leaf spot disease.Plant Sci,2001,160:889-898
    187.Rontein D,Basset G,Hanson A D.Metabolic engineering of osmoprotectant accumulation in plants.Metabolic engineering,2002,4:49-56
    188.Rushton PJ,Reinstdler A,Lipka V,Lippok B,Somssich IE.Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling.Plant Cell,2002,14:749-762
    189.Sahuna Y,Liu Q,Dubouzet JG,Abe H,Shinozaki K,Yamaguchi-Shinozaki K.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB's,transcription factors involved in dehydration- and cold-inducible gene expression.Biochem Biophys Res Commun,2002,290:998-1009
    190.Sala F,Manuela Rigano M,Barbante A,Basso B,Walmsley A M,Castiglione S.Vaccine antigen production in transgenic plants:strategies,gene constructs and perspectives.Vaccine,2003,21:803-808
    191.Sasaki T,Song J,Koga-Ban Y,Matsui E,Fang F,Higo H,Nagasaki H,Hori M,Miya M,Murayama-Kayano E,Takiguchi T,Takasuga A,Niki T,Ishimaru K,Ikeda H,Yamamoto Y,Mukai Y,Ohta I,Miyadera N,Havukkala I,Minobe Y.Toward cataloguing all rice genes:large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library.Plant J,1994,6:615-624
    192.Savitch L V,Allard G,Seki M,Robert L S,Tinker N A,Huner N P A,Shinozaki K,Singh J.The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus.Plant Cell Physiol,2005,46:1525-1539
    193.Sawant S,Singh P K,Madanala R,Tuli R.Designing of an artificial expression cassette for the high-level expression of transgenes in plants.Theor Appl Genet,2001,102:635-644
    194.Schaffer M A,Fischer R L.Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato.Plant Physiol,1988,87:431-436
    195.Schneider A,Salamini F,Gebhardt C.Expression patterns and promoter activity of the cold-regulated gene ci21A of potato.Plant Physiol,1997,113(2):335-45
    196.Schultz T F,Quatrano R S.Evidence for surface perception of abscisic acid by rice suspension cells as assayed by Em gene expression.Plant Sci,1997,130:63-71
    197.Seki M,Narusaka M,Abe H,Kasuga M,Yamaguchi-Shinozaki K,Carninci P,Hayashizaki Y,Shinozaki K.Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray.Plant Cell,2001,13:61-72
    198.Seki M,Narusaka M,Ishida J,Nanjo T,Fujita M,Oono Y,Kamiya A,Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292
    199.Shahmuradov I A, Gammerman A J, Hancock J M, Bramley P M, Solovyev V V. PlantProm: a database of plant promoter sequences. Nucleic Acids Res, 2003, 31(1): 114-117
    200.Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-rype protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet, 2003, 106: 923-930
    201.Shi D Q, Zhou Y H, Wan L H, Liu G Z, Hu Z M, Chen Z H. Expression of gus gene in transgenic tobacco regulated by BcNA1 promoter from Brassica napus. Acta Phytophysiol Sinica, 2001,27(4): 313-320
    202.Siders W M, Halloran P J, Fenton R G. Melanoma-specific cytotoxicity induced by a tyrosinase promoter-enhancer/herpes simplex virus thymidine kinase adenovirus. Cancer Gene Ther, 1998, 5: 281-291
    203.Sieg F, Schroder W, Schmidt J M, Hincha D K. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol, 1996, 111: 215-221
    204.Singh K B. Trancriptional regulation in plants: the importance of combinatorial control. Plant Physiol, 1998,118:1111-1120
    205.Skinner J S, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger E J, Thomashow M F, Chen T H H, Hayes P M. Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet, 2006, 112: 832-842
    206.Smale S T, Kadonaga J T. The RNA polymerase II core promoter. Annu Rev Biochem, 2003, 72: 449-479
    207.Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993,125: 27-31
    208.Somerville C. The genetically modified organism conflict. Plant Physiol, 2000, 123: 1201-1202
    209.Sowokinos J R, Preiss J. Pyrophosphorylase in Solanum tuberosum III. Purification, physical and catalytic properties of ADP glucose pyrophosphorylase in potatoes. Plant Physiol, 1982,69: 1459-1466
    210.Sowokinos J R. Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res, 2001,78: 221-236
    211.Spychalla J P, Scheffler B E, Sowokinos J R, Bevan M W. Cloning, antisense RNA inhibition and the coordinated expression of UDP- Glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J Plant Physiol, 1994, 144: 444-453
    212.Stark D M, Timmermann K P, Barry G F, Preiss J, Kishore G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophoshporylase. Science, 1992, 258: 287-292
    213.Steponkus P L, Webb M S. Freeze-induced dehydration and membrane destabilization in plants. In G Somero, B Osmond, eds, Water and Life: Comparative analysis of water relationships at the organismic, cellular and molecular level. Springer- Verlag,Berlin,1992,pp 338-362
    214.Steponkus PL.Role of the plasma membrane in freezing injury and cold acclimation.Annu Rev Plant Physiol,1984,35:543-584
    215.Stockinger E J,Gilmour S J,Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.Proc Natl Acad Sci,1997,94:1035-1040
    216.St-Pierre B,Brisson N.5'-deletion analysis of the potato starch phosphorylase gene:an upstream sequence defines distal regulatory elements and a proximal organ-dependent promoter.Plant Sci,1995,110(2):193-203
    217.Straub P F,Shen Q,Ho T D.Structure and promoter analysis of an ABA- and stress-regulated barley gene HVA 1.Plant Mol Biol,1994,26:617-630
    218.Strauss G,Hauser H.Stabilization of lipid bilayer vesicles by sucrose during freezing.Proc Natl Acad Sci,1986,83:2422-2426
    219.Sung Z R.Relationship of indole-3 acetic acid and tryptophan concentrations in normal and 5-methyl-tryptophan-resistant cell lines of wild carrots.Planta,1979,145:339-345
    220.Sunilkumar G,Mohr L A,Lopata-Finch E,Emani C,Rathore K.Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP.Plant Mol Biol,2002,50:463-474
    221.Sweetlove L J,Burrell M M,Rees T.Characterization oftransgenic potato(Solanum tuberosum) tubers with increased ADP-Glucose pyrophosphorylase.Biochem J,1996,320:478-492
    222.Szymanski P,Anwer K,Sullivan S M.Development and characterization of a synthetic promoter for selective expression in proliferating endothelial cells.J Gene Med,2006,8:514-523
    223.Teli N P,Timko M P.Recent developments in the use of transgenic plants for the production of human therapeutics and biopharmaceuticals.Plant Cell Tiss Org,2004,79:125-145
    224.Thomashow M F.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms.Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    225.Thomashow M F.Role of cold-responsive genes in plant freezing tolerance.Plant Physiol,1998,118:1-7
    226.Thomashow M F.So what's new in the field of plant cold acclimation? Lots!.Plant Physiol,2001,125:89-93
    227.Tornφe J,Kusk P,Johansen T E,Jensen P R.Generation of a synthetic mammalian promoter library by modification of sequence spacing transcription factor binding sites.Gene,2002,297:21-32
    228.Trindade L M,Horvath B M,Van Berloo R,Visser R G F.Analysis of genes differentially expressed during potato tuber life cycle and isolation of their promoter regions.Plant Sci,2004,166:423-433
    229.Trinklein N D,Aldred S F,Hartman S J,Schroeder D I,Otillar R P,Myers R M.An abundance of bidirectional promoters in the human genome.Genome Res,2004,14:62-66
    230.Twell D, Ooms G.The 5'-flanking DNA of a patatin gene directs tuber specific expression of a chimaeric gene in potato. Plant Mol Biol, 1987,9: 345-375
    231 .Unsinger J, Kroger A, Hauser H, Wirth D. Retroviral vectors for the transduction of autoregulated, bidirectional expression cassettes. Mol Ther, 2001,4: 484-489
    232.Uppal D S, Verma S C. Changes of reducing sugar and invertase activity in cold-stored potato tubers. Potato Res, 1990, 33: 119-123
    233.van Lerebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort R A, Schell J. Large plasmid in Agrobacterium tumefaciens essential for crown gall inducing ability. Nature, 1974,252: 169-170
    234.vander Leij E R, Visser R G E, Oosterhaven K, vander Kop D A M, Jacobsen E, Feenstra W J. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum) by the gene encoding granule-bound starch synthase. Theor Appl Genet, 1991, 82: 289-295
    235.Visser R G, Stolte A, Jacobsen E. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol, 1991, 17 (4): 691-699
    236.von Borcke L N, Kruger N J. Promoter egion of starch phosphorylase type L from potato tuber. 1999, Accession number AF143202 from NCBI database: http://www.ncbi.nlm.nih.gov
    237.Wasylyk B, Derbyshire R, Guy A, Molko D, Roget A, Teoule R, Chambon P. Specific in vitro transcription of conalbumin gene is drastically decreased by single-point mutation in T-A-T-A box homology sequence. Proc Natl Acad Sci, 1980, 77: 7024-7028
    238.Weigel D. The APETELA2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995, 7: 388-389
    239.Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C. A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J, 1994, 5: 559-569
    240.Weiser C J. Cold resistance and injury in woody plants. Science, 1970, 169: 1269-1278
    241.Wenzler H C, Mignery G A, Fisher L M, Park W D. Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: high-level expression in tubers and sucrose-inducible expression in culture leaf and stem explants. Plant Mol Biol, 1989, 12:41-50
    242.Williams M E, Foster R, Chua N H. Sequences flanking the hexameric G-box core CACGTG affect the specificity if protein binding. Plant Cell, 1992,4: 455- 496
    243.Wilson K, Long D, Swinburne J, Coupland G. A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETELA2. Plant Cell, 1996, 8: 659-671
    244.Woodcock D M, Crowther P J, Doherty J, Jefferson S, De-Cruz E, Noyer-Weidner M, Smith S S, Michael M Z, Graham M W. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acids Res, 1989,17: 3469-3478
    245. Xie M, He Y, Gan S. Bidirectionalization of polar promoters in plants. Nat Biotechnol,2001,19:677-679
    246.Yamguchi-Shinozaki K,Shinozaki K.A novel cis-acting element in a Arabdopsis gene is involved in responsiveness to drought low-temperature or high salt stress.Plant Cell,1994,6(2):251-264
    247.Ye X D,Al-Babili S,Kloti A,Zhang J,Lucca P,Beyer P,Potrykus I.Engineering the provitamin-A(betacarotene) biosynthetic pathway into(carotenoid-free) rice endosperm.Science,2000,287:303-305
    248.Yu J,Langridge W H R.A plant-based multicomponent vaccine protects mice from enteric diseases.Nature Biotechnol,2001,19:548-552
    249.Zambryski P,Joos H,Genetello C,Leemans J,Van Montagu M,Schell J.Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity.EMBO J,1983,2:2143-2150
    250.Zhou J M,Tang X,Martin G B.The Pro kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes.EMBO J,1997,16:3207-3218
    251.Zhu Q,Dabi T,Lamb C.TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro.Plant Cell,1995,7:1681-1689
    252.Zrenner R,Schuler K,Sonnewald U.Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers.Planta,1996,198:246-2524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700