非何杰金淋巴瘤P15基因甲基化和去甲基化再表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P_(15)基因是肿瘤抑制基因的候选基因,受细胞生长抑制蛋白FGF-β
    的诱导,编码周期素依赖激酶4/6(CDK4/6)抑制因子,对细胞周期起负调
    控作用,P_(15)基因操纵区5’-CpG岛的甲基化被认为是基因缺失之外的又
    一失活机制。P_(15)基因5’-CpG岛的异常甲基化导致该基因转录的抑制,5-
    杂氮脱氧胞嘧啶(5-Aza-2cdR)通过共价俘获DNA甲基转移酶抑制DNA
    的甲基化,使因甲基化失活的生长调控基因重新激活并表达。本文用甲
    基化特异性PCR(MSP)的方法以亚硫酸氢钠修饰后的DNA为模扳,
    检测了32例非杰何金淋巴瘤石蜡标本P_(15)基因甲基化,用5-Aza-2cdR诱
    导非何杰金淋巴瘤raji细胞株P_(15)基因去甲基化,结合RT-PCR方法测定
    诱导前后P_(15)基因的表达,结果提示:非何杰金淋巴瘤P_(15)基因操纵区甲
    基化的发生率为18.75%(6/32),高度恶性比低度恶性更易发生甲基化,
    其发生率分别为31.6%和0%。在5-Aza-2cdR10~(-7)-10~(-6)mol/L浓度时P_(15)基
    因可去甲基化再表达。并且raji细胞生长显著抑制,停留G0/G1期细胞
    数升高近2倍。结果表明:5-Aza-2cdR可通过P_(15)基因去甲基化再表达
    抑制raji细胞的生长,为恶性血液病去甲基化临床治疗提供实验依据。
P15
    gene is a candidate as tumor suppressor gene. As cell cycle negative regulator, it is a inhibitor of cyclin-dependent kinase CDK4 and CDK6,whose expression is induced by transforming growth factor(TGF-β)which is a potent inhibitor of cell growth . Abberrant methylation of 5’-CpG islands of P15 gene promoter has been recently described as an alternative mechanism of gene inactivation besides gene deletion. 5’-Aza-2cdR, which can inhibit DNA methylation by covalently traping DNA methylases as their target site in DNA, plays a role in demethylation and reactivate growth-regulator gene inactivated by demethylation. Using a recently found method that methylation-specific ploymerose chain reaction (MSP) is preceded by bisulfite modification of DNA, we investigated the methylation status of 32 NHL cases and raji cell lines of non-Hodgkin’s lymphoma (NHL) induced by 5-Aza-2cdR, and investigated the P15 gene reexpression of raji cell lines before and after induced by 5-Aza-2cdR by RT-PCR.The results have showed that 18.75% (6/32) in NHL is methylation in P15 gene,and methylation was much more frequently in high grade malignant NHL patients 31.6% than in low grade malignant patients 0%. P15 gene can be demethylated and reexpressed with 5-Aza-2cdR of 10-7-10-6 mollL concentration so that inhibited the growth of rajicell lines and resulted in about 2-fold increase in the proportion of cells in G1\G0.The results have also suggested that 5-Aza-2cdR can inhibit the raji cell growth by inducing the reexpression of P15 gene.The method of P15 gene of demethylation provides an experimental foundation for hematologic malignant clincal
    therapy.
引文
1. Vertino PM, Yen, kw, Gao J, et al.be novo methylation of CpG is land sequences in human fibroblasts overexpressing DNA(cytosine-5) -methy transferase. Mol cell Biol, 1996, 16(8) : 455
    2. Ehrlich M, Wang RYH. 5-methylcytosine in eukaryotic DNA Science, 1981,212:1350
    3. LiE, Bestor TH, Jaenisch R Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915-926
    4. Rideout. W. M.. III. Coetzee. G.A. Olumi, F., and Jones, P.A.5-Methylcytosine in eukaryotic DNA Science, 1981,212:1350
    5. Fearon. E. R. and Jones. P.A. Progessing toward a molecular description of colorectal cancer development. FASEB J. 6:2783-2790,1992
    6. Somer, S.S. Mutagen test. Nature (lond.) 346:22-23,1990
    7. Peter A. Jones. DNA Methylation Errors and Cancer: Research 56,2463-2467. June 1. 1996
    8. Leonhardt H, Bestor TH. Structure, function and regulation of mamalian DNA Methyltransferase. EXS 1993; 64:109-119
    9. Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene 1988; 74: 9-12
    10. Gruenbaum Y, cedar H, kazin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 1982; 295:620-622
    11. Bestor TH, Activation of mammaliun DNA methyltransferasse by cleavage of a zn binding regulatory domain. EMBOJ 1992 11:2611-2617
    12. Mol, C, O. Arvai. A.S.Slupphaug. G. Kavil. B. Alseth. I. Krokan. H.E.and Trainer. J. A. Crystal structure and mutational analysts of human ura cil DNA glycosylase: Structural basis for specificity and Catalysis. Cell. 80:8691878. 1995
    13. Roberts. R. J. on base flipping. Cell 82:9-12 1995.
    14. Kautiain TL, Jones PA, DNA methytransferase level in tumori genie and nontumorigenic cells in culture. J. Biol Chem 1986; 261:1594-1598
    15. el-DEIRY ws, Nelkin BD, Celano p, Yen RW, Falco JP, Hamilton SR, Baylin SB. High expression of the DNA methyltransferase gene characterizes human neoplastic cell and progression stages of colon
    
    
    16. Baylin SB. Makosim, Wu J, Abnormal pattems of DNA methylation: in human neoplasia; potential consequences for tumor progression. Cancer cells, 1991, 3:383
    17. Wu JJ, Issa JP, Herman J, Basett DE, Nelkin BD, Baylin SB. Expression of an exogeneous eukaryotic DNA methytransferase gene induces transformation of NIH-3T3 cell. Proc Natl Acad Sci USA 1993; 90:8891~8895
    18. Vertino PM, Yen RW, Gao J, Baylin SB. De aovo methylation of CpG island sequences in human fibroblasts over expressing DNA (cytosine-5-)-methltransferase. Mell Biol 1996; 16:4555-4565
    19. Macleod AR, szyf M. expression of an antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem, 1995, 270:8037
    20. Stoger, K, kubicka, P. Liu. C-G. Kafri. T. Razin. A. Cedar H, and Barlow. D. P. Maternal-specific methylation of the imprinted mouse lgf-zr locus identifies the expressed lous as carrying the imprinting signal
    21. Li. H. Bestor. T. H. and Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69: 915~926. 1992
    22. Li. E. Beard, C. and Jaenisch. K, Role for DNA methylation in genomic imprinting Nature (lond.).366: 362~365, 1993
    23. Goelz SE, Vogestein B. Hypomethylation of DNA from benign and malignant human colon neoplasia. Science 228:187 1 1985.
    24.肖文华,刘为信.癌基因及癌相关基因的甲基化研究进展.国外医学分子生物学分册,1993,15(5):224
    25. Riggs AD, Jones PA. 5-methylcytosine, gene regulation and cancer. Adv Cancer Res, 1983, 40:1
    26. Borrello MG. Protti MA, Bongarzonel, et al. DNA methylation affecting the transforming activating of the human Ha-ras oncogene cancer Res, 1987, 47:475
    27. Rimoldi D, Srikantan V, Wilson VL, et al. In creased sensitivity of nontumorigenic fibroblasts expressing ras or myc oncogenes to malignant transformation induced by 5-aza-2’-deoxycytidine cancer Res, 1991, 51:324
    
    
    28. Szyfm. DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther. 1996, 76 (7) : 501
    29. Baylin SB. Makos M, Wu J. Abnormal patterns of DNA methyllation in human neoplusia: Potential consequences for tumor progression. Cancer cells, 1991, 3: 383
    30. Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/P16/MTSI gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res, 1995, 55: 4525
    31. Li E, Beard C, Jaenisch K, Role for DNA methylation in genomic imprinting. Nature 1993; 366:362-365
    32. Ayse batova, Mitchell B. Diccianni John C Yu,Tsutomu Nobori, Michael P .Link,Jeanette Pullen, and Alice L .Yu Frequent and Selective Methylation of P15 and Deletion of Both P15 and P16 in T-Cell Acute Lymphoblastic Leukemia Cancer Res 57. 832-836,March 1,1997
    33. Ohtain-FujitaN, Fujita T, Aoike A, et al. CpG methylation in actives the promoter activity of the human retinoblastoma tumor suppressor gene. Oncogene, 1993,8: 1063
    34. Merl, A, Herman. J. G., Mao, L, Lee. D. J. Gabrielso-n, E, Burger, P.C.Baylin S.B.and sidransky, D.5' CpG island methylation is accociated with transcription al silencing of the tumor supopressor P16/CDKN2/MTS/in human cancers. Nat. Med, 1:686-692,1995.
    35. Herman, J. G. Merlo.A. Mao. L. Lapictus. R.G. Issa, J-P, J. Davidson, N. E. Sidransky. D. and Baylin. S.B. inaction of the CDN2/pl6/MTS1 gene is fiquently acssociated with aberrant DNA methylation in all common human cancers. Cancer Res, 55: 4525-4530, 1995.
    36. Gonzolez-Zulueta. M. Bender. C.M. Yang. A. S. Nguyen. T.Beart R. W. Von Tornout. J. M. and Jones. P. A. Methylation of the 5'CpG island of the p16/CDKN2/tumor. Supressor gene in normal and transformed human issues correlates with gene silencing. Cancer Res. 55:4531-4535,1995
    37. Dao DD. Sawyer JR, Epstein J, Hoover RG, Barlogie B, Tricot G: Delection of the retinoblastoma gene in multiple myeloma. Leukemia.1994;8:1280-1284.
    38. Graff JR, Horman JG, Lapidus RG, et al. E-cadherin expression is silenced by DNA hypermethylation in human breust and protate cacer. Cancer Res, 1995, 55:51895
    39. Coulcondre. C. Miller. J. H. Farabaugh. P. J. and Gilbert. W. Molecular basis of base substitution
    
    hotspots in Escherichia Coli. Nature (lond) 274: 775-780, 1978
    40. Lieb. M. Allen. E. and kead. D. Very short patch mismatch repair in phage lambda repair sites and length of repair track Genetics. 114: 1041-1060,1986
    41. Lieb. M. and Rehmat, S, Very short patch of T:G mismatches in vivo importance of context and accessory proteins. J. Bacteriol, 177: 660-666,1995
    42. Neddermann. P. and Jiricny. J. The purification of a misination of a mismatch-specific thyme DNA gly cosylase from Hela Cells. J. Biol. Chem. 268: 21218-21224,1993
    43. Schmutte. C. Yang. A.S.Beart. R.W. and Jones. P.A. Base excision repair of U:G Misnatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of Tig mismatches in extracts of human colon tumors. Cancer Res. 55: 3742-3746. 1995
    44. Cooper. D. N. and Youssoufian H, The CpG dinucleotide and human genetic disease, Hum, Genet. 78:151-155 1988.
    45. Rideout. W. M. 111. Coetzee. G. A. Dlumi A.F.and Jones. P.A. 5-methylcytosine as an endogenous mutagen in human LDL receptor and p53 genes. Science. 249:1288-1290. 1990
    46. Fearon. E. R. and Jones. P. A. Progressing toward a molecular description of colorectal cancer development FASEBJ. 6-783-2790. 1992
    47. Somer. S.S. Mutagen test. Nature (lond) 346:22-23,1990
    48. Greenblat. M.S. Benett: W.P.Hollstein. M. and Harris. C.CMutations in the P53 tumor suppressor gene: cluse to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855-4878. 1994
    49. Shen. J-C kideout. W.M.lll, and Jones. PA. High frequency mutagenesis by a DNA methyltrans-frase Cell. 71: 1073-1080
    50. Yebra. M. J. and Bhagwat. A. S. A. Cytosine mothyltransferase converts' converts 5-methylcytosine in DNA to thymine. Biochemistry. 34:14752-14757. 1995
    51. Stone, S., Dayananth. P., Jing. P., Weaver-Geldhous. J. M., Tavtigian. S.V., Cannon-Albright. L., and Kamb. A. Genomic structure, expression and mutational analysis of the p15(MTS2) gene. Oncogene. 1995; 11:987-991.
    52. Sherr CJ. GI phase progression: cyclin on cues. Cell 1994; 79: 551-555.
    53. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81:323-330.
    54. ancini MA, Shan B, Nickerson JA, Penman S, Lee WH:The retinoblastoma gene product is a cell cMyclin-dependent nucler mmatrix-asscioated protein Prco Natl Acad Sci USA.1994;91:418-
    
    
    55. Nevins JR :E2F:A link between the Rb thmor suppressor protein and viral oncopritein Science 1992;258:424
    56. Antonio Lavarone &Jone Massague. Repression of the CDK activator Cdc25A and cell-cyclin arrast by cytokine TGF-B in cells lacking the CDK inhibitor p15. Nature 1997;387:417-421.
    57. Sandhu C, Garbe J, Bhattacharya N, Bhattacharya N, Daksis J, Pan CH, Yaswen P, Koh J, Slingerland JM, Stampfer MR: Transforming growth factor beta stabilizes p15(INK4B) protein, increases p15(ink4B)-cdk4 complexes, and inhibits cyclin D1 cdk4 association in human mammary epithelial cells. Mol Cell Biol.1997;17:2458-2483.
    58. Jen J, Harper JW, Binger SH, Bigner DD, Papadopoulos N, Matkowitz S, Willson JKV, Kinzler KW,Vogelstein B. Deletion of p16 and p15 genes in brain tumors. Cancer Res 1994; 54:6353-6358.
    59. HG Drexler .Reviiew of alterations of the INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukmia 1998;12:845-859.
    60. Marcos Malumbers Gonzalez-Zulueta, M. Bender. C.M., Yang. A. S., Nguyen T., Benart. R. W.,Van Tomour. J. M.. and Jones. P.A.Methylation on the 5’CpG island of the p16/CDKN2 tumor supperssor gene in normal and transformed human tissues correlates with gene silencing Cancer Res. 1995 55:4531-4535
    61. James G. Herman, Jin Jen. Adrian Merlo, and Stephen B. Baylin. Hypermethylation-associated inactivation indicates a tumor suppressor Role for P_(15)~(INK3BI). Cancer Res. 56, 722-727. 1996
    62. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB: Distinct patterns of inactivation of p15~(INK4B) and p16~(IMK4A) characterize the major types of hematological malignancies. Cancer Res. 1997 57:837-841.
    63. Bruno Quesnel,Gaelle Guillerm, Rodolphe Vereecque,Eerie Wattel, Claude Preudhomme,Francis Bauters, Mieheal Vanmmbeke,and Pierre Fenaux. Blood 1998;91:2985-2990.
    64. Jonathan E Dodge, Alan F.List and Bernard W.Futscher. Selective variegated methylation of the p15 CpG island in actue Myeloid Leukemia .Int. J.Cancer 1998;78:561-567.
    65. Jonathan E Dodge, Alan F.List and Bernard W.Futscher. Selective variegated methylation of the p15 CpG island in actue Myeloid Leukemia .Int. J.Cancer 1998;78:561-567.
    66. M.Kantarjian, Michael J.keating, Milosav S.Beran, and Maher Aalbitar. p16INK4A and p15INK4B Gene Deietions in Primary Leukemia. Blood 1995;86:311-315.
    67. Ng MHL, Chung YF, Lo KW, Wickham NWR Lee ICK, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 1997; 89:2500-2506、
    68.周涛,吴穷等骨髓异常增生综合症转化为急性粒细胞性白血病p_(15)基因获得甲基化1例 广东医学 2000 150
    69. Jones. P.A. and Taylor. S.M. Cellular differentiation cytidine analogs and DNA methylation cell. 20:85~93. 1980
    70. Jones. P.A. Altering gene expression with 5-azacytidine. Cell. 40: 485~486, 1985
    71. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15~(ink4B) Cancer Res 1996;56:722-727.
    
    
    72. Batova Aa, Diccianni MB, Yu JC, Nobori T, Link MP, Pullen J, Yu AL:Frequent and selective methylation of the P_(15) and deletion of both P_(15) and P_(16) in T-cell actue myphoblastic leukemia.Cancer Res. 1997;57:843-836.
    73. J-PJ Issa, SB Baylin and JG Herman. DNA methylation changes in hematologic malignancies :biologic and clinical implications. Leukemia 1997;11:S7-S11.
    74. J-PJ Issa, SB Baylin and JG Herman. DNA methylation changes in hematologic malignancies :biologic and clinical implications. Leukemia 1997;11:S7-S11.
    75. J-PJ Issa, SB Baylin and JG Herman. DNA methylation changes in hematologic malignancies :biologic and clinical implications. Leukemia 1997;11:S7-S11.
    76.杨景山主编.医学细胞化学与细胞生物技术上.北京:北京医科大学,协和医科大学联合出版.1989.6-17
    77. Christina M, Bender, Martha M. Pao. And Peter A. Jones. Inhibition of DNA Methylation by 5-Aza-I-deoxycytidine suppresses the Growth of Human Tumor-cell lines Cancer. Res. Vol 58 95-101.January 1, 1998
    78.丁训杰,沈迪,林修基,林宝爵,实用血液病学,上海:上海医科大学出版社,1991,324
    79.姜泊,张亚历,周殿元,分之生物学常用试验方法,第一版,北京;人民出版社,1996:170-183
    80.北京医科大学主编.全国肿瘤与白血病诊断和治疗知识更新学习班实验学讲义.1997,2-5
    81.北京医科大学主编.全国肿瘤与白血病诊断和治疗知识更新学习班实验学讲义.1997,2-5
    82. Byulf klangby, ismail okan, kristinn P. Magnusson, Martin Wendland. Peter lind and KlasG. Wiman,P16/1NK4a and P15/INK4b Gene methylation and Absence of P16/1NK4a mRNA and protein Expression in Burkitt’s lymphoma Blood vol 91. No.5(March 1), 1998:1680~1687
    83. Jones.P.A. Wolkowicz. M. J. Rideout. W. M. Gonzale .F.A. Marizc. M .Coetzee. G .A. and Tapscott.S. J. De novo methylation of the myod CpG island during the establishment of immortal cell line Proc.nNatl. Acad. Sci .USA. 87:6117-6121.1990
    84. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15~(ink4B) Cancer Res 1996;56:722-727.
    85. Santi DV, Garrett CE,and Barr PJ.On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine anailogs.Cell 1983;33:9-10.
    86. Friedman S. The irreversible binding of azacytosine-constaning DNA frequent to bacterial DNA methyltransfreases J Biol chem 1985;260:5698-5705.
    87. Mark L. Gonzalgo. Christina M. Bender, Edward H. You, J. Michael Glendening, Jose F. Flores, Graemej. Walker, Nicholas K. Hayward, Peter A-Jones and. Jane W Fountain. Low Frequency of P16/CDK2A Methlation in sporadic Melanoma: Comparative Approaches for Methylation Analysis of Primary Tumors: Cancer Res 57, 5336~5347. December 1. 1997
    
    
    88. Kwok-wai Lo Siu-Tim Cheung, sing-Fai leung, Andrew van. Hasselt, Yuen-shan. Tsang, Ko-Fung Mark, Yuk-Fei Chung, John K.S. WOO, Jose ph c.k lee and Dolly P. Huang. Hypermethylation of the P16 Gene in Nasopharyngeal carcinoma. Cancer Res 56, 2721~2725 June 15.1996
    89. Macleod AR, Szyf M. Expression of antisense to DNA methyltransferase Mrna induces DNA demethylation and inhibits tumorigenesis. J Biol Chem 1995; 270:8037-8043.
    90. Harmon GJ, Beach D. P15ink4b is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371:257-261.
    91. Hopper. W.C,The role of transforming growth factor-B in hemattopoiesis.Areview. Leuh. Res 1991;15:179-184
    92. Thompson. N.L. Flanders. K. C. Smith. J. M.Elling-sworth. L. R. Roberts. A.B.and. Sporn.M.B.Expression of transforming growth factor-βin specific cells and tissue of adult and neonateal mice J. Cell Biol. 108: 661~669, 1989
    93. Ellingworth. I. R. Brennan. J. E. Fok. K. Rosen. D.M. Bentz. H Peiz. K.A. and seyedin.S.M.Antibodies to the N-terminal Portion of Cartilage-inducing factor A and transforming growth factor β. J. Biol. Chem. 261: 12362~12367. 1986
    94.汪国春.袁丽玲;CIP-KIP细胞周期蛋白依赖激酶抑制因子家族:国外医学分子生物学:国外医学分子生物学 1999.21(1):17~21
    95.吴穷.周涛.郭秀枝.等.P15INK4B基因在急性和慢性骨髓性白血病甲基化的情况及其甲基化与转录的关系研究.第七届全国实验血液学议论文汇编.
    96.郭秀枝.吴穷.周涛等.P152NK4B基因甲基化在骨髓增生异常综合征中的研究.第七届全国实验血液学论文汇编.
    97.王振义,新的和正在研究中的诱导分化剂,见王振义,陈竺主编.肿瘤的诱导分化和凋亡疗法.上海:上海科学出版社1998:73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700