鸡p15~(ink4b)基因克隆、表达及生物学作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
INK4a_ARF基因座在控制细胞增殖和肿瘤抑制方面有着非常重要的作用,它在控制各种家族性和单发生性肿瘤方面发挥着十分重要的作用。INK4b和INK4a在人类染色体9p21上串联排列,在小鼠和大鼠中分别位于4号和5号染色体上。P16因子是CDK4/6-cyclinD的抑制物,主要是抑制CDK4/6-cyclinD复合物(complex)在细胞周期G1期晚期磷酸化PRb蛋白,使细胞不能通过G1/S检测点。大量研究表明INK4a/4b是由一个基因重复而来。在河豚中发现只存在INK4b,因此INK4b相对来说比INK4a更原始。INK4a基因能够编码两个结构和功能都不相同的产物。两个转录产物分别命名为α和β,它们是利用不同的启动子从不同的起始位点开始转录并利用不同的外显1α和1β和同样的外显子2,3剪接而成。α转录物被翻译为P16,β转录物被翻译为P14~(ARF)(小鼠中为P19~(ARF))。P16在PRb上游起作用, ARF在P53上游起作用,它与MDM2直接结合,防止MDM2介导P53降解。2002年Soo-Hyun等人从鸡基因组的部分酶切片段中克隆到完整的p15~(ink4b)基因和截短的ARF基因,但没有发现p16~(ink4a)基因,由此可猜想在没有P16因子的鸡细胞内,P15因子在鸡细胞周期的调控中可能发挥着更重要的作用。
     本研究首先构建了pVAX1-p15~(ink4b)基因的真核表达载体,将其转染进鸡胚成纤维细胞(CEFs)。RT-PCR和westernblot检测p15~(ink4b)在CEFs内转录和表达情况。然后就p15~(ink4b)对CEFs的增殖和衰老相关性β-半乳糖苷酶影响进行了研究。结果表明,p15~(ink4b)在CEFs中能够转录和表达,抑制CEFs的增殖,将CEFs抑制在细胞周期G1/S期检测点上,能够诱导CEFs进入细胞衰老。
     总之,本研究首次对鸡p15~(ink4b)对细胞周期调控和诱导细胞衰老的生物学功能进行了初步的探讨,为进一步研究p15~(ink4b)生物学作用,细胞周期的调控机理和肿瘤的发生机理奠定了基础。
INK4a_ARF locus has a crucial role on controlling cell proliferation and tumor suppression.It can control a variety of familial and monogenesis tumors.INK4b and INK4a locate on human chromosome 9p21 in tandem(Human Genome Organization designation CDKN2B-CDKN2A).In mice and rat counterpart , they locate on chromosome 4 and chromosome 5 respectively.As an inhibitor of complex CDK4/6-cyclinD, P16 inhibits phosphrating PRb by CDK4/6-cyclinD in late G1.Thus,cell can not bypass G1/S restriction point.Accumulating research evidence indicates that INK4a/4b evolves from gene repetition.Gene INK4a evolves from gene INK4b.Thus, gene INK4b is more primitive than gene INK4a .Soo-Hyun and his parterners have isolated and characterized the equivalent locus in chickens in 2002.Surprisingly, they found that orthologues of INK4b and ARF, chickens do not encode an equivalent of INK4a.From above discussion,we can make hypothesis that P15 have a strong role in non-P16 chicken cells.As follows,this research was divided two parts.
     Cloning and expression chicken p15~(ink4b) gene
     The chicken p15~(ink4b) gene was amplified by PCR, then the PCR product and vector pVAX1 digest with double enzyme BamHI and XhoI, chicken p15~(ink4b) gene was cloned into a eukaryotic expression vector pVAX1.Then, we identifided positive clone by PCR and bienzymatic digestion and furtherly identified by sequencing.Sequencing result was analyzed by biological software. It was confirmed that the gene sequence was consistent with the sequence in GENEBANK.Positive recombinant eukaryotic plasmids were transfected into CEFs. We detected transcription and expression of p15~(ink4b) by employed RT-PCR and westernblot in CEFs.
     Chicken p15~(ink4b) gene inhibited proliferation of CEFs, arrested CEFs in G1/G0 and induced cellular senescence of CEFs
     We transfected pVAX1-p15 into CEFs by Lipofectamine2000. After transient transfection,proliferation of CEFs was determinated by direct cell number counting and MTT assay at 24, 48, 72 hours respectively. Cell cycle arrest was detected by fluorescence activated cell sorter (FACS) analysis.Cellular senescence was determinated by detecting SA-β- galactosidase. Results show that P15 can express in CEFs, nhibit cell cycle progression of CEFs at G1/S restriction point and induce cellular senescence CEFs.
     In conclusion,this research explored biological activities of P15 in CEFs initially, which would lay a foundation to the researches in mechanism of cell senesence,cell cycle regulation and tumor genesis.
引文
[1] Liggett WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer.J Clin Oncol, 1998, 16:1197-1206
    [2] Bartlett R,Nurse P.Yeast as a model system for understanding the control of DNA replication in eukaryotes. Bioessays, 1990, 12 (10) : 457-463
    [3] Nurse P. Regulation of the eukaryotic cell cycle. European J Cancer, 1997, 33 (7) : 1002-1004
    [4] Maloney KW,McGavran L, Odom LF, et al.Different patterns of homozygous p16INK4a and p15 deletions in childhood acute lymphoblastic leukemias containing distinct E2A translocations.Leukemia, 1998, 12:1417-1421
    [5] Hartwell L H. Genetic control of the cell division cycle in yeast Ⅱ: genes controlling DNA replication and its initiation. J Mol Biol, 1971, 59 : 183-194
    [6] Reid B J, Hartwell L H. Regulation of mating in the cell cycle of S accharymyces cerevisiae. J Cell Biol, 1977, 75 : 355-365
    [7] Milller CW, Koeffler HP. Cycline-dependent kinase inhibitors in human neoplasms. Leukemia, 1997, 11:370-371
    [8] Hunt T,Luca F C, Ruderman J V. The requirements for protein synthesis and degradation and the contiol of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol, 1992, 116 (3) : 707-724
    [9] Hartwell L H, Culotti J, Pringle J R, et al . Genetic control of the cell division cycle in yeast . Science, 1974, 183 : 46-51
    [10] Hunt T. Cyclins and their partners : from a simple idea to complicated reality. Semin Cell Biol, 1991, 2 (4) : 213-222
    [11] Evans T, Rosenthal E T, Hunt T, et al. Cyclin:a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983,33 : 389-396
    [12] Bandara L R, Adamczewski J P, Hunt T, et al. Cyclin Aand the retinoblastoma gene product complex with a common transctiption factor. Nature , 1991 , 352 (6332) : 249-251
    [13] Hunt T, Luca F C, Ruderman J V. The requirements for protein synthesis and degradation and the contiol of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol, 1992, 116 (3) : 707-724.
    [14] Simanis V, Hayles J, Nurse P. Control over the onset of DNA synthesis in fission yeast . Philos Trans R Soc Lond B Biol Sci, 1987, 317 (1187) : 507-516
    [15] Nurse P. Universal control mechanism regulating onset of M2 phase. Nature, 1990, 344 (6266) : 503-508
    [16] Simanis V, Nurse P. The cell cycle control gene cdc2 + of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell, 1986, 45 (2) : 261-268
    [17] Hunt T, Luca F C, Ruderman J V. The requirements for protein synthesis and degradation and the contiol of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol, 1992, 116 (3) : 707-724
    [18] Li A, Blow J J. The origin of CDK regulation. Nature Cell Biology, 2001, 3 : 182-184
    [19] Felix M A, Labbe J C, Dorse M, et al. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature, 1990, 346 (6282) : 379-382
    [20] Gould K L, Nurse P. Tyrosine phosphorylation of the fission yeast cdc2 + protein kinase regulates entry into mitosis. Nature, 1989, 342 (6245) : 14-15
    [21] Hartwell L H, Ted A. Weinert Chekpoints: Controls that ensure the order of cell cycle events. Science, 1989, 246 : 629-633
    [22] Paulovich A G, Armour C D, Hartwell L H. The saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet induced DNA damage. Genetics, 1998, 150 (1) : 75-93
    [23] DpUrso G, Grallert B, Nurse P. DNA polymerase alpha, a component of the replication initiation complex, is essential for the checkpoint coupling S to mitosis in fission yeast. J Cell Sci, 1995, 108 : 3109-3118
    [24] Hartwell L H, Szankasi P, Robert C J, et al. Integrating genetic approaches into the discovery of anticancer drugs. Science, 1997, 278 (5340) : 1064-1068
    [25] Zhang P. The cell cycle and development : redundant roles of cycle regulators. Current Opion in Cell Biology, 1999, 11 : 655-662
    [26] MFaderl S, Kantrarjian HM, Mansouri J, et al. The prognostic significance of deletions of p16INK4a/and p15INK4B on chromosome 9p21 in adult acute lymphoblastic leukemia.Blood, 1998, 92 Suppl:1985 [27 Chen YX, Li B, Yang J, et al. p15INK4B gene expression and hypermethylation in bone marrow cells of patients with acute myeloid leukemia. Blood, 1998, 92 Suppl: 2484
    [28] Fadel S, Kantarjian HM, Estey E, et al.Deletions of p16INK4a/p19ARF and p15INK4B on chromosome 9p21 in adult acute myelogenous leukemia(AML) and their impact on diagnosis.Blood, 1998, 92 Suppl:2483
    [29] Aoki E, Uchida T, Okshi H, et al. Methylation of the p15(INK4B) gene in progenitor cells in myelodysplastic syndromes.Blood, 1998, 92 Suppl:1735
    [30] Kees UR,Ranford PR, Hatzis M. Deletions of the p16 gene in pediatric leukemia and corresponding cell lines.Oncogene, 1996, 12:2235-2239
    [31] Jagasia AA, Sher DA, le Moine PJ, et al.Deletion or lack of expression of CDKN2(CDK4I/MTS1/INK41) and MTS2(INK4B)in acute lymphoblastic leukemia cell lines reflects the phenotype of the uncultured primary leukemiacells. Leukemia, 1996, 12:624-628
    [32] Aguiar RCT, Sill H, Goldman JM, et al.The commonly deleted region at 9p21-22 in lymphoblastic leukemias spans at least 400 kb and includes p16 but not p15 or the IFN gene cluster.Leukemia, 1997, 11:233-238
    [33] Radfar A, Unnikrishnan, Lee HW, et al. p19ARF induces p53-dependent apoptosis during Abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci U S A, 1998, 95:13194-13199
    [34] Suzuki A, Ito T, Kawano H et al . Survivin initiates procaspase23/ p21 complex formation as a result of inter action with Cdk4 to resist Fas2mediated cell death. Oncogene, 2000, 19 :1346
    [35] Zindy, F., Quelle, D.E., Rousse, M.F., and Sherr, C.J. (1997). Expressionof the p16INK4a tumor suppressor versus other INK4 familymembers during mouse development and aging. Oncogene 15, 203–211
    [36] Zou, Y., Sfeir, A, Shay, J.W. and Wright, W.E. (2004). Does a sentinelor a subset of short telomeres determine replicative senescence? Mol. Biol. Cell 15, 3709–3718
    [37] Greider, C. and DePinho, R.A. (1999). Longevity, stress response, Biol. 8, 351–354. and cancer in aging telomerase-deficient mice. Cell 96, 701–712
    [38] Hayflick, L. & Moorhead, P.S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621
    [39] Ponten, J. (1976) The relationship between in vitro transformation and tumor formation in vivo. Biochim. Biophys. Acta 458, 397-422
    [40] Campisi, J. (1999) Replicative senescence and immortalization. In The Molecular Basis of Cell Cycle and Growth Control (Stein, G., Baserga, R., Giordano, A. & Denhardt, D., eds), 348-373
    [41] Sherr, C.J. & DePinho, R.A. (2000) Cellular senescence: Mitotic clock or cultureshock? Cell 102, 407-410
    [42] Linskens, M., Harley, C.B., West, M.D., Campisi, J. & Hayflick, L. (1995) Replicative senescence and cell death. Science 267, 17
    [43] Stanulis-Praeger, B. (1987) Cellular senescence revisited: a review. Mech. Aging Dev. 38, 41-48
    [44] Campisi, J., Dimri, G.P. & Hara, E. (1996) Control of replicative senescence. In Handbook of the Biology of Aging (Schneider, E. & Rowe, J., eds), pp. 121-149
    [45] Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W. & Harley, C.B. (1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951-960
    [46] Harley, C.B., Futcher, A.B. & Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458-460
    [47] Harley, C.B. (1997) Human ageing and telomeres. Ciba Found. Symp. 211, 129-139
    [48] Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S. & Wright, W.E. (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279, 349-352
    [49] Vaziri, H. & Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279-282
    [50] Ouelette, M.M., Liao, M., HepRbert, B.S., Johnson, M. & Holt, S.E. Liss. H.S., Shay, J.W. & Wright, W.E. (2000) Subsenescen telomere lengths in fibroblasts immortalized by limiting amounts of telomerase.J.Biol. Chem.275, 10072-10076
    [51] Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A. & Klingelhutz, A.J. (1998) Both PRb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88
    [52] Counter, C.M., Hahn, W.C., Caddle, S.D., Beijersbergen, R.L., Lansdorp, P.M., Sedivy, J.M. & Weinberg, R.A. (1998) Dissociation among in vitro telomerase activity, telomere maintenance and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723-14728
    [53] Wright, W.E. & Shay, J.W. (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849-851
    [54] DiLeonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540-2551
    [55] Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J. & Ames, B.N. (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl Acad. Sci. USA 92, 4337-4341
    [56] Robles, S.J. & Adami, G.R. (1998) Agents that cause DNA double strand breaks lead to p16ink4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113-1123
    [57] von Zglinicki, T., Saretzki, G.D., Doècke, W. & Lotze, C. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186-193
    [58] Ogryzko, V.V., Hirai, T.H., Russanova, V.R., BapRbie, D.A. & Howard, B.H. (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol. Cell. Biol. 16, 5210-5218
    [59] Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602
    [60] Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. (1998) Senescence of human fibroblasts induced by oncogenic raf. Genes Dev. 12, 2997-3007
    [61] Lin, A.W., Barradas, M., Stone, J.C., van Aelst, L., Serrano, M. & Lowe, S.W. (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008-3019
    [62] Dimri, G.P., Itahana, K., Acosta, M. & Campisi, J. (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14/ARF tumor suppressor. Mol. Cell. Biol. 20, 273-285
    [63] McConnell, B.B., StapRborg, M., Brookes, S. & Peters, G. (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351-354
    [64] FepRbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C. & Lowe, S.W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015-2027
    [65] Pearson, M., CapRbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P.P. & Pelicci, P.G. (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic RAS. Nature 406, 207-210
    [66] Liu, J.H., Mu, Z.M. & Chang, K.S. (1995) PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu. J. Exp. Med. 181, 1965-1973
    [67] Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P.S. (1998) Structure, organization and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297-304
    [68] Wang, Z., Ruggero, D., Ronchetti, S., Zhong, M., Gaboli, M., Rivi, R. & Pandolfi, P. (1998) PML is essential for multiple apoptotic pathways. Nat. Genet. 20, 266-272
    [69] Sherr, C.J. (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984-2891
    [70] Campisi, J. (2000) Cancer, aging and cellular senescence. In Vivo. 14, 183-188
    [71] Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O.M., Peacocke, M. & Campisi, J. (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363-9367
    [72] Xu XL, Yu J, Zhang HY, et al . Methylation profile of the promoter Cp G islands of 31 genes that may cont ribute tocolorectal carcinogenesis. World Gast roenterol, 2004, 10 (23) :3441-3454
    [73] 0leone G, Vo so M T, Teofili L, et al. Inhibitors of DNA methylation in the treatment of hemato –logical malignanciesandMDS. Clin Immuno l, 2003; 109 (7)∶89
    [74] HAUCK S J, BARTKE A. Free radical defense in the liver and kidney of human growth hormone transgmic mice: possible mechanism of early mortality. J Gerontol A Boil Sli Med Sci, 2001, 56(4) : B153-162
    [75] HU F B, HANKINSONSE, STAMPFER, MJ, et al. Prospective study of cataract extraction and risk of coronary heart disease in women. Am J Epidemiol, 2001, 153(9) :875-81
    [76] 李福才, 李英慧, 赵旭等。喉癌中p15、p16基因纯合缺失与EGFR基因扩增相关性研究.遗传学报,2004 , 31 (2) : 109~113
    [77] 朱瑾, 徐如君,吴正虎,闫春兰,曹晓林, 方瑜, 林琳喉鳞状细胞癌组织中Survivin基因与p15和p16基因表达的关系.中华耳鼻咽喉科杂志,2004 ,39(6): 356~359
    [78] 王英, 崔忠, 李开宗, 李玉松, 秦亚东, 王文勇, 王剑波。肝细胞肝癌中p15基因产物的表达及其意义.中国普通外科杂志,2004,13(7):540~542
    [79] 郑瑞玑, 沈松菲, 沈建箴, 马旭东。INK4系列抑癌基因(p16、p15、p18、p19)在白血病中的甲基化.福建医科大学学报,2004,38(3):257~260
    [80] 徐绍年, 杜振广, 赵方, 李福春。p15 蛋白在骨巨细胞瘤中表达的研究.中国骨肿瘤骨病,2004,3(3)1:58~160
    [81] 武钦学, 吴志华,唐慰萍。p16,p15 及 PRb 蛋白在皮肤鳞状细胞癌中的表达.岭南皮肤性病科杂志,2004,11(2):101~103
    [82] 夏瑾瑜,戴淑真, 罗兵,段玉英。原发性卵巢癌 p15 mRNA 及其蛋白的表达.齐鲁医学杂志,2004,19(4):291~193
    [83] 周涛,陆红,范洪涛,郭秀枝,葛永斌,陈星宇。5-A za2-cdR诱导Raji细胞p15基因再表达及细胞生长抑制遗传性的实验研究.陕西医学杂志,2005,34(1)14~18
    [84] 王辉,肖辉,徐殿国,齐凤英。p15在食管癌中的表达及生物学意义 .河北医科大学学报,2006,27(1):6~9
    [85] Kato J, Matsushime H, Hiebert SW, et al. Direct binding of cyclin D &127; to the retinoblastoma gene product(pRb) and pRb phosphorylation &127; by &127; the cyclin D-dependent kinase CDK4. Genes Develop, 1993, 7:331-342
    [86] 刘平湖等。细胞周期负调控.细胞生物学杂志,1996,18(4):149~153
    [87] Inoshita S, Terada Y, &127;Ymamda T, et al.Mitogenic signaling of endothelin-1 is regulated by cyclin D1, p16and the phosphorylation of retinoblastoma gene product in rat&127; mesagial cell. J Am&127; Soc Nephrol, 1996, 7: 1564-1571
    [88] Linskens, M.H.K, Feng, J., Andrews, W.H., Enlow, B.E., Saati, S.M., Tonkin, L.A., Funk, W.D. & Villeponteau, B. (1995) Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244-3251
    [89] 陶勇浩等。p15,p16 基因在多种原发恶性肿瘤与肿瘤细胞株中存在状态的研究表遗传学变异与肿瘤. Chin J Med Genet,1996; 13(4): 198~202
    [90] Lee E. Cyclin dependent kinase regulation. Curr Opin Cell Biol, 1995, 7:773-780 Stuart JS.Cell-cycle control and renal disease. Kidney &127; International, 1997, 52: 294-308
    [91] Shankland SJ, Hugo C, Coats SR, etal. Changes in cell cyclin protein expression during experimental mesangial proliferative glomerulonephritis. Kidney Int, 1996, 50: 1230-1239
    [92] La Thangue NB: DP and E2F proteins. &127;Components of a heterodimeric tramscription factor mplicated in cell cycle control.&127;Curr Opin&127;Cell Biol, 1994, 6: 433-450
    [93] Shankland SJ, Hamel PA, Scholey JW, et al. Cyclin and &127; cyclin-&127; dependent kinase expression in the remant glomerulus. J Am Soc Nephrol, 1997, 8:368-375
    [94] Luo Y, Hurwttz J, Massague J. Cell-cycle inhibi-tion by independent CDK and PCNA binding domains in p21 CIP1. Nature, 1995, 375:159-161
    [95] Hengst L, Reed SI. Translstional control &127; p27 &127; accumlation &127;during the cell cycle. Science, 1996, 271: 1861-1864
    [96] Burri N, Shaw P, Bouzourene H, et al. Methylation silencing and mutations of the p14ARF and 16INK4a genes in colon cancer. Lab Invest 2001;81:217-229
    [97] Matsuoka S, Edwards MC, Bai C, et al. P57kip2, a structurally &127; distinct member of the p21Cip1 CDKinhibitor &127; candidate &127;tumor suooressor gene. Genes Develop, 1995, 9:650
    [98] Magdinier F, Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Pro Natl Acad Sci U S A 2001;98:4990-4995
    [99] Komarova, E.A., Diatchenko, L., Rokhlin, O.W., Hill, J.E., Wang, Z.J.,Krivokrysenko, V.I., Feinstein, E. & Gudkov, A.V. (1998) Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53. Oncogene 17, 1089-1096
    [100] Sager, R. (1991) Senescence as a mode of tumor suppression. Environ. Health Persp. 93, 59-62
    [101] 符淳,张琼英,卢放根,等。 P16 ,CDK4 和PCNA 蛋白在滋养细胞肿瘤中的表达 . 湖南医科大学学报,1998 ,23 (1) :17
    [102] Yeager, T.R., DeVries, S., Jarrard, D.F., Kao, C., Nakada, S.Y., Moon, T.D., Bruskewitz, R., Stadler, W.M., Meisner, L.F., Golchrist, K.W., Newton, M.A., Waldman, F.M. & Reznikoff, C. (1998) Overcoming cellular senescence in human cancer pathogenesis. Genes Dev. 12, 163-174
    [103] Donehower, L.A, Harvey, M., Slagke, B.L., McArthur, M.J., Montgomery, C.A., Butel, J.S. & Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356, 215-221
    [104] 孙玉鹏等. TGF-β1对细胞周期的调控作用. 解放军医学情报, 1996,10(6):321~324
    [105] FOSSEL M. Human Aging A D, progeria. J Pediatr Endocrinol Metab, 2000, 13(Suppl 6) : 1477-1481
    [106] RICHARDN M, RAMZI S C. Cellular Aging. In : VINAYK, RAMZIS C, STANLEYLR. Basic Pathology. London: W. B. SAUNDERS COMPANY, 1996, 23-24
    [107] SPAIN. Melatonin, mitochondria and cellular bioener. getics. J Pineal Res, 2001, 30(2) : 65-74
    [108] BOREK C. Antioxidant heart effects of aged garlic extract. J Nutr, 2001, 131(3s) : 1010-1015
    [109] 王祥珍,王大刚,许学先。P16 基因在妊娠滋养细胞肿瘤中的表达及其意义. 广东医学院学报,1999 ,17 (2) :96
    [110] LAKOWSKI B, HEKIMI S. Determination of life - span in Caenorhabditis elegans by four clock genes . Science, 1996, 272(5264) : 1010-1013
    [111] VANFLETEREN J R, BRAECKMAN B P. Machanisms of life span determination in Caenorhabditis elegans. Neurobiol Aging, 1999, 20(5) : 487-502
    [112] VAZIRI H. Critical telomere shortening regulated by the atania - telangiectasia gene acts as a DNA damage signal lead to activation of P53 protein and limited life - span of human diploid fibroblasts. Biochemistry (mose), 1997, 62(11) : 1301-1310
    [113] FARWELLDG, SHERAKA, KOOPJI, et al. Genetic and Epigenetic changes in human epithelial cells immor2 talized by telomerase. Am J Pathol, 2000, 176(5) : 1537-154
    [114] Nie Y, Liao J, Zhao X, et al . Detection of multiple gene hypermet hylation in t he development of esophageal squamous cell carcinoma. Carcinogenesis, 2002, 23 (10) :1712-1720

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700