温室条件下芽孢杆菌的生物活性及对番茄青枯病菌的抑制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由青枯病菌引起的番茄青枯病(TBW)是全球范围内最严重的细菌性病害之一。由于其寄主范围广并能够在土壤中长时间生存,至今尚无一种防治方法能在病害流行区对其进行有效控制。生物防治与其他防治方法相结合被证明具有持久、环保的特点,并且能够保障农业生态系统的生产力和稳定性。
     本研究从番茄和马铃薯的根际土壤中分离到约200个根际细菌,并测定它们对青枯病菌T-91的拮抗作用,在离体试验中,Am1, Am2, Am5, Am50, Am47, D11, D12, D16, D29和H810株菌株表现出了高潜力的拮抗活性。在温室条件下,进一步筛选它们对青枯病菌的生防效果。结果发现,使用Am1, D16, D29和H8菌株处理的番茄植株,青枯病的发病率减少至81.1%-89.0%。与未处理组比较显著(P>0.05)增加了番茄的株高(22.7%-43.7%)和干重(47.93%-91.55%)并能有效抑制土传真菌赤霉病菌,瓜果腐霉菌和立枯丝核菌。采用16S rRNA基因序列、生理和生化测试、脂肪酸甲酯分析对这4株拮抗细菌菌进行鉴定,结果表明Aml和D29为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),D16和H8分别为枯草芽孢杆菌(B. subtilis)和甲基营养型芽孢杆菌(B. methylotrophicus)。
     为评估枯草芽孢杆菌4812和甲基营养型芽孢杆菌H8单独使用或结合两种植物防御诱导剂乙酰水杨酸(ASA)和DL-β-氨基丁酸(BABA)使用时的生防效果,分别在离体和活体条件下测试了它们对青枯病菌的抑制作用。结果表明,在温室和离体条件下,所有处理均对青枯菌具有显著的抑制作用。在离体条件下,H8+ASA和4812+H8被认为是最有效的处理。将处理剂在番茄种子上施用并浸泡土壤时,H8对该病害的抑制作用最强,而4812+H8+ASA的抑制作用最弱。此外,使用4812+H8,H8+ASA和4812+H8+ASA处理的植物中检测到高活性的苯丙氨酸解氨酶。使用H8,4812+H8和H8+ASA处理的植物中检测到过氧化物酶和多酚氧化酶的表达量最高。实时定量PCR结果证实,所有处理组的植物茎组织中的病菌浓度均显著降低,其中H8+ASA是最有效的处理组合。
     生物活性机制研究显示,解淀粉芽孢杆菌Am1和D29,枯草芽孢杆菌D16和甲基营养型芽孢杆菌H8这4株菌都能产生吲哚乙酸和铁载体,而不产生氰化氢。此外,D29,AM1和H8都具有溶解磷的能力。芽孢杆菌菌株既具有形成生物膜的能力,也具有溶解和破坏青枯病菌生物膜的能力。常规PCR分析结果显示,这4株菌都具有合成脂肽的基因(bmyB,fenD,ituC,srfA和bacA),这些基因分别表达合成Bacillomycin,Fengycin,Iturin,Surfactin和Bacilysin.在温室试验中,分别观察到处理组的番茄植株的IAA含量,鲜重与干重之间存在正相关(0.777和0.686)的关系。
Tomato Bacterial wilt (TBW) caused by Ralstonia solanacearum is the most serious and worldwide bacterial disease. Due to its wide host range and ability to survive freely in the soil for extended period, no single strategy can provide effective control against this disease in regions where the pathogen is endemic. Biological control of TBW combined with other control approaches has proven to be more durable, eco-friendly and maintain stability and productivity of agro-ecosystems.
     In this study, about200rhizobacterial isolates were isolated from tomato and potato rhizosphere and examined for their antagonistic activities against R. solanacearum T-91, the causal agent of TBW. Among these isolates,10isolates including Am1, Am2, Am5, Am50, Am47, D11, D12, D16, D29and H8showed high potential of antagonistic activity in in vitro assay and further screened for their biocontrol efficacy against R. solanacearum under greenhouse conditions. In greenhouse,81.1-89.0%reduction of disease incidence of TBW was recorded in the tomato plants treated with the isolates Am1, D16, D29and H8. The application of these biocontrol agents significantly (p>0.05) increased plant height by22.7-43.7%and dry weight by47.93-91.55%compared with non-treated control. The four Bacillus isolates showed ability to inhibit growth of the three soil-borne fungi(Fusarium graminearum, Pythium aphanidermatum and Rhizoctonia solani). Identification of four selected isolates using16SrRNA gene sequence, the biochemical and physiological tests and fatty acid methyl esters analysis assigned strains Am1and D29as Bacillus amyloliquefaciens, D16and H8as B. subtilis and B. methylotrophicus, respectively.
     Another study was carried out to assess the biocontrol efficacy of B. subtilis4812and B. methylotrophicus H8individually or in combination with two plant defense inducers viz. Acetyl salicylic acid (ASA) and DL-Beta-aminobutyric acid (BABA) against R. solanacearum in vitro and in vivo. The results showed that the pathogen was significantly inhibited by all applied treatments in the greenhouse and in vitro tests. Under in vitro test the treatments H8+ASA and4812+H8were found to be the most effective treatments.
     Applied on tomato seeds and as soil drenching, the disease was most inhibited by H8whereas4812+H8+ASA was the least effective treatment. High activity of phenylalanine ammonia-lyase was observed in the plants treated with4812+H8, H8+ASA and4812+H8+ASA. The highest expression of peroxidase and polyphenoloxidase enzymes was found in the plants treated with H8,4812+H8and H8+ASA. The result of real time PCR confirmed that concentration of the pathogen in stem tissues was significantly reduced in all treated plants and H8+ASA was the most effective treatment.
     The study of bioactivity mechanisms revealed that all four strains viz. Bacillus amyloliquefaciens D29, Am1, B. subtilis D16and B. methylotrophicus H8were able to produce Indole acetic acid and siderophores and can not produce Hydrogen cyanide (HCN). Moreover three of them D29, Am1and H8had capability to solubilize phosphor. Bacillus strains were able to form biofilm beside their ability to both membrane lysis and the destruction of Ralstonia biofilm. Results of conventional PCR analysis revealed that all the four strains are harboring the lipopeptides biosynthetic genes bmyB,fenD, ituC, srfAA and bacA which were responsible for biosynthesis of lipopeptides (Bacillomycin, Fengycin, Iturin, Surfactin and Bacilysin), respectively. Subsequent reverse transcription-polymerase chain reaction analysis revealed that ituC and srfAA biosynthesis genes in Bacillus strains Am1and D16gave the highest expression levels during in vitro interaction with R solanacearum which could suggest the potential antibacterial related mechanism is associated to their ability to secret the corresponding lipopeptide in surrounding niche. A positive correlation value (0.777and0.686) was observed between IAA amount, fresh weight and dry weight, respectively in treated tomato plants in a greenhouse trial.
引文
Abo-Elyousr, K. A. M., Ibrahim, Y. E. & Balabel, N. M. (2012). Induction of Disease Defensive Enzymes in Response to Treatment with acibenzolar-S-methyl (ASM) and Pseudomonas fluorescens Pf2 and Inoculation with Ralstonia solanacearum race 3, biovar 2 (phylotype Ⅱ). Journal of Phytopathology 160(7-8):382-389.
    Adebayo, O. S., Kintomo, A. A. & Fadamiro, H. Y. (2009). Control of Bacterial Wilt Disease of Tomato Through Integrated Crop Management Strategies. International Journal of Vegetable Science 15(2):96-105.
    Adesemoye, A., Torbert, H. & Kloepper, J. (2009). Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers. Microbial Ecology 58(4):921-929.
    Adesina, M. F., Lembke, A., Costa, R., Speksnijder, A. & Smalla, K. (2007). Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum:Site-dependent composition and diversity revealed. Soil Biology and Biochemistry 39:2818-2828.
    Akiew, E. & Trevorrow, P. R. (1994). Management of bacterial wilt of tobacco. In Bacterial Wilt:The Disease and Its Causative Agent, Pseudomonas solanacearum, 179-198 (Eds A. C. Hayward and G. L. Hartman). Wallingford, UK:CAB International.
    Alarmi, Y., Achouak, W., Marol, C. & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology 66(8):3393-3398.
    Algam, S. A. E., Xie, G., Li, B., Yu, S., Su, T. & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. European Journal of Plant Patholology 92(3):593-600.
    Aliye, N., Fininsa, C. & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato(Solanum tuberosum) against bacterial wilt(Ralstonia solanacearum). Biological Control 47(3):282-288.
    Aljabobi, M. A. Y. (2008). Overwintering studies, thermal treatment and biological control against brown rot pathogen in potatoes. Master's thesis:Sana'a University.
    Almoneafy, A. A., Xie, G. L., Tian, W. X., Xu, L. H., Zhang, G. Q. & Ibrahim, M. (2012). Characterization and evaluation of Bacillus isolates for their potential plant growth & biocontrol activities against Tomato bacterial wilt. African Journal of Biotechnology 11(28):7193-7201.
    Alvarez, B., Lopez, M. M. & Biosca, E. G. (2008). Survival strategies and pathogenicity of Ralstonia solanacearum phylotype Ⅱ subjected to prolonged starvation in environmental water microcosms. Microbiology 154(11):3590-3598.
    Anith, K. N., Manomohandas, T. P., Jayarajan, M., Vasanthakumar, K. & Aipe, K. C. (2000). Integration of soil solarization and biological control with a fluorescent Pseudomonas sp. for controlling bacterial wilt Ralstonia solanacearum (E. F. Smith) Yabuuchi et al. of ginger. Journal of Biological Control 14(1):25-29.
    Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M. & Jones, J. B. (2004). Efficacy of Plant Growth-Promoting Rhizobacteria, Acibenzolar-S-Methyl, and Soil Amendment for Integrated Management of Bacterial Wilt on Tomato. Plant Disease 88(6):669-673.
    Assis, J. S., Maldonado, R., Munoz, T., Escribano, M. a. I. & Merodio, C. (2001). Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biology and Technology 23(1):33-39.
    Bacilio-Jimenez, M., Aguilar-Flores, S., Ventura-Zapata, E., Perez-Campos, E., Bouquelet, S. & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil 249(2):271-277.
    Badr, A. A. (2006). Studies on some bacterial disease that affects potatoes. Master's thesis:Sana'a University.
    Bais, H. P. (2004). Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology 134(1):307-319.
    Bargabus, R. L., Zidack, N. K., Sherwood, J. E. & Jacobsen, B. J. (2002). Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61(5):289-298.
    Bargabus, R. L., Zidack, N. K., Sherwood, J. E. & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control 30(2):342-350.
    Beneduzi, A., Peres, D., da Costa, P. B., Zanettini, M. H. B. & Passaglia, L. M. P. (2008a). Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Research in Microbiology 159(4): 244-250.
    Beneduzi, A., Peres, D., Vargas, L. K., Bodanese-Zanettini, M. H. & Passaglia, L. M. P. (2008b). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology 39(3):311-320.
    Berge, O., Guinebretiere, M.-H., Achouak, W., Normand, P. & Heulin, T. (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology 52(2):607-616.
    Bloemberg, G. V. & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4(4): 343-350.
    Borisova, S. A., Circello, B. T., Zhang, J. K., van der Donk, W. A. & Metcalf, W. W. (2010). Biosynthesis of Rhizocticins, Antifungal Phosphonate Oligopeptides Produced by Bacillus subtilis ATCC6633. Chemistry & Biology 17(1):28-37.
    Boshou, L. (2005).A broad review and perspective on breeding for resistance to bacterial wilt. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, 225-238 (Eds P. Prior and A. C. Hayward). St. Paul, MN:APS Press.
    Boucher, C. A., Gough, C. L. & Arlat, M. (1992). Molecular Genetics of Pathogenicity Determinants of Pseudomonas Solanacearum with Special Emphasis on HRP Genes. Annual Reviewof Phytopathology 30(1):443-461.
    Boukaew, S., Chuenchit, S. & Petcharat, V. (2011). Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 56(3):365-374.
    Bowen, G. D. & Rovira, A. D. (1999).The rhizosphere and its management to improve plant growth. In Advances in Agronomy, Vol.66,1-102 (Ed D. L. Sparks).
    Brannen, P. M. & Kenney, D. S. (1997). Kodiak(R)-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology & Biotechnology 19(3):169-171.
    Buddenhagen,I. & Kelman, A. (1964). Biological and Physiological Aspects of Bacterial Wilt Caused by Pseudomonas Solanacearum. Annual Review of Phytopathology 2(1):203-230.
    Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B. & Shen, Q. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils 47(5):495-506.
    Caruso, P., Palomo, J. L., Bertolini, E., Alvarez, B., Lopez, M. M. & Biosca, E. G. (2005). Seasonal Variation of Ralstonia solanacearum Biovar 2 Populations in a Spanish River:Recovery of Stressed Cells at Low Temperatures. Applied and Environmental Microbiology 71(1):140-148.
    Cazorla, F. M., Duckett, S. B., Bergstrom, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J. J., Thomas-Oates, J. E. & Bloemberg, G. V. (2006). Biocontrol of Avocado Dematophora Root Rot by Antagonistic Pseudomonas fluorescens PCL1606 Correlates With the Production of 2-Hexy1 5-Propyl Resorcinol. Molecular Plant-Microbe Interactions 19(4):418-428.
    Chandel, S., Allan, E. J. & Woodward, S. (2010). Biological Control of Fusarium oxysporum f.sp. lycopersici on Tomato by Brevibacillus brevis. Journal of Phytopathology 158(7-8):470-478.
    Chellemi, D. O., Olson, S. M., Mitchell, D. J., Seeker, I. & McSorley, R. (1997). Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87(3):250-258.
    Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Suessmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology 25(9):1007-1014.
    Chen, Y., Zhang, W. Z., Liu, X., Ma, Z. H., Li, B., Allen, C. & Guo, J. H. (2010). A real-time PCR assay for the quantitative detection of Ralstonia solanacearum in the horticultural soil and plant tissues. Journal of Microbiology and Biotechnology 20(1):193-201.
    Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34(1):33-41.
    Chet, I., Ordentlich, A., Shapira, R. & Oppenheim, A. (1990). Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant and Soil 129(1):85-92.
    Chitra, K., Ragupathi, N., Dhanalakshmi, K., Mareeshwari, P., Indra, N., Kamalakannan, A. & Sankaralingam, A. (2006). Induction of peroxidase and polyphenol oxidase in Arachis hypogaea in response to treatment with Pseudomonas fluorescens and inoculation with Alternaria alternata. Archives Of Phytopathology And Plant Protection 39(4):315-321.
    Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. & Contreras, A. (1989a). Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. American Journal of Potato Research 66(5):315-332.
    Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. & Contreras, A. (1989b). Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. American Potato Journal 66(5):315-332.
    Cohen, Y. & Gisi, U. (1994). Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology 45(6):441-456.
    Compant, S., Duffy, B., Nowak, J., Clement, C. & Barka, E. A. (2005). Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases:Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology 71 (9):4951-4959.
    Cook, D. & Sequeira, L. (1994). Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. In Bacterial wilt:the disease and its causative agent, Pseudomonas solanacearum., Pages:77-93 (Eds A. C. Hayward and G. L. Hartman). CAB International, Wallingford, U. K.
    Cook, R. J., Weller, D. M., El-Banna, A. Y., Vakoch, D. & Zhang, H. (2002). Yield responses of direct-seeded wheat to rhizobacteria and fungicide seed treatments. Plant Disease 86(7):780-784.
    Davey, M. E. & O'Toole, G. A. (2000). Microbial biofilms:from ecology to molecular genetics. Microbiology and Molecular Biology Reviews 64(4):847-867.
    De Curtis, F., Lima, G., Vitullo, D. & De Cicco, V. (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection 29(7):663-670.
    de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A. & Raaijmakers, J. M. (2003). Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens. Applied and Environmental Microbiology 69(12):7161-7172.
    de Weert, S., Vermeiren, H., Mulders, I. H. M., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R. & Lugtenberg, B. J. J. (2002). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions 15(11):1173-1180.
    Dekkers, L. C., Mulders, I. H. M., Phoelich, C. C., Chin-A-Woeng, T. F. C., Wijfjes, A. H. M. & Lugtenberg, B. J. J. (2000). The sss colonization gene of the tomato-Fusarium oxysporum f.sp radicislycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Molecular Plant-Microbe Interactions 13(11):1177-1183.
    Dekkers, L. C., Phoelich, C. C., van der Fits, L. & Lugtenberg, B. J. J. (1998). A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proceedings of the National Academy of Sciences 95(12):7051-7056.
    Denny, T. (2006).Plant pathogenic Ralstonia species. In Plant-Associated Bacteria,573-644 (Ed S. Gnanamanickam). Springer Netherlands.
    Ding, Y., Wang, J., Liu, Y. & Chen, S. (2005). Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. Journal of Applied Microbiology 99(5):1271-1281.
    Dobbelaere, S., Vanderleyden, J. & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22(2):107-149.
    Dong, C., Zeng, X. m. & Liu, Q. g. (1999). Biological control of tomato bacterial wilt with avirulent bacteriocinogenic strain of Ralstonia solanacearum. Journal of South China Agricultural University 20(4):1-4.
    Dong, Y.-H., Gusti, A. R., Zhang, Q., Xu, J.-L. & Zhang, L.-H. (2002). Identification of Quorum-Quenching N-Acyl Homoserine Lactonases from Bacillus Species. Applied and Environmental Microbiology 68(4):1754-1759.
    Dong, Y.-H., Zhang, X.-F., Xu, J.-L. & Zhang, L.-H. (2004). Insecticidal Bacillus thuringiensis Silences Erwinia carotovora Virulence by a New Form of Microbial Antagonism, Signal Interference. Applied and Environmental Microbiology 70(2): 954-960.
    Duffy, B. K. & Defago, G. (1999). Environmental Factors Modulating Antibiotic and Siderophore Biosynthesis by Pseudomonas fluorescens Biocontrol Strains. Applied and Environmental Microbiology 65(6):2429-2438.
    Duraipandiyan, V., Ayyanar, M. & Ignacimuthu, S. (2006). Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complementary and Alternative Medicine 6(1):35.
    Dutta, S., Mishra, A. K. & Kumar, B. S. D. (2008). Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biology and Biochemistry 40(2):452-461.
    Earl, A. M., Losick, R. & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in Microbiology 16(6):269-275.
    Elphinstone, J. (2005).The current bacterial wilt situation:a global overview. In Bacterial wilt disease and the Ralstonia solanacearum species complex., Vol.9(Eds C. Allen, P. Prior and A. C. Hayward). St. Paul, MN:APS Press.
    Etchebar, C., Trigalet-Demery, D., van Gijsegem, F., Vasse, J. & Trigalet, A. (1998). Xylem colonization by an HrcV(-) mutant of Ralstonia solanacearum is a key factor for the efficient biological control of tomato bacterial wilt. Molecular Plant-Microbe Interactions 11(9):869-877.
    Ezawa, T., Smith, S. E. & Smith, F. A. (2002). P metabolism and transport in AM fungi. Plant and Soil 244(1-2):221-230.
    Fegan, M. & Prior, P. (2006). Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana. Australasian Plant Pathology 35(2):93-101.
    Fortnum, B. A. & Martin, S. B. (1998). Disease management strategies for control of bacterial wilt of tobacco in the southeastern USA. In Bacterial Wilt Disease: Molecular and Ecological Aspects,394-402 (Eds P. Prior, C. Allen and J. G. Elphinstone). Berlin:Springer-Verlag.
    Foster, R. C. (1986). The Ultrastructure of the Rhizoplane and Rhizosphere. Annual Review of Phytopathology 24(1):211-234.
    Francis, I., Holsters, M. & Vereecke, D. (2010). The Gram-positive side of plant-microbe interactions. Environmental Microbiology 12(1):1-12.
    Fravel, D. R. (2005). Commercialization and Implementation of Biocontrol 1. Annual Review of Phytopathology 43(1):337-359.
    French, E. R. (1994). Strategies for integrated control of bacterial wilt of potatoes. In Bacterial Wilt:The Disease and Its Causative Agent, Pseudomonas solanacearum, 199-207 (Eds A. C. Hayward and G. L. Hartman). Wallingford, UK:CAB International.
    French, E. R. & Sequeira, L. (1968). Bacterial wilt or moko of plantain in Peru. Fitopatologia 3:27-38.
    French, E. R. & Sequeira, L. (1970). Strains of Pseudomonas solanacearum from central America and South America a comparative study. Phytopathology 60(3):506-512.
    Fukuda, H., Takahashi, M., Fujii, T. & Ogawa, T. (1989). Ethylene production from I-methionine by Cryptococcus albidus. Journal of Fermentation and Bioengineering 67(3):173-175.
    Fukui, R., Schroth, M. N., Hendson, M. & Hancock, J. G. (1994). Interaction between strains of pseudomonads in sugar beet spermospheres and their relationship to pericarp colonization by Pythium ultimum in soil. Phytopathology 84(11):1322-1330.
    Galeazzi, M. A. M., Sgarbieri, V. C. & Constantinides, S. M. (1981). Isolation, Purification and Physicochemical Characterization of Polyphenoloxidases (PPO) from a Dwarf Variety of Banana (Musa cavendishii, L). Journal of Food Science 46(1):150-155.
    Ganesan, P. & Gnanamanickam, S. S. (1987). Biological control of Sclerotium rolfsii sacc. in peanut by inoculation with Pseudomonas fluorescens. Soil Biology and Biochemistry19 (1):35-38.
    Gang, W., Kloepper, J. W. & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology 81(12):1508-1512.
    Garrett, K. A. & Mundt, C. C. (2000). Host Diversity Can Reduce Potato Late Blight Severity for Focal and General Patterns of Primary Inoculum. Phytopathology 90(12):1307-1312.
    Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41 (2):109-117.
    Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. & McConkey, B. (2007). Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences 26(5-6):227-242.
    Goldstein, A. H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biological Agriculture & Horticulture 12(2):185-193.
    Gordon, S. A. & Weber, R. P. (1951). Colorimetric Estimation of Indoleacetic Acid. Plant Physiology 26(1):192-195.
    Govindappa, M.. Lokesh, S., Rai, V. R., Naik, V. R. & Raju, S. G. (2010). Induction of systemic resistance and management of safflower Macrophomina phaseolina root-rot disease by biocontrol agents. Archives Of Phytopathology And Plant Protection 43(1):26-40.
    Grey, B. E. & Steck, T. R. (2001). The Viable But Nonculturable State of Ralstonia solanacearum May Be Involved in Long-Term Survival and Plant Infection. Applied and Environmental Microbiology 67(9):3866-3872.
    Guemouri-Athmani, S., Berge, O., Bourrain, M., Mavingui, P., Thiery, J. M., Bhatnagar, T. & Heulin, T. (2000). Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils. European Journal of Soil Biology 36(3-4):149-159.
    Gupta, V. P., Mishra, S., Chowdary, N. B., Vindhya, G. S. & Rajan, R. K. (2008). Integration of plant growth-promoting rhizobacteria and chemical elicitors for induction of systemic resistance in mulberry against multiple diseases. Archives Of Phytopathology And Plant Protection 41(3):198-206.
    Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R. & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111(2):206-211.
    Haas, D. & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Review Microbiology 3(4):307-319.
    Hallmann, J., QuadtHallmann, A., Mahaffee, W. F. & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43(10):895-914.
    Harish, S., Kavino, M., Kumar, N., Balasubramanian, P. & Samiyappan, R. (2009). Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Bioligical Control 51(1): 16-25.
    Hartman, G. L. & Elphinstone, J. G. (1994).Advances in the control of Pseudomonas solanacearum race 1 in major food crops. In Bacterial Wilt:The Disease and Its Causative Agent, Pseudomonas solanacearum,157-177 (Eds A. C. Hayward and G. L. Hartman). Wallingford, UK:CAB International.
    Hashidoko, Y., Nakayama, T., Homma, Y. & Tahara, S. (1999). Structure elucidation of xanthobaccin A, a new antibiotic produced from Stenotrophomonas sp. strain SB-K88. Tetrahedron Letters 40(15):2957-2960.
    Hassan, M. N., Afghan, S. & Hafeez, F. Y. (2011). Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Managment Science 67(9):1147-1154.
    Hayward, A. C. (1964). Characteristics of Pseudomonas solanacearum. Journal of Applied Microbiology 27(2):265-277.
    Hayward, A. C. (1986).Bacterial wilt caused by Pseudomonas solanacearum in Asia and Australia:an Overview. In Bacterial wilt disease in Asia and the South Pacific, 15-24 (Ed P. G. J.). Canberra, Australia.:ACIAR.
    Hayward, A. C. (1991). Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas solanacearum. Annual Review Phytopathology 29:65-87.
    He, L. Y., Sequeira, L. & Kelman, A. (1983). Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease 67:1357-1361.
    Heil, M. & Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany 89(5):503-512.
    Heim, S., Del Mar Lleo, M., Bonato, B., Guzman, C. A. & Canepari, P. (2002). The Viable but Nonculturable State and Starvation Are Different Stress Responses of Enterococcus faecalis, as Determined by Proteome Analysis. Journal of Bacteriology 184(23):6739-6745.
    Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J. & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology 71(2-3):235-244.
    Hikichi, Y., Yoshimochi, T., Tsujimoto, S., Shinohara, R., Nakaho, K., Kanda, A., Kiba, A. & Ohnishi, K. (2007). Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnology 24(1):149-154.
    Holl, F. B., Chanway, C. P., Turkington, R. & Radley, R. A. (1988). Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass(Lolium perenne and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biology and Biochemistry 20(1):19-24.
    Hu, H. Q., Li, X. S. & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54(3):359-365.
    Huang, T.-P., Tzeng, D. D.-S., Wong, A. C. L., Chen, C.-H., Lu, K.-M., Lee, Y.-H., Huang, W.-D., Hwang, B.-F. & Tzeng, K.-C. (2012). DNA Polymorphisms and Biocontrol of Bacillus Antagonistic to Citrus Bacterial Canker with Indication of the Interference of Phyllosphere Biofilms. PLoS ONE 7(7).
    Hurek, T. & Reinhold-Hurek, B. (2003). Azoarcus sp strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology 106(2-3):169-178.
    Idris, E. E., Bochow, H., Ross, H. & Borriss, R. (2004). Use of Bacillus subtilis as biocontrol agent. Ⅵ. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and Protection 111(6):583-597.
    Idris, E. E., Iglesias, D. J., Talon, M. & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe In.20(6): 619-626.
    Idris, H. A., Labuschagne, N. & Korsten, L. (2008). Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biological Control 45(1):72-84.
    Igual, J. M., Valverde, A., Cervantes, E. & Velazquez, E. (2001). Phosphate-solubilizing bacteria as inoculants for agriculture:use of updated molecular techniques in their study. Agronomie 21 (6-7):561-568.
    Ippolito, A., El Ghaouth, A., Wilson, C. L. & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology 19(3):265-272.
    Jackson, P. J., Hill, K. K., Laker, M. T., Ticknor, L. O. & Keim, P. (1999). Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. Journal of Applied Microbiology 87(2):263-269.
    Jacobsen, B. J., Zidack, N. K. & Larson, B. J. (2004). The Role of Bacillus-Based Biological Control Agents in Integrated Pest Management Systems:Plant Diseases. Phytopathology 94(11):1272-1275.
    Jetiyanon, K. (2007). Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biological Control 42(2):178-185.
    Jorquera, M., Mart, iacute, nez, O., Maruyama, F., Marschner, P. & de la Luz Mora, M. (2008). Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes Environ.23(3):182-191.
    Kang, Y., Liu, H., Genin, S., Schell, M. A. & Denny, T. P. (2002). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Molecular Microbiology 46(2):427-437.
    Kang, Y., Shen, M., Wang, H., Zhao, Q. & Yin, S. (2012). Biological Control of Tomato Bacterial Wilt Caused by Ralstonia solanacearum with Erwinia persicinus RA2 and Bacillus pumilus WP8. Chinese Journal of Biological Control 28(2):255-261.
    Kaur, R., Macleod, J., Foley, W. & Nayudu, M. (2006). Gluconic acid:An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67(6):595-604.
    Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., Damodaran, T., Soorianathasundaram, K. & Samiyappan, R. (2007). Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biology and Biochemistry 39(5):1087-1098.
    Kelman, A. (1954). The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695.
    Kelman, A. & Hruschka, J. (1973). The Role of Motility and Aerotaxis in the Selective Increase of Avirulent Bacteria in Still Broth Cultures of Pseudomonas solanacearum. Journal of General Microbiology 76(1):177-188.
    Khan, K. S. & Joergensen, R. G. (2009). Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology 100(1):303-309.
    Kim, B. S., Moon, S. S. & Hwang, B. K. (1999). Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Canadian Journal of Botany 77(6):850-858.
    Klessig, D. F. & Malamy, J. (1994). The salicylic acid signal in plants. Plant Molecular Biology 26(5):1439-1458.
    Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. (1980). Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886.
    Kloepper, J. W., Ryu, C. M. & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.
    Kohler, J., Caravaca, F., Carrasco, L. & Roldan, A. (2006). Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use and Management 22(3):298-304.
    Kojic, M., Degrassi, G. & Venturi, V. (1999). Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358:RpoS is not involved in siderophore and homoserine lactone production. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1489(2-3):413-420.
    Kolattukudy, P. E., Mohan, R., Bajar, M. A. & Sherf, B. A. (1992). Plant peroxidase gene expression and function. Biochem Soc Trans 20(2):333-337.
    Kremer, R. J. & Souissi, T. (2001). Cyanide Production by Rhizobacteria and Potential for Suppression of Weed Seedling Growth. Current Microbiology 43(3):182-186.
    Krid, S., Triki, M. A., Gargouri, A. & Rhouma, A. (2012). Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Annals of Microbiology 62(1):149-154.
    Kulkarni, M., Chaudhari, R. & Chaudhari, A. (2007).Novel Tensio-Active Microbial Compounds for Biocontrol Applications. In General Concepts in Integrated Pest and Disease Management, Vol. 1,295-304 (Eds A. Ciancio and K. G. Mukerji). Springer Netherlands.
    Kumar, A. M. & Ganesan, G. (2006). Management of bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi et al using biological control agents. Journal of Horticultural Sciences 1(1):44-47.
    Kumar, S., Tamura, K. & Nei, M. (2004). MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. brief in bioinformatics 5(2):150-163.
    Lacey, L. A., Frutos, R., Kaya, H. K. & Vail, P. (2001). Insect Pathogens as Biological Control Agents:Do They Have a Future? Biological Control 21 (3):230-248.
    Lalande, R., Bissonnette, N., Coutlee, D. & Antoun, H. (1989). Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant and Soil 115(1):7-11.
    Latha, P., Anand, T., Prakasam, V., Jonathan, E. I., Paramathma, M. & Samiyappan, R. (2011). Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Applied Soil Ecology 49(0):215-223.
    Latha, P., Anand, T., Ragupathi, N., Prakasam, V. & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biological Control 50(2):85-93.
    Lemaga, B., Kakuhenzire, R., Kassa, B., Ewell, P. T. & Priou, S. (2005).Integrated control of potato bacterial wilt in eastern Africa:the experience of African Highlands Initiative. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex,145-157 (Eds C. Allen, P. Prior and A. C. Hayward). St. Paul, MN:APS Press.
    Lemanceau, P., Bakker, P. A., De Kogel, W. J., Alabouvette, C. & Schippers, B. (1992). Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Applied and Environmental Microbiology 58(9):2978-2982.
    Lemessa, F. & Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control 42(3):336-344.
    Li, B., Su, T., Yu, R. R., Tao, Z. Y., Wu, Z. Y., Algam, S. A. E., Xie, G. L., Wang, Y. L. & Sun, G. C. (2010). Inhibitory activity of Paenibacillus macerans and Paenibacillus polymyxa against Ralstonia solanacearum. African Journal Microbiology Research 4(19):2048-2054.
    Li, B., Xu, L. H., Lou, M. M., Li, F., Zhang, Y. D. & Xie, G. L. (2008a). Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima. Letters in Applied Microbiology 46(4):450-455.
    Li, Q., Li, Y., Zhu, X. & Cai, B. (2008b). Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. Journal of Environmental Sciences 20(10):1226-1230.
    Lin, C.-H., Hsu, S.-T., Tzeng, K.-C. & Wang, J.-F. (2008). Application of a preliminary screen to select locally adapted resistant rootstock and soil amendment for integrated management of tomato bacterial wilt in Taiwan. Plant Disease 92(6): 909-916.
    Liu, Z. L. & Sinclair, J. B. (1993). Colonization of soybean roots by Bacillus megaterium B 153-2-2. Soil Biology and Biochemistry 25(7):849-855.
    Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119(3):243-254.
    Loper, J. E. & Henkels, M. D. (1997). Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Applied and Environmental Microbiology 63(1):99-105.
    Loper, J. E. & Henkels, M. D. (1999). Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere. Applied and Environmental Microbiology 65(12):5357-5363.
    Lopez, A. M. Q. & Lucas, J. A. (2002). Effects of plant defence activators on anthracnose disease of cashew. European Journal of Plant Patholology 108(5):409-420.
    Lugtenberg, B. & Kamilova, F. (2009). Plant Growth Promoting Rhizobacteria. Annual Review of Microbiology 63:541-556.
    Lumsden, R. D., Lewis, J. A. & Fravel, D. R. (1995).Formulation and Delivery of Biocontrol Agents for Use Against Soilborne Plant Pathogens. In Biorational Pest Control Agents, Vol.595,166-182:American Chemical Society.
    Macia-Vicente, J. G., Jansson, H.-B., Talbot, N. J. & Lopez-Llorca, L. V. (2009). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley(Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytologist 182(1):213-228.
    Madhaiyan, M., Poonguzhali, S., Kwon, S.-W. & Sa, T.-M. (2010). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology 60(10):2490-2495.
    Mahaffee, W. F. & Kloepper, J. W. (1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology 34:210-223.
    Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. & Mora, M. L. (2010). Mechanisms And practical considerations involved in Plant Growth Promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition 10(3): 293-319.
    Mayak, S., Tirosh, T. & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42(6): 565-572.
    McCarter, S. M. (1991). Root diseases caused by bacteria:bacterial wilt. In Compendium of Tomato Diseases(Eds J. B. Jones, J. P. Jones, R. E. Stall and T. A. Zitter). Paul, MN:APS Press.
    Merritt, J. H., Kadouri, D. E. & O'Toole, G. A. (2005). Growing and analyzing static biofilms. Current protocols in microbiology Chapter 1:Unit 1B.1-Unit 1B.1.
    Milner, J. L., Raffel, S. J., Lethbridge, B. J. & Handelsman, J. (1995). Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Applied Microbiology and Biotechnology 43(4):685-691.
    Mishra, S. & Arora, N. K. (2012). Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World Journal of Microbiology & Biotechnology 28(2):693-702.
    Montesinos, E., Bonaterra, A., Ophir, Y. & Beer, S. V. (1996). Antagonism of selected bacterial strains to Stemphylium vesicarium and biological control of brown spot of pear under controlled environment conditions. Phytopathology 86(8):856-863.
    Mora, I., Cabrefiga, J. & Montesinos, E. (2011). Antimicrobial peptide genes in Bacillus strains from plant environments. International Microbiology 14(4):213-223.
    Nadolny, L. & Sequeira, L. (1980). Increases in peroxidase activities are not directly involved in induced resistance in tobacco. Physiological and Molecular Plant Pathology 16(1):1-8.
    Nair, C., Anith, K. & Sreekumar, J. (2007). Mitigation of growth retardation effect of plant defense activator, acibenzolar-S-methyl, in amaranthus plants by plant growth-promoting rhizobacteria. World Journal of Microbiology and Biotechnology 23(8):1183-1187.
    Nandakumar, R., Babu, S., Viswanathan, R., Sheela, J., Raguchander, T. & Samiyappan, R. (2001). A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46(4):493-510.
    Neiendam Nielsen, M. & Sorensen, J. (1999). Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiology Ecology 30(3):217-227.
    Nguyen, M. T. & Ranamukhaarachchi, S. L. (2010). Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology 92(2):395-405.
    Nicholson, R. L. & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30:369-389.
    Nijland, R., Hall, M. J. & Burgess, J. G. (2010). Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase. PLoS ONE 5(12).
    O'Neill, N. R. & Saunders, J. A. (1994). Compatible and incompatible responses in alfalfa cotyledons to races 1 and 2 of Colletotrichum trifolii. Phytopathology 84(3):283-287.
    Oliver, J. D. (2005). The viable but nonculturable state in bacteria.J Microbiol 43 Spec No:93-100.
    Ongena, M. & Jacques, P. (2008). Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends in Microbiology 16(3):115-125.
    Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 9(4):1084-1090.
    Osburn, R. M., Milner, J. L., Oplinger, E. S., Smith, R. S. & Handelsman, J. (1995). Effect of Bacillus cereus UW85 on the Yield of Soybean at Two Field Sites in Wisconsin. Plant Disease 79(6):551-556.
    Osman, M. S., Sivakumar, D. & Korsten, L. (2011). Effect of biocontrol agent Bacillus amyloliquefaciens and 1-methyl cyclopropene on the control of postharvest diseases and maintenance of fruit quality. Crop Protection 30(2):173-178.
    Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I. & Chernin, L. (2004). The Global Regulator Genes from Biocontrol Strain Serratia plymuthica IC1270:Cloning, Sequencing, and Functional Studies. Journal of Bacteriology 186(15):4986-4993.
    Pal Bais, H., Park, S.-W., Weir, T. L., Callaway, R. M. & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science 9(1):26-32.
    Pane, C., Villecco, D., Campanile, F. & Zaccardelli, M. (2012). Novel strains of Bacillus, isolated from compost and compost-amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biocontrol Science and Technology 22(12):1373-1388.
    Park, E. J., Lee, S. D., Chung, E. J., Lee, M. H., Um, H. Y., Murugaiyan, S., Moon, B. J. & Lee, S. W. (2007). MicroTom-A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathology Journal 23(4):239-244.
    Patten, C. L. & Glick, B. R. (1996). Bacterial biosynthesis on indole-3-acetic acid. Canadian Journal of Microbiology 42(3):207-220.
    Paul, N. B. & Sundara Rao, W. V. B. (1971). Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil 35(1-3):127-132.
    Paulitz, T. C. & Belanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology 39(1):103-133.
    Pawar, S. T. & Puranik, P. R. (2008). Screening of terrestrial and freshwater halotolerant cyanobacteria for antifungal activities. World Journal of Microbiology & Biotechnology 24(7):1019-1025.
    Perez-Garcia, A., Romero, D. & de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22(2):187-193.
    Perneel, M., D'Hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K. & Hofte, M. (2008). Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environmental Microbiology 10(3):778-788.
    Pieterse, C. M. J. & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science 4(2):52-58.
    Pinchuk, I. V., Bressollier, P., Sorokulova, I. B., Verneuil, B. & Urdaci, M. C. (2002). Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Research in Microbiology 153(5):269-276.
    Ping, L. & Boland, W. (2004). Signals from the underground:bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science 9(6):263-266.
    Poussier, S., Thoquet, P., Trigalet-Demery, D., Barthet, S., Meyer, D., Arlat, M. & Trigalet, A. (2003). Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene. Molecular Microbiology 49(4):991-1003.
    Poussier, S., Vandewalle, P. & Luisetti, J. (1999). Genetic diversity of african and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region. Applied and Environmental Microbiology 65(5):2184-2194.
    Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews 41(3):711-753.
    Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas:more than surfactants and antibiotics. FEMS Microbiology Reviews 34(6):1037-1062.
    Raaijmakers, J. M., Vlami, M. & de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 81(1-4):537-547.
    Ramirez, C. A. & Kloepper, J. W. (2010). Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biology and Fertility of Soils 46(8):835-844.
    Raupach, G. S. & Kloepper, J. W. (1998). Mixtures of Plant Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Cucumber Pathogens. Phytopathology 88(11):1158-1164.
    Ravel, J. & Cornelis, P. (2003). Genomics of pyoverdine-mediated iron uptake in Pseudomonads. Trends in Microbiology 11(5):195-200.
    Reinhold, B., Hurek, T. & Fendrik, I. (1985). Strain specific chemotaxis of Azospirillum spp. Journal of Bacteriology 162(1):190-195.
    Requena, N., Jimenez, I., Toro, M. & Barea, J. M. (1997). Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytologist 136(4): 667-677.
    Romantschuk, M. (1992). Attachment of Plant Pathogenic Bacteria to Plant Surfaces. Annual Review of Phytopathology 30(1):225-243.
    Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. & Perez-Garcia, A. (2007). The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca. Molecular Plant-Microbe Interactions 20(4):430-440.
    Roszak, D. B. & Colwell, R. R. (1987). Survival strategies of bacteria in the natural environment. Microbiology Review 51(3):365-379.
    Rovira, A. D. (1965). Interactions Between Plant Roots and Soil Microorganisms. Annual Review of Microbiology 19(1):241-266.
    Roy, S., Ojha, P. K., Ojha, K. L., Jha, M. M. & Pathak, K. N. (1998). Integrated management of wilt complex disease of banana (Musa sp.). Journal of Applied Biology 8(2):46-49.
    Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. & Pare, P. W. (2004). Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiology 134(3):1017-1026.
    Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences 100(8):4927-4932.
    Ryu, C.-M., Murphy, J. F., Reddy, M. S. & Kloepper, J. W. (2007). A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Journal of Microbiology and Biotechnology 17(2):280-286.
    Saddler, G. S. (2005).Management of bacterial wilt disease. In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex,121-132 (Eds C. Allen, P. Prior and A. C. Hayward). St. Paul, MN:APS Press.
    Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A. & Antoun, H. (2001). Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology 83(2): 101-118.
    Saikia, R., Gogoi, D. K., Mazumder, S., Yadav, A., Sarma, R. K., Bora, T. C. & Gogoi, B. K. (2011). Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiological Research 166(3):216-225.
    Saile, E., McGarvey, J. A., Schell, M. A. & Denny, T. P. (1997). Role of Extracellular Polysaccharide and Endoglucanase in Root Invasion and Colonization of Tomato Plants by Ralstonia solanacearum. Phytopathology 87(12):1264-1271.
    Saleh, S. S. & Glick, B. R. (2001). Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4, Canadian Journal of Microbiology 47(8):698-705.
    Santo, R. D., Costi, R., Artico, M., Massa, S., Lampis, G., Deidda, D. & Pompei, R. (1998). Pyrrolnitrin and related pyrroles endowed with antibacterial activities against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters 8(20):2931-2936.
    Saravanakumar, D. & Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut(Arachis hypogea) plants. Journal of Applied Microbiology 102(5):1283-1292.
    Schallmey, M., Singh, A. & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology 50(1):1-17.
    Schell, M. A. (2000). Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annual Review of Phytopathology 38(1):263-292.
    Schwyn, B. & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry 160(1):47-56.
    Seldin, L., Rosado, A. S., da Cruz, D. W., Nobrega, A., van Elsas, J. D. & Paiva, E. (1998). Comparison of Paenibacillus azotofixans Strains Isolated from Rhizoplane, Rhizosphere, and Non-Root-Associated Soil from Maize Planted in Two Different Brazilian Soils. Applied and Environmental Microbiology 64(10): 3860-3868.
    Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J. S., Suresh, S., Raguchander, T. & Samiyappan, R. (2010). A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Science and Technology 20(5):449-464.
    Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. & An, D. (2013). Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protection 44(0):29-37.
    Shanmugam, V. & Kanoujia, N. (2011). Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biological Control 57(2):85-93.
    Simons, M., vanderBij, A. J., Brand, I., deWeger, L. A., Wijffelman, C. A. & Lugtenberg, B. J. J. (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molecular Plant-Microbe Interactions 9(7):600-607.
    Singh, J. S., Pandey, V. C. & Singh, D. P. (2011). Efficient soil microorganisms:A new dimension for sustainable agriculture and environmental development. Agricultural Ecosystem Environment.140(3-4):339-353.
    Soad, A. A., Xie, G. L., Li, B., Coosemans, J. & Liu, B. (2004). Comparative performance of Bacillus spp. in growth promotion and suppression of tomato bacterial wilts caused by Ralstonia solanacearum. Journal of Zhejiang University (Agric & Life Sci) 30(6):603-610.
    Sommer, A., Ne'eman, E., Steffens, J. C., Mayer, A. M. & Harel, E. (1994). Import, Targeting, and Processing of a Plant Polyphenol Oxidase. Plant Physiology 105(4):1301-1311.
    Steenhoudt, O. & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses:genetic, biochemical and ecological aspects. FEMS Microbiology Reviews 24(4):487-506.
    Strom, M. S. & Lory, S. (1993). Structure function and biogenesis of the type IV pili. Annual Review of Microbiology 47:565-596.
    Subbarao, N. S. (1988).Phosphate solubilizing microorganism. In Biofertilizer in agriculture and forestryHissar, India:Regional Biofertilizer Development Centre.
    Sundaramoorthy, S., Raguchander, T., Ragupathi, N. & Samiyappan, R. (2012). Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biological Control 60(1):59-67.
    Szczech, M. & Shoda, M. (2004). Biocontrol of Rhizoctonia Damping-off of Tomato by Bacillus subtilis Combined with Burkholderia cepacia. J. Phytopathol.152(10): 549-556.
    Tans-Kersten, J., Huang, H. & Allen, C. (2001). Ralstonia solanacearum Needs Motility for Invasive Virulence on Tomato. Journal of Bacteriology 183(12):3597-3605.
    Timmusk, S., Grantcharova, N. & Wagner, E. G. H. (2005). Paenibacillus polymyxa Invades Plant Roots and Forms Biofilms. Applied and Environmental Microbiology 71(11):7292-7300.
    Timmusk, S., van West, P., Gow, N. A. R. & Wagner, E. G. H. (2003).Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. In Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa,1-28 Uppsala Sweden:Uppsala University.
    Timmusk, S. & Wagner, E. G. H. (1999). The Plant-Growth-Promoting Rhizobacterium Paenibacillus polymyxa Induces Changes in Arabidopsis thaliana Gene Expression:A Possible Connection Between Biotic and Abiotic Stress Responses. Molecular Plant-Microbe Interactions 12(11):951-959.
    Turnbull, G. A., Morgan, J. A. W., Whipps, J. M. & Saunders, J. R. (2001). The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiology Ecology 35(1):57-65.
    van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M. & van Overbeek, L. S. (2000). Survival of Ralstonia solanacearum Biovar 2, the Causative Agent of Potato Brown Rot, in Field and Microcosm Soils in Temperate Climates. Phytopathology 90(12):1358-1366.
    van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol.119(3):243-254.
    van Loon, L. C., Bakker, P. & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36:453-483.
    van Overbeek, L. S., Bergervoet, J. H. W., Jacobs, F. H. H.& van Elsas, J. D. (2004). The Low-Temperature-Induced Viable-But-Nonculturable State Affects the Virulence of Ralstonia solanacearum Biovar 2. Phytopathology 94(5):463-469.
    Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., VantWestende, Y. A. M., Hartog, F. & VanLoon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions 10(6): 716-724.
    Vasse, J., Frey, P. & Trigalet, A. (1995). Microscopic Studies of Intercellular Infection and Protoxylem Invasion of Tomato Roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interaction 8(2):241-251.
    Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255(2):571-586.
    Vogt, W. & Buchenauer, H. (1997). Enhancement of biological control by combination of antagonistic fluorescent Pseudomonas strains and resistance inducers against damping off and powdery mildew in cucumber. Journal of Plant Disease and Protection 104(3):272-280.
    Vollenbroich, D., Ozel, M., Vater, J., Kamp, R. M. & Pauli, G. (1997). Mechanism of Inactivation of Enveloped Viruses by the Biosurfactant Surfactin from Bacillus subtilis. Biologicals 25(3):289-297.
    von der Weid, I., Paiva, E., Nobrega, A., Dirk van Elsas, J. & Seldin, L. (2000). Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Research in Microbiology 151 (5):369-381.
    Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H. & Whitman, W. B. (2009). Bergey's Manual of Systematic Bacteriology, Volume 3:The Firmicutes. Springer.
    Wang, C., Guo, Y., Wang, C., Liu, H., Niu, D., Wang, Y., Guo, J., (2012). Enhancement of Tomato(Lycopersicon esculentum) Tolerance to Drought Stress by Plant-Growth-Promoting Rhizobacterium(PGPR) Bacillus cereus AR156. Journal of Agricultural Biotechnology 20(10):1097-1105.
    Wang, H., Wen, K., Zhao, X., Wang, X., Li, A. & Hong, H. (2009). The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protection 28(8):634-639.
    Wang, S., Wu, H., Zhan, J., Xia, Y., Gao, S., Wang, W., Xue, P. & Gao, X. (2010). The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56(1):113-121.
    Wei, Z., Yang, X., Yin, S., Shen, Q., Ran, W. & Xu, Y. (2011). Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48(2):152-159.
    Welbaum, G. E., Sturz, A. V., Dong, Z. & Nowak, J. (2004). Managing Soil Microorganisms to Improve Productivity of Agro-Ecosystems. Critical Reviews in Plant Sciences 23(2):175-193.
    Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review Phytopathology 26:379-407.
    Weller, D. M. & Thomashow, L. S. (2007). Current Challenges in Introducing Beneficial Microorganisms into the Rhizosphere. In Molecular Ecology of Rhizosphere Microorganisms,1-18:Wiley-VCH Verlag GmbH.
    Wen, P. F., Chen, J. Y., Kong, W. F., Pan, Q. H., Wan, S. B. & Huang, W. D. (2005). Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Science 169(5):928-934.
    Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. In Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 26, Vol.26,1-134 (Ed J. A. Callow).
    Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52:487-511.
    Xie, G., Su, B. & Cui, Z. (1998). Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River Valley. Wei sheng wu xue bao (Acta microbiologica Sinica) 38(6):480-483.
    Xu, H.-S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J. & Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology 8(4):313-323.
    Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q. & Zhang, R. (2013). Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to Antifungal Activity and Biofilm Formation. Applied and Environmental Microbiology 79(3):808-815.
    Xue, Q. Y., Chen, Y., Li, S. M., Chen, L. F., Ding, G. C., Guo, D. W. & Guo, J. H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control 48(3):252-258.
    Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. & Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group Ⅱ to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36(12):1251-1275.
    Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.:Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology & Immunology 39(11):897-904.
    Yadav, S., Kaushik, R., Saxena, A. K. & Arora, D. K. (2011). Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. Journal of Basic Microbiology 51 (1):98-106.
    Yang, S., Park, M., Kim, I., Kim, Y., Yang, J. & Ryu, C.-M. (2011).2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp carotovotrum SCC1 in tobacco. European Journal of Plant Patholology 129(3):371-378.
    Yao, J. & Allen, C. (2006). Chemotaxis Is Required for Virulence and Competitive Fitness of the Bacterial Wilt Pathogen Ralstonia solanacearum. Journal of Bacteriology 188(10):3697-3708.
    Yao, J. & Allen, C. (2007). The Plant Pathogen Ralstonia solanacearum Needs Aerotaxis for Normal Biofilm Formation and Interactions with Its Tomato Host. Journal of Bacteriology 189(17):6415-6424.
    Yin, X.-T., Xu, L., Fan, S.-S., Xu, L.-N., Li, D.-C. & Liu, Z.-Y. (2010). Isolation and characterization of an AHL lactonase gene from Bacillus amyloliquefaciens. World Journal of Microbiology & Biotechnology 26(8):1361-1367.
    Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. & Shirata, A. (2001). Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91(2):181-187.
    Yu, S.-M., Oh, B.-T. & Lee, Y. H. (2012). Biocontrol of green and blue molds in postharvest satsuma mandarin using Bacillus amyloliquefaciens JBC36. Biocontrol Science and Technology 22(10):1181-1197.
    Yu, X. M., Ai, C. X., Xin, L. & Zhou, G. F. (2011). The siderophore producing bacterium, Bacillus subtilis CAS 15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal Soil Biology 47(2):138-145.
    Yun, H.-K., Yi, S.-Y., Yu, S.-H. & Choi, D. (1999). Cloning of a Pathogenesis-Related Protein-1 Gene from Nicotians glutinosa L. and Its Salicylic Acid-Independent Induction by Copper and β-Aminobutyric Acid. Journal of Plant Physiology 154(3):327-333.
    Zehnder, G. W., Yao, C. B., Murphy, J. F., Sikora, E. R. & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45(1):127-137.
    Zehr, E. I. (1969). Studies of the distribution and economic importance of Pseudomonas solanacearum E.F. Smith in certain crops in the Philippines. Ithaca:[s.n.].
    Zhang, H., Xie, X., Kim, M.-S., Kornyeyev, D. A., Holaday, S. & Pare, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant Journal 56(2):264-273.
    Zhang, L.-H. & Dong, Y.-H. (2004). Quorum sensing and signal interference:diverse implications. Molecular Microbiology 53(6):1563-1571.
    Zhang, R. S., Liu, Y. F., Luo, C. P., Wang, X. Y., Liu, Y. Z., Qiao, J. Q., Yu, J. J. & Chen, Z. Y. (2012). Bacillus amyloliquefaciens Lx-11, a potential biocontrol agent against rice bacterial leaf streak. Journal of Plant Pathology 94(3):609-619.
    Zhang, S. A., Moyne, A. L., Reddy, M. S. & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control 25(3):288-296.
    Zhang, Y., Che, J., Liu, B. & Tang, L.(2011). Colonization of Bacillus cereus ANTI-8098A in Tomato Plants and Its Biocontrol Characteristics to Bacterial Wilt Disease. Chinese Journal of Biological Control 27(2):221-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700