光滑球拟酵母中ATP的生理功能与作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一株能在胞外大量积累丙酮酸的光滑球拟酵母的(Torulopsis glabrata)四重维生素(硫氨酸、生物素、吡哆醇和烟酸)营养缺陷型菌株CCTCC M202019为研究对象,以阐明能量代谢对酵母生理过程的影响为目标,在初步了解T. glabrata中能量代谢途径的基础上,运用代谢工程和微生物生理学的理论和方法,就ATP代谢途径如何调控酵母胞内微环境,并影响细胞生长与产物积累的机制展开研究。主要研究结果如下:
     (1)有机整合融合PCR、酵母高效电转化、制霉菌素富集和限制性培养基筛选等技术手段,建立了一种针对酵母的无抗性标记并可重复使用的大片段缺失营养缺陷型菌株构建方法,并成功构建了尿嘧啶缺陷型(Δura3)、精氨酸缺陷型(Δarg8)和尿嘧啶精氨酸双缺陷型(Δura3Δarg8)等三株T. glabrata营养缺陷型菌株。在此基础上,验证了含有2μm片段的酵母载体在T. glabrata中的稳定性,并实现了增强型绿色荧光蛋白的可诱导表达;
     (2) ATP8、ATP6和ATP9基因分别编码F_0F_1-ATP合成酶的三个重要亚基,均位于线粒体基因组上(mtDNA)。以一个线粒体重新编码的ARG8m基因作为筛选标记,利用同源重组策略敲除ATP8、ATP6和ATP9基因。在这一过程中发现,野生型和转化的mtDNA能同时存在于转化子中,且随着培养条件的改变,两种mtDNA所占的比例会发生规律性变化。作者将这一现象命名为单细胞线粒体基因组多态性(Single cell mitochondrial genome polymorphism,SCMGP)。研究表明,mtDNA不稳定性、线粒体融合/分裂过程和mtDNA的选择性丢失是形成SCMGP现象的主要因素。在理解SCMGP现象形成机制的基础上,建立了利用厌氧培养消除SCMGP现象的策略,获得了三株仅含有目标mtDNA的同质体ATP8、ATP6和ATP9缺失菌株,并分别命名为ATP8、ATP6和ATP9;
     (3) ATP6缺失可以导致T. glabrata在基本培养基和精氨酸补充培养基中培养24代后的mtDNA丢失率分别达到42%和63%。胞内ATP水平、活性氧(Reactive oxygen species,ROS)浓度、线粒体膜间腔(Mitochondrial intermembrane space,MIMS)中的pH值、跨膜电势(ΔΨm)及乌头酸酶的表达水平与酶活性均表明,MIMS中H+的过量积累是导致ATP6缺失突变株mtDNA不稳定的关键因素。当细胞缺失ATP6基因后,发挥离子通道作用的a亚基丢失,导致MIMS中积累的H+无法通过F_0F_1-ATP合成酶得到释放,导致ROS水平升高,干扰线粒体基质蛋白的定位,系统性的影响mtDNA的稳定性。为了提高ATP6敲除突变菌株mtDNA在不同培养条件下的稳定性,将来源于荚膜组织胞浆菌(Histoplasma capsulatum)的交替氧化酶基因AOX1和来源于乳酸乳球菌(Lactobacillus lactis)的NADH氧化酶基因noxE表达于ATP6缺失突变株中,显著提高了mtDNA稳定性,两株菌分别命名为AOX和NOX;
     (4)以前面得到的一系列ATP合成酶缺失突变株为对象,研究了胞内ATP水平变化对细胞生理过程的影响。ATP8、ATP6和ATP9三个基因的敲除显著降低了ATP水平,强烈的抑制了细胞的生长,48 h时的菌体干重分别降低了46.9%、44.2%和59.8%。在发酵初期,由于F_0F_1-ATP合成酶活性缺失导致的胞内ATP水平下降,ATP8、ATP6、ATP9和NOX的胞内ATP水平分别为出发菌株的65.5%、62.0%、48.4%和73.0%。ATP水平的降低显著解除了ATP对糖酵解途径关键酶活性的抑制,加速了糖酵解速率。但随着发酵继续进行至28 h后,ATP合成酶缺失菌株的糖酵解速率显著下降。研究表明,ATP合成酶缺失菌株中ATP水平的显著下降和ROS水平的显著提高,导致细胞抵御酸胁迫和渗透压胁迫的能力显著下降。在胞质中表达NADH氧化酶基因noxE可以促进NADH代谢,降低胞内ROS水平,改善胞内微环境,从而促进细胞生长和丙酮酸的积累。代谢网络通量、中心代谢途径关键酶表达水平和酶活性分析表明,F_0F_1-ATP合成酶缺失对胞质中的糖酵解途径具有显著影响,而对位于线粒体基质中的三羧酸循环影响较小,表明线粒体的亚细胞区隔可以有效保护其中进行的物质合成和产能代谢途径;
     (5)真核微生物细胞依靠一系列ATP酶,利用水解ATP产生的能量,进行H+和其它离子的转运,以维持各亚细胞区隔间的pH梯度。当胞外pH较低时,细胞需要消耗更多的ATP维持更高的pH梯度。为了研究胞内ATP水平在细胞应对胁迫过程中的作用,通过在培养基中添加柠檬酸盐促进ATP供给,研究低pH条件下T. glabrata的细胞生长和丙酮酸生产。结果表明,ATP供给的增强显著促进了依赖于ATP的胞内pH平衡过程,使培养基、胞质和液泡之间的pH梯度得到显著提高。pH梯度与胞内ATP浓度之间的量化关系表明胞内ATP浓度的上升可以显著的促进相关的pH平衡过程。此外,T. glabrata CCTCC M202019的pH平衡能力显著弱于其它常见的酵母菌株,可能也是其可以快速积累丙酮酸的一个重要原因。
In this dissertation, a multi-vitamin auxotroph (i. e., thiamine, biotin, pyrodoxin and nicotinic acid) Torulopsis glabrata strain, CCTCC M202019 was used as a model to demonstrate the effect of the energy metabolism on the physiological processes in eukaryotic microorganisms. Based on the well understanding of the energy metabolism, the mechanisms in the role of ATP metabolism in the intracellular micro-environment and related physiological processes were investigated. The main results were described as follows:
     (1) A reusable method, which systematically integrated the fusion PCR, high-efficiency electroporation transformation, nystatin enrichment and limited media screening, for construction of non-marker large fragment deletion Torulopsis glabrata auxotroph strains was established. By using the method, three T. glabrata auxotroph strains were obtained, i. e., a uracil auxotroph strain (Δura3), an arginine auxotroph strain (Δarg8) and a uracil arginine double auxtroph strain (Δura3Δarg8). The stability of 2μm bearing vectors was assayed in the T. glabrataΔura3 strain. The result proved that the 2μm bearing vector was highly stable and could express target green fluorescent protein in T. glabrataΔura3 strain.
     (2) ATP8, ATP6 and ATP9 are three genes that encode three key subunits of F_0F_1-ATPase, which are essential for the respiration, and locate on the mitochondrial genome (mtDNA). To knockout of the three genes, a homologous knockout box with a recoded ARG8 gene ARG8m, were transformed into the T. glabrataΔura3Δarg8 strain by biolistic transformation. The mtDNA transformants were primarily screened by the back-mutation of arginine auxotroph. However, it was found out that both the wild-type mtDNA and transformed mtDNA co-existed in the transformant cells and the ratio of the two kinds of mtDNA varied under different culture conditions and growth periods. The phenomenon was designated as Single Cell Mitochondrial Genome Polymorphism (SCMGP). It was found that the instability of mtDNA, mitochondrial fusion/fission and selective loss of mtDNA played crucial roles in the SCMGP. Three mtDNA homoplasmic cells without ATP8, ATP6 and ATP9 were obtained based on the characterization of the SCMGP and named as ATP8, ATP6 and ATP9, respectively.
     (3) Deficiency in ATP6 could increase the loss ratio of mtDNA to 42% and 63% on minimum medium and argine supplement medium after 24 generations, respectively. Through the assay of intracellular ATP level, production of reactive oxygen species (ROS), intracellular ATP level, the pH in mitochonchondrial intermembrane space (MIMS) and the transcriptional and enzyme activity assay of aconitase, it was found out that the H+ accumulation in MIMS was the dominant factor for the mtDNA instability of T. glabrata cells deficient in ATP6. In normal cells, the H+ accumulation in MIMS could be released by the F_0F_1-ATPase accompanied with the ATP synthesis. However, in cells deficient in ATP6, which encodes the ion channel subunit a, the H+ could not be released through the F_0F_1-ATPase. The accumulation of H+ in MIMS further improved theΔΨm and ROS, interrupted the translocation of mitochondrial matrix located proteins, and thus systematically caused the mtDNA instability in T. glabrata cells deficient in ATP6. The expression of two NADH oxidation associated genes, AOX1 from Histoplasma capsulatum and noxE from Lactobacillus lactis, could significantly improve the stability of mtDNA in ATP6. The result further proved that the conclusion. The two strains were names as AOX and NOX, respectively.
     (4) The effects of ATP metabolism on the central carbon metabolism were systematically investigated using strains ATP8, ATP6, ATP9 and NOX. The deficiency in the F_0F_1-ATPase significantly decreased the intracellular level, inhibited the cell growth and released the inhibitory effect of ATP during the initial 28 h. However, the relased inhibitory effect of ATP was mostly compsensated by decreased ability to deal with the tolerance to acidic stress and osmotic stress. The deficiency of F_0F_1-ATPase resulted in increased intracellular ROS level. The overexpression of noxE could recover the intracellular ROS level caused by the ATP6 deficiency and improved the intracellular micro-environment, thus enhanced the cell growth and pyruvate accumulation. The metabolic networks analysis, transcriptional and enzyme activities analysis of central metabolism key enzymes revealed that the deterioration of intracellular micro-environment caused by the deficiency in F_0F_1-ATPase affected the central carbon metabolism on different levels thus prohibited the further increase of pyruvate production. The phenomenon also suggested the importance of sub-cellular compartmentation in the protection of biomass synthesis and energy metabolism in the mitochondrial matrix.
     (5) In eukaryotic microorganisms, the pH in different subcellular compartmentations is kept in a suitable range thus the enzymes in these compartmentations could play their normal functions. Eukaryotic microorganisms realized the pH homeostasis in different cell compartmentation through a series of ATPase, which consumed additional ATP besides the normal cell growth. To determine the effect of ATP in the tolerance to lower pH, the intracellular micro-environment under enhanced ATP supply conditions was investigated by the citrate addition. The result showed that the enhanced the ATP supply could facilitate the ATP-dependent H+-transportation processes, thus kept higher pH gradients among extracellular environment, cytoplasm and vacuole. The quantitative relationship between the intracellular ATP content and the pH gradients showed that the increased intracellular ATP level could significantly promoted the pH homeostasis processes. Compared with the pH homeostasis process in Saccharomyces cerevisiae, it was found out that the lower pH homeostasis ability in T. glabrata CCTCC M202019 should be a positive factor for the pyruvate accumulation.
引文
[1] Cloete TE, Nel LH & Theron J. Biotechnology in South Africa [J], Trends Biotechnol, 2006, 24(12):557-562.
    [2] Sauer M, Porro D, Mattanovich D, et al. Microbial production of organic acids: expanding the markets [J], Trends Biotechnol, 2008, 26(2):100-108.
    [3] Li Y, Chen J & Lun SY. Biotechnological production of pyruvic acid [J], Appl Microbiol Biotechnol, 2001, 57(4):451-459.
    [4] Bailey JE. Toward a science of metabolic engineering [J], Science, 1991, 252(5013):1668-1675.
    [5] Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae [J], Microbiol Mol Biol Rev, 2008, 72(3):379-412.
    [6] Nielsen J & Jewett MC. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae [J], FEMS Yeast Res, 2008, 8(1):122-131.
    [7] Davies SEC & Brindle KM. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae [J], Biochemistry, 1992, 31(19):4729-4735.
    [8] Vemuri GN, Eiteman MA, McEwen JE, et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae [J], Proc Natl Acad Sci U S A, 2007, 104(7):2402-2407.
    [9] Orij R, Postmus J, Ter Beek A, et al. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth [J], Microbiology-UK, 2009, 155:268-278.
    [10] Ionescu M & Belkin S. Overproduction of exopolysaccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress [J], Appl Environ Microbiol, 2009, 75(2):483-492.
    [11] Murphy MP. How mitochondria produce reactive oxygen species [J], Biochem J, 2009, 417:1-13.
    [12] Wang Y, Li Y, Pei X, et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus [J], J Biotechnol, 2007, 129(3):510-515.
    [13] Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance [J], Nat Biotechnol, 2002, 20(7):707-712.
    [14] Martinez-Munoz GA & Kane P. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast [J], J Biol Chem, 2008,283(29):20309-20319.
    [15] Sanchez C, Neves AR, Cavalheiro J, et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH [J], Appl Environ Microbiol, 2008, 74(4):1136-1144.
    [16] Liu LM, Li Y, Li HZ, et al. Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation [J], FEMS Yeast Res, 2006, 6(8):1117-1129.
    [17] Lin H, Castro NM, Bennett GN, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering [J], Appl Microbiol Biotechnol, 2006, 71(6):870-874.
    [18] Rowe LA, Degtyareva N & Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae [J], Free Radic Biol Med, 2008, 45(8):1167-1177.
    [19] Riondet C, Cachon R, Wache Y, et al. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli [J], J Bacteriol, 2000, 182(3):620-626.
    [20] Ouyang YH, Xu QH, Mitsui K, et al. Human trehalase is a stress responsive protein in Saccharomyces cerevisiae [J], Biochem Biophys Res Commun, 2009, 379(2):621-625.
    [21] Choi MY, Kang GY, Hur JY, et al. Analysis of dual phosphorylation of Hog1 MAP kinase in Saccharomyces cerevisiae using quantitative mass spectrometry [J], Mol Cells, 2008, 26(2):200-205.
    [22] Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications [J], Appl Microbiol Biotechnol, 2008, 81(2):211-223.
    [23] Rak M, Tetaud E, Godard F, et al. Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology [J], J Biol Chem, 2007, 282(15):10853-10864.
    [24] Zhou JW, Liu LM, Shi ZP, et al. ATP in current biotechnology: Regulation, applications and perspectives [J], Biotechnol Adv, 2009, 27(1):94-101.
    [25] Biteau B, Labarre J & Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin [J], Nature, 2003, 425(6961):980-984.
    [26] Kanani H, Chrysanthopoulos PK & Klapa MI. Standardizing GC-MS metabolomics [J], J Chromatogr B, 2008, 871(2):191-201.
    [27] Koo MK, Oh CH, Holme AL, et al. Simultaneous analysis of steady-state intracellular pH and cell morphology by automated laser scanning cytometry [J], Cytom Part A, 2007, 71A(2):87-93.
    [28] Bracey D, Holyoak CD, Nebe-von Caron G, et al. Determination of the intracellular pH (pHi) of growing cells of Saccharomyces cerevisiae: the effect of reduced-expression of the membrane H+-ATPase [J], J Microbiol Meth, 1998, 31(3):113-125.
    [29] Zamaraeva MV, Sabirov RZ, Maeno E, et al. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase [J], Cell Death Differ, 2005, 12(11):1390-1397.
    [30] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression [J], Science, 1994, 263(5148):802-805.
    [31] Schmitt M, Schwanewilm P, Ludwig J, et al. Use of PMA1 as a housekeeping biomarker for assessment of toxicant-induced stress in Saccharomyces cerevisiae [J], Appl Environ Microbiol, 2006, 72(2):1515-1522.
    [32] Schuster S, Enzelberger M, Trauthwein H, et al. pHluorin-based in vivo assay for hydrolase screening [J], Anal Chem, 2005, 77(9):2727-2732.
    [33] Hu JJ, Dong LX & Outten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix [J], J Biol Chem, 2008, 283(43):29126-29134.
    [34] Verkman AS & Galietta LJV. Chloride channels as drug targets [J], Nat Rev Drug Discov, 2009, 8(2):153-171.
    [35] Rashkova S, Zhou XR, Chen J, et al. Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase [J], J Bacteriol, 2000, 182(15):4137-4145.
    [36] Underwood SA, Zhou S, Causey TB, et al. Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli [J], Appl Environ Microbiol, 2002, 68(12):6263-6272.
    [37] Zhang Y, Li Y, Du C, et al. Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae [J], Metab Eng, 2006, 8(6):578-586.
    [38] Hols P, Ramos A, Hugenholtz J, et al. Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance [J], J Bacteriol, 1999, 181(17):5521-5526.
    [39] Hasona A, Kim Y, Healy FG, et al. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose [J], J Bacteriol, 2004, 186(22):7593-7600.
    [40] Baerends RJS, de Hulster E, Geertman JMA, et al. Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate [J], Appl Environ Microbiol, 2008, 74(10):3182-3188.
    [41] Jana AK & Ghosh P. Xanthan biosynthesis in continuous-culture - citric acid as an energy-source [J], J Ferment Bioeng, 1995, 80(5):485-491.
    [42] Harris DM, van der Krogt ZA, van Gulik WM, et al. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: Impact on penicillin G production and biomass yield [J], Appl Environ Microbiol, 2007, 73(15):5020-5025.
    [43] Li Y, Hugenholtz J, Chen J, et al. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy [J], Appl Microbiol Biotechnol, 2002, 60(1-2):101-106.
    [44] Zhang JG, Wang XD, Zhang JN, et al. Oxygen vectors used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source [J], J Biosci Bioeng, 2008, 105(4):335-340.
    [45] Zhang L, Li YJ, Wang ZN, et al. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering [J], Biotechnol Adv, 2007, 25(2):123-136.
    [46] Montville TJ, Chung HJ, Chikindas ML, et al. Nisin A depletes intracellular ATP and acts in bactericidal manner against Mycobacterium smegmatis [J], Lett Appl Microbiol, 1999, 28(3):189-193.
    [47] Garcia-Martinez C, Sibille B, Solanes G, et al. Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid versus glucose oxidation [J], FASEB J, 2001, 15(9):2033-2035.
    [48] Sluse FE, Jarmuszkiewicz W, Navet R, et al. Mitochondrial UCPs: new insights into regulation and impact [J], Biochim Biophys Acta, 2006, 1757(5-6):480-485.
    [49] Wittig I & Schagger H. Structural organization of mitochondrial ATP synthase [J], Biochim Biophys Acta-Bioenerg, 2008, 1777(7-8):592-598.
    [50] Aoki R, Wada M, Takesue N, et al. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum [J], Biosci Biotechnol Biochem, 2005, 69(8):1466-1472.
    [51] Zhang XX, Liu SK & Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana [J], Biotechnol Lett, 2008, 30(7):1289-1294.
    [52] Valiyaveetil F, Hermolin J & Fillingame RH. pH dependent inactivation of solubilized F1F0 ATP synthase by dicyclohexylcarbodiimide: pKa of detergent unmasked aspartyl-61 in Escherichia coli subunit c [J], Biochim Biophys Acta-Bioenerg, 2002, 1553(3):296-301.
    [53] Garcia JJ, Morales-Rios E, Cortes-Hernandez P, et al. The inhibitor protein (IF1)promotes dimerization of the mitochondrial F1F0-ATP synthase [J], Biochemistry, 2006, 45(42):12695-12703.
    [54] Candela T & Fouet A. Poly-gamma-glutamate in bacteria [J], Mol Microbiol, 2006, 60(5):1091-1098.
    [55] Blank LM, McLaughlin RL & Nielsen LK. Stable production of hyaluronic acid in Streptococcus zooeppidemicus chemostats operated at high dilution rate [J], Biotechnol Bioeng, 2005, 90(6):685-693.
    [56] van Maris AJA, Winkler AA, Porro D, et al. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export [J], Appl Environ Microbiol, 2004, 70(5):2898-2905.
    [57] Liao X, Deng T, Zhu Y, et al. Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae [J], J Appl Microbiol, 2008, 104(2):345-352.
    [58] Flores F, Torres LG & Galindo E. Effect of the dissolved-oxygen tension during cultivation of Xanthomonas campestris on the production and quality of xanthan gum [J], J Biotechnol, 1994, 34(2):165-173.
    [59] Yoon SH, Hwan Do J, Lee SY, et al. Production of poly-gamma-glutamic acid by fed-batch culture of Bacillus licheniformis [J], Biotechnol Lett, 2000, 22(7):585-588.
    [60] vanGulik WM, Antoniewicz MR, deLaat W, et al. Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum [J], Biotechnol Bioeng, 2001, 72(2):185-193.
    [61] Vemuri GN, Eiteman MA & Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein [J], Biotechnol Bioeng, 2006, 94(3):538-542.
    [62] Zhu J & Shimizu K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli [J], Appl Microbiol Biotechnol, 2004, 64(3):367-365.
    [63] Jones CW & Doelle HW. Kinetic control of ethanol-production by Zymomonas mobilis [J], Appl Microbiol Biotechnol, 1991, 35(1):4-9.
    [64] Liu LM, Li Y, Du GC, et al. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation [J], J Appl Microbiol, 2006, 100(5):1043-1053.
    [65] Gao HJ, Du GC & Chen J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus [J], World J Microbiol Biotechnol, 2006,22(4):399-408.
    [66] Sampaio FC, Torre P, Passos FML, et al. Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate [J], Biotechnol Prog, 2004, 20(6):1641-1650.
    [67] Wisselink HW, Toirkens MJ, Berriel MDF, et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose [J], Appl Environ Microbiol, 2007, 73(15):4881-4891.
    [68] Boll M. Dearomatizing benzene ring reductases [J], J Mol Microb Biotech, 2005, 10(2-4):132-142.
    [69] Esteve-Nunez A, Caballero A & Ramos JL. Biological degradation of 2,4,6-trinitrotoluene [J], Microbiol Mol Biol Rev, 2001, 65(3):335-352.
    [70] Muller RH, Rohwerder T & Harms H. Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds [J], Appl Environ Microbiol, 2007, 73(6):1783-1791.
    [71] Carmona M, Zamarro MT, Blazquez B, et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view [J], Microbiol Mol Biol Rev, 2009, 73(1):71-133.
    [72] Yanez R, Marques S, Girio FM, et al. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures [J], Proc Biochem, 2008, 43(4):356-361.
    [73] Thorgersen MP & Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica [J], Microbiology-SGM, 2009, 155:295-304.
    [74] Voigt B, Hoi LT, Jurgen B, et al. The glucose and nitrogen starvation response of Bacillus licheniformis [J], Proteomics, 2007, 7(3):413-423.
    [75] Tai SL, Daran-Lapujade P, Walsh MC, et al. Acclimation of Saccharomyces cerevisiae to low temperature: A chemostat-based transcriptome analysis [J], Mol Biol Cell, 2007, 18(12):5100-5112.
    [76] Zhang XX, Takano T & Liu SK. Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.) [J], J Exp Bot, 2006, 57(1):193-200.
    [77] Liu LM, Xu QL, Li Y, et al. Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata [J], Biotechnol Bioeng, 2007, 97(4):825-832.
    [78] Liu LM, Li Y, Zhu Y, et al. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level [J], Metab Eng, 2007, 9(1):21-29.
    [79] Li Y, Chen J, Liang DF, et al. Effect of nitrogen source and nitrogen concentration on the production of pyruvate by Torulopsis glabrata [J], J Biotechnol, 2000, 81(1):27-34.
    [80] Muller H, Hennequin C, Gallaud J, et al. The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types [J], Eukaryot Cell, 2008, 7(5):848-858.
    [81] Polakova S, Blume C, Zarate JA, et al. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata [J], Proc Natl Acad Sci U S A, 2009, 106(8):2688-2693.
    [82] Schmidt P, Walker J, Selway L, et al. Proteomic analysis of the pH response in the fungal pathogen Candida glabrata [J], Proteomics, 2008, 8(3):534-544.
    [83] Zhu YH, Eiteman MA, Altman R, et al. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain [J], Appl Environ Microbiol, 2008, 74(21):6649-6655.
    [84] Sekine H, Shimada T, Hayashi C, et al. H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate [J], Appl Microbiol Biotechnol, 2001, 57(4):534-540.
    [85] Yokota A, Henmi M, Takaoka N, et al. Enhancement of glucose metabolism in a pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity [J], J Fermentat Bioeng, 1997, 83(2):132-138.
    [86] Rak M, Tetaud E, Duvezin-Caubet S, et al. A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene [J], J Biol Chem, 2007, 282(47):34039-34047.
    [87] Liu LM, Li Y, Li HZ, et al. Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production [J], Lett Appl Microbiol, 2004, 39(2):199-206.
    [88] Richard GF, Kerrest A, Lafontaine I, et al. Comparative genomics of hemiascomycete yeasts: Genes involved in DNA replication, repair, and recombination [J], Mol Biol Evol, 2005, 22(4):1011-1023.
    [89] Willins DA, Shimer GH & Cottarel G. A system for deletion and complementation of Candida glabrata genes amenable to high-throughput application [J], Gene, 2002, 292(1-2):141-149.
    [90] Batova M, Borecka-Melkusova S, Simockova M, et al. Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata [J], Curr Genet, 2008, 53(5):313-322.
    [91] Cellar-Cruz M, Briones-Martin-Del-Campo M, Canas-Villamar I, et al. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a singlecatalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p [J], Eukaryot Cell, 2008, 7(5):814-825.
    [92] Zupancic ML, Frieman M, Smith D, et al. Glycan microarray analysis of Candida glabrata adhesin ligand specificity [J], Mol Microbiol, 2008, 68(3):547-559.
    [93] Adrio JL & Demain AL. Genetic improvement of processes yielding microbial products [J], FEMS Microbiol Rev, 2006, 30(2):187-214.
    [94] Alderton AJ, Burr I, Muhlschlegel FA, et al. Zeocin resistance as a dominant selective marker for transformation and targeted gene deletions in Candida glabrata [J], Mycoses, 2006, 49(6):445-451.
    [95] Guerra OG, Rubio IGS, da Silva Filho CG, et al. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes [J], J Microbiol Meth, 2006, 67(3):437-445.
    [96] Spencer JF, Ragout de Spencer AL & Laluce C. Non-conventional yeasts [J], Appl Microbiol Biotechnol, 2002, 58(2):147-156.
    [97] Sanchez H, Cozar MC & Martinez-Jimenez MI. Targeting the Bacillus subtilis genome: An efficient and clean method for gene disruption [J], J Microbiol Meth, 2007, 70(3):389-394.
    [98] Wang TT, Choi YJ & Lee BH. Transformation systems of non-Saccharomyces yeasts [J], Crit Rev Biotechnol, 2001, 21(3):177-218.
    [99] Staib P, Lermann U, Blabeta-Warmuth J, et al. Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening [J], Antimicrob Agents Chemother, 2008, 52(1):146-156.
    [100] Larsson C, Pahlman IL & Gustafsson L. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae [J], Yeast, 2000, 16(9):797-809.
    [101] Gueldener U, Heinisch J, Koehler GJ, et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast [J], Nucleic Acids Res, 2002, 30(6):8.
    [102] Aubrecht J, Osowski JJ, Persaud P, et al. Bioluminescent Salmonella reverse mutation assay: a screen for detecting mutagenicity with high throughput attributes [J], Mutagenesis, 2007, 22(5):335-342.
    [103] Wentz AE & Shusta EV. Enhanced secretion of heterologous proteins from yeast by overexpression of ribosomal subunit RPP0 [J], Biotechnol Prog, 2008, 24(3):748-756.
    [104] Skulj M, Okrslar V, Jalen S, et al. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes [J], Microb Cell Fact, 2008, 7:12.
    [105] Song JZ, Yang Q, Liu BD, et al. Expression of the chitinase gene from Trichoderma aureoviride in Saccharomyces cerevisiae [J], Appl Microbiol Biotechnol, 2005, 69(1):39-43.
    [106] Singh MV & Weil PA. A method for plasmid purification directly from yeast [J], Anal Biochem, 2002, 307(1):13-17.
    [107] Szewczyk E, Nayak T, Oakley CE, et al. Fusion PCR and gene targeting in Aspergillus nidulans [J], Nat Protoc, 2006, 1(6):3111-3120.
    [108] Wu SX & Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol [J], BioTechniques, 2004, 36(1):152-154.
    [109] Duenas E, Revuelta JL, del Rey F, et al. Disruption and basic phenotypic analysis of six novel genes from the left arm of chromosome XIV of Saccharomyces cerevisiae [J], Yeast, 1999, 15(1):63-72.
    [110] Roy SN, Kudryk B & Redman CM. Secretion of biologically active recombinant fibrinogen by yeast [J], J Biol Chem, 1995, 270(40):23761-23767.
    [111] Chevillotte M, Menges R, Muth G, et al. A quick and reliable method for monitoring gene expression in actinomycetes [J], J Biotechnol, 2008, 135(3):262-265.
    [112] Mehra RK, Thorvaldsen JL, Macreadie IG, et al. Cloning system for Candida glabrata using elements from the metallothionein-IIa-encoding gene that confer autonomous replication [J], Gene, 1992, 113(1):119-124.
    [113] Singh KK. Mitochondria damage checkpoint in apoptosis and genome stability [J], FEMS Yeast Res, 2004, 5(2):127-132.
    [114] McBride HM, Neuspiel M & Wasiak S. Mitochondria: More than just a powerhouse [J], Curr Biol, 2006, 16(14):R551-R560.
    [115] Ryan MT & Hoogenraad NJ. Mitochondrial-nuclear communications [J], Annu Rev Biochem, 2007, 76:701-722.
    [116] Falkenberg M, Larsson NG & Gustafsson CM. DNA replication and transcription in mammalian mitochondria [J], Annu Rev Biochem, 2007, 76:679-699.
    [117] Clark-Walker GD. The F1-ATPase inhibitor lnh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis [J], FEMS Yeast Res, 2007, 7(5):665-674.
    [118] Bonnefoy N, Remacle C & Fox TD. Mitochondria, 2nd Edition. [M], San Diego: Elsevier Academic Press Inc, 2007. 525-548
    [119] Hoppins S & Nunnari J. The molecular mechanism of mitochondrial fusion [J], Biochim Biophys Acta-Mol Cell Res, 2009, 1793(1):20-26.
    [120] Neupert W & Herrmann JM. Translocation of proteins into mitochondria [J], AnnuRev Biochem, 2007, 76:723-749.
    [121] Foury F, Roganti T, Lecrenier N, et al. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae [J], FEBS Lett, 1998, 440(3):325-331.
    [122] Koszul R, Malpertuy A, Frangeul L, et al. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata [J], FEBS Lett, 2003, 534(1-3):39-48.
    [123] McMullin TW & Fox TD. COX3 messenger RNA-specific translational activator proteins are associated with the inner mitochondrial-membrane in Saccharomyces cerevisiae [J], J Biol Chem, 1993, 268(16):11737-11741.
    [124] Steele DF, Butler CA & Fox TD. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation [J], Proc Natl Acad Sci U S A, 1996, 93(11):5253-5257.
    [125] Slonimsk PP, Perrodin G & Croft JH. Ethidium bromide induced mutation of yeast mitochondria - Complete transformation of cells into respiratory deficient non-chromosomal petites [J], Biochem Biophys Res Commun, 1968, 30(3):232-239.
    [126] John UP, Willson TA, Linnane AW, et al. Biogenesis of mitochondria DNA sequence analysis of mit- mutations in the mitochondrial OLI2 gene coding for mitochondrial ATPase subunit 6 in Saccharomyces cerevisiae [J], Nucleic Acids Res, 1986, 14(18):7437-7451.
    [127] Bonnefoy N, Bsat N & Fox TD. Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide [J], Mol Cell Biol, 2001, 21(7):2359-2372.
    [128] Toogood PL. Mitochondrial drugs [J], Curr Opin Chem Biol, 2008, 12(4):457-463.
    [129] Zhou JW, Dong ZY, Liu LM, et al. A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata [J], J Microbiol Meth, 2009, 76(1):70-74.
    [130] Kuyper M, Winkler AA, van Dijken JP, et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle [J], FEMS Yeast Res, 2004, 4(6):655-664.
    [131] Butow RA, Henke RM, Moran JV, et al. Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun [J], Methods Enzymol, 1996, 264:265-278.
    [132] Presley AD, Fuller KM & Arriaga EA. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection [J], J Chromatogr B, 2003, 793(1):141-150.
    [133] Taylor SD, Zhang H, Eaton JS, et al. The conserved Mec1/Rad53 nuclear checkpointpathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae [J], Mol Biol Cell, 2005, 16(6):3010-3018.
    [134] Boldogh IR & Pon LA. Mitochondria, 2nd Edition. [M], San Diego: Elsevier Academic Press Inc, 2007. 45-64
    [135] Balagurumoorthy P, Adelstein SJ & Kassis AI. Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA [J], Anal Biochem, 2008, 381(1):172-174.
    [136] Van Leeuwen T, Vanholme B, Van Pottelberge S, et al. Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action [J], Proc Natl Acad Sci U S A, 2008, 105(16):5980-5985.
    [137] Hattori N, Kitagawa K, Takumi S, et al. Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids [J], Genetics, 2002, 160(4):1619-1630.
    [138] Charton C, Ulaszewski S, Vieira MRD, et al. Effects of oligomycins on adenosine triphosphatase activity of mitochondria isolated from the yeasts Saccharomyces cerevisiae and Schwanniomyces castellii [J], Biochem Biophys Res Commun, 2004, 318(1):67-72.
    [139] Sedman T, Joers P, Kuusk S, et al. Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae [J], Curr Genet, 2005, 47(4):213-222.
    [140] Twig G, Hyde B & Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view [J], Biochim Biophys Acta-Bioenerg, 2008, 1777(9):1092-1097.
    [141] Druzhyna NM, Wilson GL & LeDoux SP. Mitochondrial DNA repair in aging and disease [J], Mech Ageing Dev, 2008, 129(7-8):383-390.
    [142] Berger KH & Yaffe MP. Mitochondrial DNA inheritance in Saccharomyces cerevisiae [J], Trends Microbiol, 2000, 8(11):508-513.
    [143] Burgstaller JP, Schinogl P, Dinnyes A, et al. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer [J], BMC Dev Biol, 2007, 7:10.
    [144] Sachadyn P, Zhang XM, Clark LD, et al. Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse [J], Mitochondrion, 2008, 8(5-6):358-366.
    [145] Hanson MR & Folkerts O. Structure and function of the higher plant mitochondrial genome [J], Int Rev Cytol, 1992, 141:129-172.
    [146] Shitara H, Hayashi J, Takahama S, et al. Maternal inheritance of mouse mtDNA in interspecific hybrids: Segregation of the leaked paternal mtDNA followed by theprevention of subsequent paternal leakage [J], Genetics, 1998, 148(2):851-857.
    [147] Lewin AS, Morimoto R & Rabinowitz M. Stable heterogeneity of mitochondrial DNA in grande and petite strains of S. cerevisiae [J], Plasmid, 1979, 2(3):474-484.
    [148] Contamine V & Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast [J], Microbiol Mol Biol Rev, 2000, 64(2):281-315.
    [149] Johnston SA, Anziano PQ, Shark K, et al. Mitochondrial transformation in yeast by bombardment with microprojectiles [J], Science, 1988, 240(4858):1538-1541.
    [150] Francis BR, White KH & Thorsness PE. Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae [J], J Bioenerg Biomembr, 2007, 39(2):127-144.
    [151] Prescott M, Bush NC, Nagley P, et al. Properties of yeast cells depleted of the OSCP subunit of mitochondrial ATP synthase by regulated expression of the ATP5 gene [J], Biochem Mol Biol Int, 1994, 34(4):789-799.
    [152] Goyon V, Fronzes R, Salin B, et al. Yeast cells depleted in atp14p fail to assemble Atp6p within the ATP synthase and exhibit altered mitochondrial cristae morphology [J], J Biol Chem, 2008, 283(15):9749-9758.
    [153] Chen XJ. Absence of F1-ATPase activity in Kluyveromyces lactis lacking the epsilon subunit [J], Curr Genet, 2000, 38(1):1-7.
    [154] Doudican NA, Song B, Shadel GS, et al. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae [J], Mol Cell Biol, 2005, 25(12):5196-5204.
    [155] Perrone GG, Tan SX & Dawes IW. Reactive oxygen species and yeast apoptosis [J], Biochim Biophys Acta-Mol Cell Res, 2008, 1783(7):1354-1368.
    [156] Hoppins S, Lackner L & Nunnari J. The machines that divide and fuse mitochondria [J], Annu Rev Biochem, 2007, 76:751-780.
    [157] Okamoto K & Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes [J], Annu Rev Genet, 2005, 39:503-536.
    [158] Noda S, Takezawa Y, Mizutani T, et al. Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase [J], J Bacteriol, 2006, 188(19):6869-6876.
    [159] Arnold I, Pfeiffer K, Neupert W, et al. ATP synthase of yeast mitochondria - Isolation of subunit j and disruption of the ATP18 gene [J], J Biol Chem, 1999, 274(1):36-40.
    [160] Zheng JB & Ramirez VD. Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP) a subunit ofmitochondrial F0F1-ATP synthase/ATPase [J], J Steroid Biochem Mol Biol, 1999, 68(1-2):65-75.
    [161] Stock D, Leslie AGW & Walker JE. Molecular architecture of the rotary motor in ATP synthase [J], Science, 1999, 286(5445):1700-1705.
    [162] Weber J. ATP synthase - the structure of the stator stalk [J], Trends Biochem Sci, 2007, 32(2):53-56.
    [163] Ackerman SH & Tzagoloff A. Function, structure, and biogenesis of mitochondrial ATP synthase [J], Prog Nucleic Acid Res Mol Biol, 2005, 80:95-133.
    [164] Zeng XM, Kucharczyk R, di Rago JP, et al. The leader peptide of yeast Atp6p is required for efficient interaction with the Atp9p ring of the mitochondrial ATPase [J], J Biol Chem, 2007, 282(50):36167-36176.
    [165] Stuart JA & Brown MF. Mitochondrial DNA maintenance and bioenergetics [J], Biochim Biophys Acta, 2006, 1757(2):79-89.
    [166] Brun S, Dalle F, Saulnier P, et al. Biological consequences of petite mutations in Candida glabrata [J], J Antimicrob Chemother, 2005, 56(2):307-314.
    [167] Clark-Walker GD, Hansbro PM, Gibson F, et al. Mutant residues suppressing rho0-lethality in Kluyveromyces lactis occur at contact sites between subunits of F1-ATPase [J], Biochim Biophys Acta-Protein Struct Molec Enzym, 2000, 1478(1):125-137.
    [168] Shadel GS. Expression and maintenance of mitochondrial DNA - New insights into human disease pathology [J], Am J Pathol, 2008, 172(6):1445-1456.
    [169] Wang YH & Shadel GS. Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase [J], Proc Natl Acad Sci U S A, 1999, 96(14):8046-8051.
    [170] Chen XJ, Wang XW & Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA [J], Proc Natl Acad Sci U S A, 2007, 104(34):13738-13743.
    [171] Spirek M, Soltesova A, Horvath A, et al. GC clusters and the stability of mitochondrial genomes of Saccharomyces cerevisiae and related yeasts [J], Folia Microbiologica, 2002, 47(3):263-270.
    [172] Gajewski CD, Yang L, Schon EA, et al. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters [J], Mol Biol Cell, 2003, 14(9):3628-3635.
    [173] Muller FL, Lustgarten MS, Jang Y, et al. Trends in oxidative aging theories [J], Free Radic Biol Med, 2007, 43(4):477-503.
    [174] Heux S, Cachon R & Dequin S. Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism [J], Metab Eng, 2006, 8(4):303-314.
    [175] Johnson CH, Prigge JT, Warren AD, et al. Characterization of an alternative oxidase activity of Histoplasma capsulatum [J], Yeast, 2003, 20(5):381-388.
    [176] Fu RY, Chen J & Li Y. Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth performance of the host [J], Appl Environ Microbiol, 2005, 71(12):8911-8919.
    [177] Brett CL, Tukaye DN, Mukherjee S, et al. The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking [J], Mol Biol Cell, 2005, 16(3):1396-1405.
    [178] Hoefnagel MHN, Starrenburg MJC, Martens DE, et al. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis [J], Microbiology-SGM, 2002, 148:1003-1013.
    [179] Sato K, Yoshida Y, Hirahara T, et al. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing [J], J Biosci Bioeng, 2000, 90(3):294-301.
    [180] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent [J], J Biol Chem, 1951, 193(1):265-275.
    [181] Machida K, Tanaka T, Fujita KI, et al. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae [J], J Bacteriol, 1998, 180(17):4460-4465.
    [182] Breeuwer P, Drocourt J, Rombouts FM, et al. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester [J], Appl Environ Microbiol, 1996, 62(1):178-183.
    [183] Ziegelbauer K, Grusdat G, Schade A, et al. High throughput assay to detect compounds that enhance the proton permeability of Candida albicans membranes [J], Biosci Biotechnol Biochem, 1999, 63(7):1246-1252.
    [184] Ali R, Brett CL, Mukherjee S, et al. Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast [J], J Biol Chem, 2004, 279(6):4498-4506.
    [185] Anfinsen CB. Aconitase from pig heart muscle [J], Meth Enzymol, 1955, 1:695-698.
    [186] Gullapalli RR, Demirel MC & Butler PJ. Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer [J], Phys Chem Chem Phys, 2008,10(24):3548-3560.
    [187] Baracca A, Sgarbi G, Solaini G, et al. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis [J], Biochim Biophys Acta-Bioenerg, 2003, 1606(1-3):137-146.
    [188] Trancikova A, Weisova P, Kissova I, et al. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL [J], FEMS Yeast Res, 2004, 5(2):149-156.
    [189] Osiewacz HD & Scheckhuber CQ. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina [J], Free Radic Res, 2006, 40(12):1350-1358.
    [190] Maxwell DP, Wang Y & McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells [J], Proc Natl Acad Sci U S A, 1999, 96(14):8271-8276.
    [191] Magnani T, Soriani FM, Martins VD, et al. Silencing of mitochondrial alternative oxidase gene of Aspergillus fumigatus enhances reactive oxygen species production and killing of the fungus by macrophages [J], J Bioenerg Biomembr, 2008, 40(6):631-636.
    [192] Porcelli AM, Ghelli A, Zanna C, et al. pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant [J], Biochem Biophys Res Commun, 2005, 326(4):799-804.
    [193] Wiedenmann A, Dimroth P & von Ballmoos C.ΔΨandΔpH are equivalent driving forces for proton transport through isolated F0 complexes of ATP synthases [J], Biochim Biophys Acta-Bioenerg, 2008, 1777(10):1301-1310.
    [194] Holz M, Forster A, Mauersberger S, et al. Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica [J], Appl Microbiol Biotechnol, 2009, 81(6):1087-1096.
    [195] Serio AW & Sonenshein AL. Expression of yeast mitochondrial aconitase in Bacillus subtilis [J], J Bacteriol, 2006, 188(17):6406-6410.
    [196] Shrivastav M, De Haro LP & Nickoloff JA. Regulation of DNA double-strand break repair pathway choice [J], Cell Res, 2008, 18(1):134-147.
    [197] Morettini S, Podhraski V & Lusser A. ATP-dependent chromatin remodeling enzymes and their various roles in cell cycle control [J], Front Biosci, 2008, 13:5522-5532.
    [198] Hashiguchi K, Bohr VA & de Souza-Pinto NC. Oxidative stress and mitochondrial DNA repair: implications for NRTIs induced DNA damage [J], Mitochondrion, 2004, 4(2-3):215-222.
    [199] Osley MA, Tsukuda T & Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair [J], Mutat Res-Fundam Mol Mech Mutagen, 2007, 618(1-2):65-80.
    [200] Huertas D, Sendra R & Munoz P. Chromatin dynamics coupled to DNA repair [J], Epigenetics, 2009, 4(1):31-42.
    [201] Lu B, Yadav S, Shah PG, et al. Roles for the human ATP-dependent lon protease in mitochondrial DNA maintenance [J], J Biol Chem, 2007, 282(24):17363-17374.
    [202] Turrens JF. Mitochondrial formation of reactive oxygen species [J], J Physiol-London, 2003, 552(2):335-344.
    [203] Wardman P. Use of the dichlorofluorescein assay to measure "reactive oxygen species" [J], Radiat Res, 2008, 170(3):406-407.
    [204] Barros MH, Bandy B, Tahara EB, et al. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae [J], J Biol Chem, 2004, 279(48):49883-49888.
    [205] Mambo E, Gao XQ, Cohen Y, et al. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations [J], Proc Natl Acad Sci U S A, 2003, 100(4):1838-1843.
    [206] Prithivirajsingh S, Story MD, Bergh SA, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation [J], FEBS Lett, 2004, 571(1-3):227-232.
    [207] Kim G, Sikder H & Singh KK. A colony color method identifies the vulnerability of mitochondria to oxidative damage [J], Mutagenesis, 2002, 17(5):375-381.
    [208] Grigoriev SM, Jensen RE & Kinnally KW. Control of mitochondrial protein import by pH [J], FEBS Lett, 2003, 553(1-2):163-166.
    [209] Gancedo C & Flores CL. Moonlighting proteins in yeasts [J], Microbiol Mol Biol Rev, 2008, 72(1):197-210.
    [210] Selivanov VA, Zeak JA, Roca J, et al. The role of external and matrix pH in mitochondrial reactive oxygen species generation [J], J Biol Chem, 2008, 283(43):29292-29300.
    [211] Abdul-Ghani MA, Jani R, Chavez A, et al. Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants [J], Diabetologia, 2009, 52(4):574-582.
    [212] Vojtiskova A, Jesina P, Kalous M, et al. Mitochondrial membrane potential and ATP production in primary disorders of ATP synthase [J], Toxicol Mech Methods, 2004, 14(1-2):7-11.
    [213] Strand MK, Stuart GR, Longley MJ, et al. POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA [J], Eukaryot Cell, 2003, 2(4):809-820.
    [214] Moore AL & Siedow JN. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria [J], Biochim Biophys Acta, 1991, 1059(2):121-140.
    [215] Ruijter GJ, Panneman H & Visser J. Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger [J], Biochim Biophys Acta, 1997, 1334(2-3):317-326.
    [216] Schaaff I, Heinisch J & Zimmermann FK. Overproduction of glycolytic enzymes in yeast [J], Yeast, 1989, 5(4):285-290.
    [217] Liu LM, Li Y, Du GC, et al. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production [J], Appl Microbiol Biotechnol, 2006, 72(2):377-385.
    [218] Koebmann BJ, Westerhoff HV, Snoep JL, et al. The glycolytic flux in Escherichia coli is controlled by the demand for ATP [J], J Bacteriol, 2002, 184(14):3909-3916.
    [219] Santana M, Ionescu MS, Vertes A, et al. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants [J], J Bacteriol, 1994, 176(22):6802-6811.
    [220] Pitkanen JP, Aristidou A, Salusjarvi L, et al. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture [J], Metab Eng, 2003, 5(1):16-31.
    [221] Klamt S, Stelling J, Ginkel M, et al. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps [J], Bioinformatics, 2003, 19(2):261-269.
    [222] Bryson JM, Coy PE, Gottlob K, et al. Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death [J], J Biol Chem, 2002, 277(13):11392-11400.
    [223] Solem C, Koebmann BJ & Jensen PR. Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363 [J], J Bacteriol, 2003, 185(5):1564-1571.
    [224] Ogawa T, Mori H, Tomita M, et al. Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli [J], Res Microbiol, 2007, 158(2):159-163.
    [225] Aust A, Yun SL & Suelter CH. Pyruvate kinase from yeast (Saccharomyces cerevisiae) [J], Meth Enzymol, 1975, 42:176-182.
    [226] Lindbladh C, Brodeur RD, Lilius G, et al. Metabolic Studies on Saccharomyces cerevisiae containing fused citrate synthase malate dehydrogenase [J], Biochemistry, 1994, 33(39):11684-11691.
    [227] Sanchez NS, Arreguin R, Calahorra M, et al. Effects of salts on aerobic metabolism of Debaryomyces hansenii [J], FEMS Yeast Res, 2008, 8(8):1303-1312.
    [228] Moreau R, Heath SH, Doneanu CE, et al. Age-related increase in 4-hydroxynonenal adduction to rat heart alpha-ketoglutarate dehydrogenase does not cause loss of its catalytic activity [J], Antioxid Redox Signal, 2003, 5(5):517-527.
    [229] Rak M, Zeng XM, Briere JJ, et al. Assembly of F0 in Saccharomyces cerevisiae [J], Biochim Biophys Acta-Mol Cell Res, 2009, 1793(1):108-116.
    [230] Hamilton CA, Good AG & Taylor GJ. Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae [J], FEMS Microbiol Lett, 2001, 205(2):231-236.
    [231] Hamilton CA, Taylor GJ & Good AG. Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae [J], FEMS Microbiol Lett, 2002, 208(2):227-232.
    [232] Schwimmer C, Lefebvre-Legendre L, Rak M, et al. Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast [J], J Biol Chem, 2005, 280(35):30751-30759.
    [233] Zhou JW, Liu LM, Du GC, et al. Citrate protect the growth of Torulopsis glabrata CCTCC M202019 against acidic stress as additional ATP supplier [J], J Biotechnol, 2008, 136(S1):S741.
    [234] Mortensen HD, Gori K, Siegumfeldt H, et al. Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains [J], Appl Microbiol Biotechnol, 2006, 71(5):713-719.
    [235] Even S, Lindley ND & Cocaign-Bousquet M. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures [J], Microbiology, 2003, 149(7):1935-1944.
    [236] Pfeuty A, Dufresne C, Gueride M, et al. Mitochondrial upstream promoter sequences modulate in vivo the transcription of a gene in yeast mitochondria [J], Mitochondrion, 2006, 6(6):289-298.
    [237] Amiott EA & Jaehning JA. Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration [J], Mol Cell, 2006, 22(3):329-338.
    [238] Shen LC & Atkinson DE. Regulation of pyruvate dehydrogenase from Escherichiacoli. Interactions of adenylate energy charge and other regulatory parameters [J], J Biol Chem, 1970, 245(22):5974-5978.
    [239] Jensen PR & Michelsen O. Carbon and energy metabolism of ATP mutants of Escherichia coli [J], J Bacteriol, 1992, 174(23):7635-7641.
    [240] Daran-Lapujade P, Rossell S, van Gulik WM, et al. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels [J], Proc Natl Acad Sci U S A, 2007, 104(40):15753-15758.
    [241] Mascarenhas C, Edwards-Ingram LC, Zeef L, et al. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae [J], Mol Biol Cell, 2008, 19(7):2995-3007.
    [242] Nomura W, Maeta K, Kita K, et al. Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: Methylglyoxal attenuates protein synthesis through phosphorylation of eIF2 alpha [J], Biochem Biophys Res Commun, 2008, 376(4):738-742.
    [243] van den Brink J, Canelas AB, van Gulik WM, et al. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism [J], Appl Environ Microbiol, 2008, 74(18):5710-5723.
    [244] Postmus J, Canelas AB, Bouwman J, et al. Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation [J], J Biol Chem, 2008, 283(35):23524-23532.
    [245] Llopis J, McCaffery JM, Miyawaki A, et al. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins [J], Proc Natl Acad Sci U S A, 1998, 95(12):6803-6808.
    [246] Daugulis AJ. Integrated fermentation and recovery processes [J], Curr Opin Biotechnol, 1994, 5(2):192-195.
    [247] Yarime M. Promoting green innovation or prolonging the existing technology - Regulation and technological change in the chlor-alkali industry in Japan and Europe [J], J Ind Ecol, 2007, 11(4):117-139.
    [248] Canovas M, Bernal V, Sevilla A, et al. Salt stress effects on the central and carnitine metabolisms of Escherichia coli [J], Biotechnol Bioeng, 2007, 96(4):722-737.
    [249] Shen D & Sharfstein ST. Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock [J], Biotechnol Bioeng, 2006, 93(1):132-145.
    [250] Zelic B, Gostovic S, Vuorilehto K, et al. Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis [J], Biotechnol Bioeng, 2004,85(6):638-646.
    [251] Bailly M & Bar D. Hybrid separation schemes for producing organic acids: The potential, promise and production [J], Chem Eng, 2002, 109(7):51-53.
    [252] Eisenberg A, Seip JE, Gavagan JE, et al. Pyruvic acid production using methylotrophic yeast transformants as catalyst [J], J Mol Catal B Enzym 1997, 2:223-232.
    [253] Hida H, Yamada T & Yamada Y. Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid [J], Appl Microbiol Biotechnol, 2007, 73(6):1387-1393.
    [254] Wei P, Li Z, He P, et al. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance [J], Biotechnol Appl Biochem, 2008, 49:113-120.
    [255] Mortensen HD, Jacobsen T, Koch AG, et al. Intracellular pH homeostasis plays a role in the tolerance of Debaryomyces hansenii and Candida zeylanoides to acidified nitrite [J], Appl Environ Microbiol, 2008, 74(15):4835-4840.
    [256] Jefferies KC, Cipriano DJ & Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases [J], Arch Biochem Biophy, 2008, 476(1):33-42.
    [257] Fischer G, Rocha EPC, Brunet F, et al. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages [J], Plos Genetics, 2006, 2(3):253-261.
    [258] King TE, Ronald WE & Maynard EP. Preparation of succinate dehydrogenase and reconstitution of succinate oxidase [J], Meth Enzymol, 1967, 10:322-331.
    [259] Viegas CA, Sebastiao PB, Nunes AG, et al. Activation of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures [J], Appl Environ Microbiol, 1995, 61(5):1904-1909.
    [260] Zhu YB, Chen X, Chen T, et al. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis [J], FEMS Microbiol Lett, 2007, 266(2):224-230.
    [261] Wang Z, Chen S, Sun M, et al. A fundamental dual regulatory role of citrate on the biosyntheses of thuringiensin and poly-beta-hydroxybutyrate in Bacillus thuringiensis YBT-032 [J], Biotechnol Lett, 2007, 29(5):779-784.
    [262] Torino MI, Taranto MP & de Valdez GF. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807 [J], Appl Microbiol Biotechnol, 2005, 69(1):79-85.
    [263] Somsen OJG, Hoeben MA, Esgalhado E, et al. Glucose and the ATP paradox in yeast[J], Biochem J, 2000, 352:593-599.
    [264] Kresnowati M, Suarez-Mendez CM, van Winden WA, et al. Quantitative physiological study of the fast dynamics in the intracellular pH of Saccharomyces cerevisiae in response to glucose and ethanol pulses [J], Metab Eng, 2008, 10(1):39-54.
    [265] Jernejc K & Legisa M. A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger [J], J Biotechnol, 2004, 112(3):289-297.
    [266] Simonin H, Beney L & Gervais P. Controlling the membrane fluidity of yeasts during coupled thermal and osmotic treatments [J], Biotechnol Bioeng, 2008, 100(2):325-333.
    [267] Mollapour M, Phelan JP, Millson SH, et al. Weak acid and alkali stress regulate phosphatidylinositol bisphosphate synthesis in Saccharomyces cerevisiae [J], Biochem J, 2006, 395:73-80.
    [268] Shima J, Ando A & Takagi H. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains [J], Yeast, 2008, 25(3):179-190.
    [269] San KY, Bennett GN, Berrios-Rivera SJ, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli [J], Metab Eng, 2002, 4(2):182-192.
    [270] Suda M, Teramoto H, Imamiya T, et al. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation [J], Appl Microbiol Biotechnol, 2008, 81(3):505-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700