MCP-1相关miRNAs在大鼠脑出血后继发性脑损伤中的作用及机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     脑出血(ICH)是严重危害人类健康的疾病,影响脑出血预后的关键因素是继发性脑损伤,现认为其与多种细胞内信号表达异常相关,而microRNA可在多个层面调控细胞内信号通路。我们前期的研究发现MCP-1/CCR2通路可介导ICH后继发性脑损伤,本研究拟在前期研究的基础上,进一步探讨MCP-l相关的miRNAs在大鼠脑出血中的表达及其与ICH后继发性脑损伤的关系。
     材料与方法:
     本研究通过生物信息学技术预测可能靶向MCP-1mRNA分子,并在大鼠脑出血模型上进行了初步的筛选试验。总共81只雄性SD大鼠被随机分为3组:假手术组(针刺基底节模型)、对照组(生理盐水基底节注射模型)和处理组(自体血基底节注射模型),在模型建立后2小时(h),6小时(h),12小时(h)后断头取脑,采集标本后提取RNA,通过qRT-PCR技术检测MCP-1mRNA以及相应microRNA分子表达水平差异并分析其相关性。
     结果:
     ICH后MCP-1基因相对表达量升高,3h为29.44±0.18,6h为73.84±1.16,12h为125.86±15.31,同时,rno-miR-3592相对表达量为3h20.58±0.64,6h16.06±0.98,12h15.24±1.29,rno-miR-434*相对表达量为3h20.58±0.64,6h16.08±0.98,12h15.24±1.29。相关性分析显示在大鼠[CH模型中,rno-miR-3592和rno-miR-434*与MCP-1表达强相关。
     结论:
     我们的研究描述了在大鼠脑出血早期,血肿周围脑组织中MCP-1mRNA及相应miRNA分子的动态变化。其中rno-miR-3592.rno-miR-434*分子在脑出血早期呈现进行性下降趋势,而同期脑组织内MCP-mRNA表达水平呈进行性上升趋势,由此我物推测rno-miR-3592,mo-miR-434*分子可能参与调控了MCP-1介导的脑出血后继发性脑损伤机制。而rno-miR-3592,rno-miR-434*对MCP-1信号通路的作用及调控机制有待进一步研究证实。
Background
     Intracerebral hemorrhage(ICH) is a common and fatal subtype of stroke.The key role affecting the prognosis of ICH is secondary brain injury. Extensive research has demonstrated that ICH triggers complex cellular biochemical events that eventually lead to secondary brain injury. However, the delicate mechanisms of ICH induced secondary brain injury are not completely understood. MicroRNAs have been recently discovered as a novel family of non-protein coding short RNA molecules that negatively modulte protein expression in virous organisms.It is now evident that miRNAs plays acritical role in a ariety of normal biological process, including cell differentiation, apoptosis, development and metabolism. In addition, miRNAs have also been implicated in etiology of variety of human disease, including cancer, cardiovascular diseases and stroke. Our previous study have demonstrated that CCL2/CCR2pathway play an important role in the secondary brain injury after ICH. Based on these data, this study is to investigate the expression of MCP-1related miRNAs in a rat ICH model and elucidate the role of miRNAs in the pathogenesis of the ICH induced secondary brain injury.
     Methods
     In this study, we predict possible targeting MCP-1mRNA by bioinformatics techniques,and a preliminary screening test was carried out in a rat ICH model.A total of81rats were randomly divided into3groups:sham group(acupuncture basal ganglia model),control group(saline basal ganglia injection model)and treat group(autologous blood basal ganglia injection model).Rats were decapitated and collected brain sample2hours,6hours,12hours after respectively. Total RNA was isolated from rat brain samples,and the expression of MCP-1mRNA and miRNAs were measured by real-time PCR.
     Results
     The expression of MCP-1mRNA increased significantly after ICH, which was29.44±0.18at3h,73.84±1.16at6h and25.86±15.31at12h, respectively. At the same time, the expression of rno-miR-3592was20.58±0.64at3h,16.06±0.98at6h,and15.24±1.29at12h, respectively. The expression of rno-miR-434*was20.58±0.64at3h,16.08±0.98at6h, and15.24±1.29at12h, respectively. Correlation analysis revealed that rno-miR-3592and rno-miR-434*are strongly correlated with the expression of MCP-1mRNA.
     Conclusion
     Our study describes the dynamic changes of MCP-1mRNA and the related miRNA in the brain tissue around hematoma at early stage after ICH.rno-miR-3592,rno-miR-434*showed progressive decrease when MCP-1mRNA expression levels showed a progressive upward trend. Thus, we speculate that rno-miR-3592and rno-miR-434*may modulate the expression of MCP-1expression in ICH. However, futher studies are needed to elucidate the effect and mechanisms of rno-miR-3592and rno-miR-434*on MCP-1signaling pathway in ICH induced secondary brain injury following ICH.
引文
[1]中华人民共和国卫生部.2010年中国卫生统计年鉴,北京,中国协和医科大学出版社,2010
    [2]Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke.2011 Jun;42(6):1781-1786
    [3]Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet.2009 May 9;373(9675):1632-44.
    [4]Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol.2010 Dec;92(4):463-477.
    [5]Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol.2010 Jul 27;224(1-2):93-100.
    [6]Bartel DP. MicroRNAs:target regognition and regulatory fuctions. Cell.2009 Jan 23;136(2):215-213.
    [7]Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature.2011 Jan 20;469(7330):336-42.
    [8]Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature.2010 Aug 12;466(7308):835-40.
    [9][9]Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab.2010 Jan;30(1):92-101.
    [10]Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PTH, Jeyaseelan K. MicroRNA in stroke pathogenesis. Curr Mol Med.2011;11(2):76-92.
    [11]Xi G, Wagner KR, Keep RF, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke,2000,29(12): 2580-2586.
    [12]Gatson JW, Maass DL, Simpkins JW, et al. Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. J Neuroinflammation,2009,22,6:30.
    [13]Wu J, Yang S, Hua Y, et al. Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage.[J]. Acta Neurochir Suppl. 2010,106:147-150.
    [14]Ivacko J,Sazflarski J,Christa M,et al,Hypoxic-ischemic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain[J].Cerebral Blood Flow Metabolism,1997,17:759-770
    [15]Chen YJohn M,Ruetzler C,et al,Overexpression of monocyte chemoattractant protein-1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells[J] Cerebral Blood Flow Metabolism,2003,23: 748-755
    [16]Jan-Kolja Strecker., Jens Minnerup, Burkhard Gess, et al, Monocyte Chemoattractant Protein-1-Deficiency Impairs the Expression of IL-6, IL-lb and G-CSF after Transient Focal Ischemia in Mice.Plos one 2011;6(10):e25863
    [17]Lagos_Quintana M, Rauhut R, Lendeckel W,et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294 (5543):853-858.
    [18]TaganovKD, BoldinMP, Chang KJ,et al. NF-kappa B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl A cad SciUSA,2006,103(33):12481-12486.
    [19]R. Tan, Y.X. Koo, P. Kaur,et al. microRNAs in Stroke Pathogenesis[J].Current Molecular Medicine 2011,11,76-92.
    [1]Eliiovich L,Patel PV,Hemphill JC 3rd, Intracerebral hemorahage. Semin Neuro, 2008,28(5):657-667.
    [2]Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA,Hennerici MG. Classification of stroke subtypes.Cerebrovasc Dis 2009; 27:493-501.
    [3]Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 2006;5:53-63.
    [4]Bartel DP. microRNAs:genomics, biogenesis, mechanism,and function. Cell 2004; 116:281-97.
    [5]Broughton BR, Reutens DC,Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009;40:e331-9
    [6]Nicholson DW, Thornberry NA. (2003). Apoptosis. Life and death decisions. Science 2003;299:214-5.
    [7]Jin K, Graham SH, Mao X, Nagayama T, Simon RP,Greenberg DA. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab 2001; 21:1411-21.
    [8]Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23:862-76.
    [9]Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17:1298-307.
    [10]Liu DZ, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010; 30:92-101
    [11]Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009; 16:23-9.
    [12]Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010;38:908-15.
    [13]Sayed D, He M, Hong C, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 2010;285:20281-90.
    [14]Buller B,Liu X,Wang X, et al.MicroRNA-21 protects neurons from ischemic death. FEBS J 2010;277:4299-307.
    [15]Budd SL.Mechanisms of neuronal damage in brain hypoxia/ischemia:focus on the role of mitochondrial calcium accumulation. Pharmacol Ther 1998;80: 203-29.
    [16]Ly JV, Zavala JA, Donnan GA.Neuroprotection and thrombolysis:combination therapy in acute ischaemic stroke.Expert Opin Pharmacother 2006;7:1571-81.
    [17]Chiang MF, Chiu WT,Lin FJ,et al.Multiparametric analysis of cerebral substrates and nitric oxide delivery in cerebrospinal fluid in patients with intracerebral haemorrhage:correlation with hemodynamics and outcome. Acta Neurochir(Wien),2006,148(6):615-621.
    [18]Saeed SA, Shad KF, SaleemT, Javed F, KhanMU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 2007; 182:1-10.
    [19]Lara FA, Kahn SA, da Fonseca AC, et al. On the fate of extracellular hemoglobin and heme in brain. J Cereb Blood Flow Metab 2009;29:1109-20.
    [20]Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009;4:461-70.
    [21]Mehta SL, Manhas N, Raghubir R.Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007;54:34-66.
    [22]Edbauer D, Neilson JR,Foster KA,et al.Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132.Neuron 2010; 65:373-84.
    [23]Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009;29:675-87.
    [24]Becker KJ. Targeting the central nervous system inflammatory response in ischemic stroke. Curr Opin Neurol 2001;14:349-53.
    [25]Gong Y, Xi GH, Keep RF, Hoff JT, Hua Y. Complement inhibition attenuates brain edema and neurological deficits induced by thrombin. Acta Neurochir 2005; Suppl 95:389-92.
    [26]Harris TA, Yamakuchi M,Ferlito M,Mendell JT, Lowenstein CJ.MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.Proc Natl Acad Sci USA 2008;105:1516-21.
    [27]Martinez-Nunez RT, Louafi F, Friedmann PS,Sanchez-Elsner T. microRNA-155 modulates pathogen binding ability of dendritic cells by downregulation of DC specific intercellular adhesion molecule-3 grabbing non-integrin (DCSIGN)J Biol Chem 2009;284:16334-42.
    [28]Fontana L, Pelosi E, Greco P, et al. microRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007;9:775-87.
    [29]Taganov KD,Boldin MP, Chang KJ, Baltimore D.NFkappaB-dependent induction of microRNA miR-146,an inhibitor targeted to signaling proteins of innate immune responses.Proc Natl Acad Sci USA 2006;103:12481-86.
    [30]Bhaumik D,Scott GK, Schokrpur S,et al.microRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8.Aging (Albany NY)2009;1:402-11.
    [31]Gabriely G, Wurdinger T, Kesari S,et al.MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.Mol Cell Biol 2008;28: 5369-80.
    [32]Wang B,Hsu SH, Majumder S,et al.TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3.Oncogene 2010;29: 1787-97.
    [33]Lukiw WJ,Zhao Y, Cui JG.An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells.J Biol Chem 2008;283:31315-22.
    [34]Badaut J,Lasbennes F, Magistretti PJ,Regli L. Aquaporins in brain:distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002;22:367-78.
    [35]Jessica Chen M,Sepramaniam S,Armugam A, et al.Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 2008;6:102-16.
    [36]Wu H, Zhang Z, Li Y, et al.Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats:correlation with brain edema. Neurochem Int 2010;57:248-53.
    [37]Wang X, Hu G, Zhou J. Repression of versican expression by microRNA-143.J Biol Chem 2010;285:23241-50.
    [38]Sengupta S, den Boon JA, Chen IH, et al.MicroRNA 29c is down-regulated in nasopharyngeal carcinomas,up-regulating mRNAs encoding extracellular matrix proteins.Proc Natl Acad Sci USA 2008;105:5874-8.
    [39]Sepramaniam S,Armugam A, Lim KY, et al.MicroRNA 320a functions as a novel endogenous modulator of Aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010; 285:29223-30.
    [1]Eliiovich L,Patel PV,Hemphill JC 3rd, Intracerebral hemorahage. Semin Neuro, 2008,28(5):657-667.
    [2]Xi G, Keep RF,Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats.J Neurosurg,1998,89:991-996.
    [3]Hua Y,Keep RF,Hoff JT,et al. Brain Injury After Intracerebral Hemorrhage:the role of thrombin and iron, Stroke,2007,38:759.
    [4]Hall ED,Pazara KE,Linseman KL.Sex differences in postischemic neuronal necrosis in gerbils, J Cereb Blood Flow Metab,1991,11(2):292-298.
    [5]Alkayed NJ,Goto S,Sugo N,Joh HD,et al.Estrogen and bcl-2:gene induction and effect of transgene in experimental stroke, J Neurosci,2001,21:7543-7550.
    [6]Nakamura T,Xi G,Keep RF,et al.Effects of endogenous and exogenous estrogen on intracerebral hemorrhage-induced brain damage in rats. Acta Neurochir Suppl, 2006,96:218-221.
    [7]Kase CS, Caplan LR.Intracerebral Hemorrhage. Boston, Mass:Butterworth-Heinemann,1994.
    [8]Hua Y, Xi G,Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg,2000,92(6):1016-1022.
    [9]Wu G, Xi G, Huang F. Spontaneous intracerebral hemorrhage in humans: hematoma enlargement, clot lysis, and brain edema. Acta Neurochir Suppl, 2006,96:78-80.
    [10]Wu J, Hua Y, Keep RF, et al,Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res,2002,953(1-2):45-52.
    [11]Raymond F, Guo Y. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia,and excitatory amino acids in murine cortical cultures. Brain Res,1997,764(1-2):133-140.
    [12]Wu J,Hua Y, Keep RF, et al, Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke,2003,34(12):2964-2969.
    [13]Nakamura T, Keep R, Hua Y, et al. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg,2004,100(4):672-678.
    [14]Gu Y, Xi G, Liu W, et al. Estrogen reduces iron-mediated brain edema and neuronal death. Acta Neurochir Suppl,2010,106:159-162.
    [15]Chen TY, Tsai KL,Lee TY,et al.Sex-specific role of thioredoxin in neuroprotection against iron-induced brain injury conferred by estradiol.Stroke,2010,41(1): 160-165.
    [16]Nilsson OG, Saveland H, Boris-Moller F, et al. Increased levels of glutamate in patients with subarachnoid hemorrhage as measures by intracerebral microdialysis.Acta Neurochir Suppl, 1996,67:45-47.
    [17]Chiang MF, Chiu WT,Lin FJ, et al. Multiparametric analysis of cerebral substrates and nitric oxide delivery in cerebrospinal fluid in patients with intracerebral haemorrhage:correlation with hemodynamics and outcome. Acta Neurochir(Wien),2006,148(6):615-621.
    [18]Sharp F, Liu DZ, Zhan X, et al.Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta neurochir suppl,2008,105: 43-46.
    [19]Mermelstein PG, Becker JB,Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor, J Neurosci,1996,16(2)595-604.
    [20]Behl C,Widmann M,Trapp T,et al.17-β estradiol protects neurons from oxidative stress-induced cell death in vitro.Biochem Biophys Res Commun,1995, 216(2):473-82.
    [21]Lin CL, Dumont AS, Wu SC, et al.17beta-estradiol inhibits endothelin-1 production and attenuates cerebral vasospasm after experimental subarachnoid hemorrhage.Exp Bio Med(Maywood.),2006,231(6):1054-1057.
    [22]Lin CL, Shih HC,Dumont AS,et al.The effect of 17beta-estradiol in attenuating experimental subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosurg, 2006,104(2):298-304.
    [23]Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rats.Brain Res,2000,871(1):57-65.
    [24]Gatson JW, Maass DL, Simpkins JW, et al.Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. J Neuroinflammation,2009,22,6:30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700