用于分离昆明小鼠治疗性胚胎干细胞的囊胚生成途径相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着干细胞技术的不断发展,能够用于人类再生医学的具有克服免疫排斥反应的治疗性胚胎干细胞逐渐成为人们研究的重点。通过体细胞核移植技术获得胚胎干细胞,因为具有与体细胞提供者相同的基因型被认为是克服免疫排斥反应的最佳途径,然而,体细胞克隆胚胎由于其重构胚核编程不完全导致其发育率较低,进而影响获取干细胞的成功率;哺乳动物MⅠ期和MⅡ期卵母细胞孤雌激活胚胎与有性生殖胚胎相比,具有与提供卵母细胞的母体相同的组织相容性复合物,由此获得的干细胞能够克服免疫排斥反应。但是来源于MⅡ期卵母细胞孤雌激活胚胎缺乏父源基因印迹作用,其发育潜能受到限制,从而导致其分离获得的干细胞的分化潜能也有可能因此而受到限制:来源于抑制了第一极体排出的MⅠ期卵母细胞孤雌激活胚胎,因为含双倍杂合体基因组核型,能够获得类似于体细胞克隆胚胎的胚胎细胞核型,可在一定程度提高孤雌胚胎的发育潜力并使其分离得到的胚胎干细胞具有正常的细胞核型以用于临床治疗。但是,体细胞克隆胚胎和孤雌胚胎途径都需要囊胚做为胚胎干细胞分离的材料。本试验研究了以上体细胞核移植胚胎和MⅡ期、MⅠ期卵母细胞孤雌激活胚胎三种途径来源囊胚生成的可能性和方法,并研究了影响这三种囊胚发育率的因素,旨在探索昆明小鼠治疗性胚胎干细胞获取的新途径。
     本研究采用昆明小鼠做为试验动物,针对体细胞克隆胚胎囊胚发育率低,获取其胚胎干细胞困难的问题,选择合适浓度的组蛋白去乙酰化抑制剂(TSA)分别作用于体细胞核移植重构胚的融合和激活阶段,比较了TSA在不同阶段对重构胚发育的影响。旨在通过研究供核体细胞在去核卵母细胞内的核基因重塑修复与重编程过程,分析和探索提高体细胞克隆胚胎囊胚发育率的有效方法。针对孤雌胚胎干细胞获取新途径中,有性生殖胚胎与无性生殖孤雌胚胎嵌合发育,能够在早期胚胎细胞间通过旁分泌与自分泌因素和晚期胚胎发育阶段通过胚胎诱导因素的作用下,促进孤雌胚发育的理论可行性,本研究通过性别鉴定的方法选择雄性有性生殖胚胎与无性生殖MⅡ期卵母细胞孤雌激活胚胎嵌合发育,并可以通过性别鉴定的方法将这种嵌合囊胚分离得到的内细胞团细胞进行来源标记,旨在通过性别鉴定的方法建立有性生殖胚胎辅助与其嵌合发育的无性生殖孤雌胚胎生成干细胞和有效分选分离这种干细胞的新途径。针对孤雌胚胎干细胞获取新途径中,通过抑制体外培养过程中MⅠ期卵母细胞第一极体的排出,获取含双倍体基因组核型的成熟卵母细胞,孤雌激活这种卵母细胞能够获得类似于体细胞克隆胚胎核型的原理,研究MⅠ期卵母细胞双倍体基因组核型获取途径,探讨了小鼠MⅡ期卵母细胞孤雌激活体系是否能成功应用于MⅠ期卵母细胞的孤雌激活,并对不同体外胚胎发育培养液对这种MⅠ期孤雌胚胎的体外培养效果进行了观察,旨在研究MⅠ期卵母细胞双倍体基因组核型人工激活发育为孤雌胚胎的可能性及其早期胚胎体外培养发育的潜力,探索治疗性克隆胚胎孤雌干细胞生成的新途径。试验结果如下:
     1组蛋白去乙酰化抑制剂(TSA)对体细胞核移植重构胚囊胚生产效果的影响
     依据体细胞克隆胚胎囊胚生产效率低的原因与供体核染色质和受体卵质之间互作异常、影响体细胞染色质解聚和激活表达程序出现紊乱有关,本试验利用组蛋白去乙酰化酶特异性抑制剂TSA(trychostatin A)能够抑制重构胚早期组蛋白去乙酰化的作用特点,对重构胚发育早期的融合阶段和激活阶段分别或共同进行添加TSA处理,观察其对重构胚发育状况的影响,以揭示组蛋白乙酰化/去乙酰化作用在核内染色质重编程过程中所发挥的作用,旨在探索能够提高体细胞核移植重构胚囊胚生产效率的新途径。结果显示:试验1中处理组3添加50nmol/L TSA作用于核移植重构胚融合和激活阶段(融合3h、激活6h)可以有效抑制组蛋白去乙酰化酶的作用,促进组蛋白的乙酰化,从而达到明显提高重构胚发育的效果,50 nmol/L的TSA浓度处理后的体细胞核移植重构胚的囊胚发育率(14.00%)要显著高于处理组1(0.5nmol/L,5.36%)、处理组2(5 nmol/L,6.12%)、处理组4(500 nmol/L,7.69%)和对照组(0 nmol/L,3.92%)(P<0.05);试验2中仅在融合阶段添加TSA抑制组蛋白去乙酰化作用虽然在一定程度能够提高重构胚的囊胚发育率(5.56%),但与未添加TSA的处理组1(2.63%)相比差异不显著(P>0.05),并不能显著改善重构胚的发育状况;试验3中在融合和激活阶段均添加TSA的处理组3和仅在激活阶段添加TSA的处理组2的囊胚发育率(14.71%Vs 12.12%)之间差异不显著,但两者与未添加TSA的对照组的囊胚发育率(6.45%)相比均差异显著(P<0.05),可见TSA在激活阶段对供体核染色质组蛋白去乙酰化作用的抑制明显提高了体细胞核移植重构胚的囊胚发育效率;试验4中在融合阶段添加TSA处理时间不变的前提下将TSA在激活阶段的处理时间从6 h延长至9 h,虽然在一定程度上提高了重构胚的囊胚发育率(15.56%),但与未延长激活时间的处理组1(14.29%)相比囊胚率并没有得到明显的提高,两者之间差异不显著(P>0.05),说明延长激活阶段TSA处理时间并不能进一步提高重构胚的发育潜力。
     2昆白小鼠孤雌胚胎与雄性胚胎嵌合发育研究
     本研究对小鼠早期胚胎进行性别鉴定,获得雄性胚胎后与孤雌激活胚胎进行嵌合培养,其目的是为了建立一种新的异性胚胎嵌合培养模式,在便于通过分子生物学方法对胚胎不同来源进行性别检测的基础上,研究两种不同类型胚胎细胞之间在嵌合发育过程中的相互影响,为从嵌合发育胚胎中分析标记来源于孤雌胚胎的干细胞研究过程奠定基础。本研究初步建立了构建孤雌激活胚胎与雄性胚胎嵌合胚的方法与程序,对该过程中的几个影响因素做了初步的探讨。结果显示:自主设计的两对性别鉴定引物特异性较强,能够分别扩增出公鼠所特有的250 bp Sry基因片段和公母小鼠共有的399 bp的ZFX基因片段;经过优化的双重PCR体系能够在取2个卵裂球作为PCR反应模板的前提下比较准确的判定小鼠早期胚胎性别:在比较了各种去带液的去带效果及对胚胎的后续发育潜力的影响后发现,在0.5%链蛋白酶液中处理5 min后,胚胎能获得较高的裸胚率(93.33%)和囊胚发育率(76.67%);应用前面试验建立的小鼠早期胚胎性别鉴定体系鉴定的有性生殖雄性8细胞胚胎与孤雌生殖8细胞胚胎在自制凹窝培养体系的胚胎聚合率(73.91%)与PHA微滴培养体系的胚胎聚合率(62.50%)相比差异显著(P<0.05)。聚合胚胎在自制凹窝培养体系的囊胚发育率(47.82%)虽然高于PHA微滴培养体系(41.67%),但两种体系之间差异不显著(P>0.05),因此自制凹窝培养体系可以替代PHA微滴培养体系用于胚胎嵌合;通过免疫法对10枚嵌合囊胚内细胞团进行了单细胞分离后有7枚嵌合囊胚的内细胞团单细胞能够在体外增殖。平均每个嵌合囊胚可得到1.40个类ES细胞集落,经对其细胞进行性别鉴定检测后发现,孤雌胚胎来源集落与雄性胚胎来源集落的比例为5:9。
     3利用小鼠MⅠ期卵母细胞获取孤雌胚胎的研究
     依据利用细胞松弛素D(CD)能够抑制小鼠MⅠ期卵母细胞排出第一极体,而保持染色体组的倍性,使染色体组类似于体细胞,通过适当的激活方法可使其发育为杂合二倍体孤雌囊胚,为获得与卵母细胞供体组织相容性抗原更加匹配的孤雌生殖胚胎干细胞奠定基础。本研究从激活方法和培养液的选择两个方面对利用CD处理获取二倍体孤雌胚胎进行了初步研究,并且与MⅡ期卵母细胞孤雌胚的发育能力进行了比较。结果显示:在含有5μg/ml浓度CD的mCZB培养基中作用3h,能够成功抑制第一极体的排出;经过乙醇、SrCl_2、A23187、电激活与A23187+6-DMAP五种激活方法激活后胚胎均能发育到囊胚阶段;其中以A23187+6-DMAP激活效果最好(46.15%),激活后孤雌胚在mCZB培养液中发育到囊胚的比率也最高(19.23%);应用前面试验确定的最适激活方法处理后的MⅠ期孤雌胚胎分别在mCZB、KSOM、M16和mM16四种培养液中培养后发现,以mM16培养液中的MⅠ期孤雌囊胚发育率最高(16.67%);应用A23187+6-DMAP分别对MⅠ和MⅡ期卵母细胞激活后培养于mM16培养液中发现,MⅡ期卵母细胞的卵裂率显著高于MⅠ期卵母细胞(65.88%Vs46.15%,p<0.05),但两者的囊胚发育率之间差异不显著(18.82%Vs 17.58%,p>0.05)。
     以上三个试验,观察探索了用于分离昆明小鼠治疗性胚胎干细胞的囊胚生成的新途径;综合对不同来源囊胚生成途径的关键问题进行了研究。研究结论如下:
     1.在昆白小鼠体细胞克隆胚胎的制作过程中,重构胚于激活阶段,在添加有50 nmol/LTSA的KSOM激活培养基中作用6 h,可以在最小程度伤害重构胚的情况下最大限度的实现对组蛋白去乙酰化酶的抑制,促进组蛋白的乙酰化,可以明显提高重构胚发育至囊胚的效率。
     2.双引物双重PCR法能够成功的对小鼠早期胚胎进行性别鉴定;应用该方法选择出的雄性胚胎与孤雌胚胎在自制凹窝培养体系中可成功发育至囊胚;同时应用这种性别鉴定方法,还成功的对嵌合囊胚内细胞团单细胞培养增殖的类ES细胞集落的来源进行了检测;从而成功建立了一种新的利用有性生殖胚胎辅助与其嵌合发育的无性生殖孤雌胚胎生成干细胞和有效分选分离这种干细胞的新的研究模型。
     3.昆白小鼠MⅠ期卵母细胞在CD处理后经A23187和6-DMAP激活后可成功获得二倍体孤雌胚胎并发育至囊胚;其囊胚发育率与MⅡ期卵母细胞孤雌激活胚胎相比差异不显著。
Therapeutic cloning embryonic stem cell gradually become the focal point due to its overcoming immunological rejection,as unceasing development.of stem cell technology.To obtain embryonic stem cell by implantation technique,because of the same genetype as somatocyte supplier is considered as the best method for overcoming immunological rejection.However,the isolation rate of stem cell from cloning embryo is very low because of its low development caused by incomple programming of reconstructed embryo.MⅠand MⅡpartheno-embryo possessed the same MHC as oocyte supplier,so the stem cell obtained from which can overcome immune rejection,compared with sexual embryo.But the development potential and the differentiation abilities of stem cell isolated from MⅡpartheno-embryo are limited because of paternal printing-gene absence.Sexual male embryo jogged with partheno-embryo from MⅡoocyte to form chimeric embryo which can promote the development of partheno-embryo theoretically because of paracrine and autocrine factors between cell sand embryonic induction effects.The kind of stem cell from this method can provide a new pathway for therapeutic embryonic stem cell.Parthenoembryo from MⅠoocyte which Pb1 was inhibited to discharge,can be used to isolate the stem cell with the normal karyotype for clinic applications.But the blatula is the common material for stem cell isolation.In this experiment,the possibilities and new methods of blastula generations from MⅠ, MⅡpartheno-embryos and somatic cloning embryo were researched,aiming to explore the new pathway for mouse therapeutic embryonic stem cell.
     In this study,KM mice as experimental animals,due to the low development rate of somatic cloning embryo and low isolation rate of stem cell,we selected the appropriate concentrations of histone deacetylase inhibitor(TSA),respectively,acting on somatic cell nuclear transfer embryos at fuse and activation stages,compared the impact of TSA treated at different stages of embryo development on reconstructed embryo.We use mouse embryonic fibroblast as feeder layer to isolate embryonic stem cells with the whole embryo and immune serum methods in order to observe its development potential.Through researching for the gene repair and remodeling process of re-programming in somatic cell nuclear,we analysis the new pathway to increase the development rate of blastocysts;by studying the separation of stem cell from cloned blastocysts we explore the effective method to isolate stem cell from somatic cloning embryo.As we know,the chimeric embryo from sexual male embryo and partheno-embryo can promote the normal development of partheno-embryo by paracrine and autocrine factors in late stages of embryonic development.In this study,we research the chimeric embryo development and isolate the stem cell from chimeric blastula to establish a new method for stem cell isolation from this chimeric embryo with sexing means.In the new method for parthenogenetic stem cell,we obtained mature oocytes with diploid karyotype by inhibiting the Pb1 discharge and activated this oocyte to obtain tha same karyotype with somatic cloning embryo.According to this principle,we explored the diploid karyotype access of MⅠstage oocytes,compared the impacts of parthenogenetic activation system on MⅠoocytes parthenogenetic activation effects and observed the development of MⅠparthenogenetic embryos in vitro treated different culture media,in order to the possibility of parthenogenetic embryo from MⅠoocyte with diploid karyotype and the development potential of early embryo in vitro,to explore the new pathway for therapeutic stem cell.Results as follows:
     1.The impact of Histone Deacetylase inhibitors(TSA) on the blastula production of reconstructed embryo from nuclear transplantation
     According to the low development rate of somaic cloning embryo is related with the disorder of somatochrome depolymerization and activation procedure caused by the abnormal interaction between donor chromatin and receptor ooplasm,on fuse and activation stages,we treated with TSA respectively to observe the impact of TSA on reconstructed embryo,in order to reveal the effects of acetylation and deacetylation of histone on chromatin reprogramming process,exploring a new pathway to improve the development rate of nuclear cloning reconstructed embryo.Results: Addition of 50 nmol/L TSA at the stage of activation and fusion for reconstructed embryo cultured in KSOM medium for 9h(fusion:3h,activation:6h),can promote the acetylation of histone effectively and improve the development of reconstructed embryo.The development rate after 50 nmol/L TSA treated(14.00%) was significantly higher than other four groups(0.5 nmol/L,5.36%;5 nmol/L,6.12%;500 nmol/L,7.69%;0 nmol/L,3.92%;P<0.05);But addition TSA at the fuse stage had no significant difference with control group(5.26%Vs 2.63%,P>0.05).By inhibiting histone deacetylation at the activation stage,the reconstructed embryo had higher development rate.Group 2 and group 3 added TSA had significantly higher rate than other groups not added TSA(14.71%, 12.12%Vs 6.45%,P<0.05).In the fourth experiment,we extend the processing time of the activation staged(from 6h to 9h),However,extending the handing time of TSA at the activation stage can't improve the development conditions of reconstructed embryo(15.56%Vs14.29%, P>0.05).
     2.Research on chimeric blastula of parthenogenetic embryo and sexual male embryo
     In this experiment,we established a new chimeric culture patternof heterology embryo by choosing sexual male embryo with sexing method jogged with parthno-embryo to research the interaction of this two kinds of embryos in chimeric development and set basis for analysis labeling parthnogenetic stem cell.This study established the methods and procedure of chimeric embryo construction and explored the relative problems in this process.Results:Two pairs of sexing primers desighed independently had stronger specificity and can amplify 250 bp Sry gene typical for male mouse and 399 bp ZFX gene for female mouse.Optimized PCR system can determine the sexuality of early embryo by the premise of 2 blastomeres as PCR template.It was found that the embryo had higher blastula rate(76.67%) and higher gymnoblast rate(93.33%) after 0.5% protease treated.Two culture methods were compared according as the development rate of aggregated embryos and the blastocyst rate.The results showed that the aggregated embryos cultured in hollowness(47.82%) had appreciably higher embryo development rate and blastocyst rate than that of these cultured in culture dish with PHA(41.67%),but there was no significant difference between them(P>0.05).So hollowness culture system self-made can substitude PHA droplet system for chimeric research.In the process of partheno-embryo developing to blatula.there are 7 chimeric embryos can proliferation in vitro by immunifaction from 10 chimeric embryos,and every chimeric embryo can form 1.40 ES cell colony on average.Through Sexing detection,we found that the ratio between cell colony derived from sexual male embryo and chimeric embryo was 5:9.
     3.Research on parthenogenetic embryo from MⅠimmature oocyte
     CB can make chromosome keep the normal karytype by inhibiting Pb1 dischage to overcome gene imprinting problems.And parthenogenetic individual from female germ cell was expected to obtain by artificial intervention.In this experiment,we researched diploid partheno-embryo treated with CD and compared the development abilities with MⅡoocyte.Results:CD can inhibit Pb1 discharge effectively for MⅠoocyte.A23187+6-DMAP was the best activation method for MⅠoocyte with Pb1(46.15%),and the blastula development rate was higher than other methods(19.23%);Of mCZB,KSOM,M16和mM16 the four media,mM16 was the best culture medium for MⅠblastula development(16.67%).MⅠoocyte activated partheno-embryo had no significantly higher blastula rate than MⅡphase(18.82%Vs 17.58%,p>0.05).
     Three experiments above,explored the new blastula generation pathway for therapeutic stem cell and analyzed the factors influenced the blastula development.Some important problems in the pathway of blastula generation were researched in this experiment.Conclusions as follows:
     1 Reconstructed embryo was cultured in KSOM medium added 50 nmol/L TSA for 6 h at the activation stage can promote histone acetylation utmost with the minimum impact for embryo and can improve the blastula development rate obviously.
     2 Double pairs primers dual PCR for sex identification system is an optimize the sex identification system.The sexual male embryos which were chosen by this method can development to the blastula with the parthenogenetic embryo in in hollowness;Meanwhile,the sex identification system also can detect the source from the cell colony.
     3 CD can inhibit Pb1 discharge effectively for MⅠoocyte,A23187+6-DMAP was the best activation method for MⅠoocyte with Pb1,and MⅠoocyte activated partheno-embryo had no significantly higher blastula rate than MⅡphase.
引文
[1]Spemann H.Embryonic development induction[J].New York:Hafner Publishing Co 1938;210-211.
    [2]Briggs R,King T J.Transplantation of Living Nuclei from Blastula Cells into Enucleated Frog Eggs[J].Proc.Natl.Acad.Sci.USA,1952,38:455-463.
    [3]Gurdon.JB.The development capacity of nuclei taken from intestinal epithelium cells or feeding tadpoles Embryo[J].EXP.Morphol,1962,10:622-640.
    [4]Bromhall J D.Nuclear transplantation in the rabbit eggs[J].Nature,1975,258:719-722.
    [5]Illmensee,K.and P.C.Hoppe.1981.Nuclear transplantation in mus musculus Developmental potential of nuclei from preimplantation embryos[J].Cell,1981,23:9-18.
    [6]McGrath,J.and Solter,D.Nuclear transplantation in the mouse embryo by microsurgery and cell fusion[J].Science,1983,220,1300-2.
    [7]Willdden S M.A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins[J].Nature,1983,186-210.
    [8]Wilmut I,Schnieke A E,McWhir J,et al.Viable offspring derived from fetal and adult mammalian cells[J].Nature,1997,385:810-813.
    [9]Wakayama T,Perry ACF,Zuccotti M,et al.Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J].Nature,1998,394:369-374.
    [10]王玉阁,邹贤刚等.由胎儿成纤维细胞而来的克隆山羊(Capra hircus)[J].科学通报 1999:44(21):2319-2323.
    [11]Polejaeva IA,Chen SH,Vaught TD,et al.Cloned pigs produced by nuclear transfer from adult somatic cells[J].Nature,2000,407:86-90.
    [12]Chesne P,Adenot PG,Viglietta C,et al.Cloned rabbits produced by nuclear transfer from adult somatic cells[J].Nat Biotechnol,2002,20:366-369.
    [13]Woods GL,White KL.A mule cloned from fetal cells by nuclear transfer[J].Science.2003,301(5636):1063.
    [14]Galli C,Lagutinal.Pregnancy:a cloned horse born to its dam twin[J].Nature.2003,424(6949):635.
    [15]Szollosi,D,R.Czolowska,M.S.Szollosi,and A.K.Tarkowski.Remodeling of mouse thymocyte nuclei depends on the time of their transfer into activated,homologous oocytes[J].Cell Sci.1988,91:603-613.
    [16]Smith L C,Wilmut I.Factors effecting the viability of nuclear transplanted embryos[J].Theriogenology,1990,33:153-163.
    [17]朱裕鼎.农业生物技术进展与展望[M].合肥:中国科技大学出版社,1992.
    [18]Smith L C,et al.factors influencing nuclear transplantation in sheep embryos[J].Repro Ferti.1988,1:10.
    [19]Smith L C,Wilmut I.Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation[J].Biol.Re-prod.40,1027-1035.
    [20]Keith H S.Totipotency or multipotentiality of cultured cells:applications and progress[J].Theriogenollogy,1996,47:63-72.
    [21]Collas P,et al Effect of donor cell cycle stage on chromation and spindle morphology in nuclear transfer rabbit embryos[J].Biol Reprod,1992,46:501-511.
    [22]Campbell K H,et al.Cell cycle co-ordination in embryo cloning by nuclear transfer[J].Rev Repord,1996,1:40-46.
    [23]周琪.家兔胚胎细胞核移植与连续移植的研究[J].博士生研究论文,1996,10:44-52.
    [24]王艳玲,曹云霞.胚胎体外培养的研究进展[J].国外医学:妇幼保健分册,2004,15(4):219-222.
    [25]Shaorong Gaoa,Young Gie Chunga,Jean W.Williamsa,et al.Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei.[J].Biol Reprod,2003,69:48-56.
    [26]Gao S,McGarry M,Priddle H,Ferrier T,et al.Effects of donor oocytes and culture conditions on development of cloned mice embryos.[J].Mol Reprod Dev,2003,66:126-133.
    [27]Gao S,McGarry M,Perrier T,et al.Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line[J].Biol Reprod,2003,68:595-603.
    [28]Ribas R,Oback B,Ritchie W,Chebotareva T,Ferrier P,Clarke C,Taylor J,Gallagher EJ,Mauricio AC,Sousa M,Wilmut I.Development of a zona-free method of nuclear transfer in the mouse[J].Cloning Stem Cells.2005,7(2):126-38.
    [29]王敏康,张田,王晓燕等.几种克服昆明白小鼠2细胞胚胎发育阻滞的培养液研究[J].细胞生物学杂志.2000,46:81-87.
    [30]Heindryckx B,Rybouchkin A,Van Der Elst J,et al.Serial pronuclear transfer increases the developmental potential of in vitro-matured oocytes in mouse cloning.[J].Biol Reprod,2002,67:6-13.
    [31]Martin RH,Ko E,Rademaker A.Human sperm chromosome complements after micro-injection of hamster eggs[J].J Reprod Fertil Vo1,1988,84:179-186.
    [32]Wakayama T,Perry AC,Zuccotti M,Johnson KR,Yanagimachi R.Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.[J].Nature.1998,394:369-374.
    [33]Polejaeva LA,et al.cloned pigs produced by nuclear transfer adult somatic cells[J].Nature.2000,407:86-90.
    [34]Kato Y,Tani T,Sotomaru Y,Kurokawa K,Kato J,Doguchi H,Tsunoda Y,Eight calves cloned from somatic cells of a singer adult[J],Science,1998,282:2095-2098.
    [35]Tsunoda Y,Kato Y.Recent progress and probles in animal cloning[J].Differentiation 2002,69(4-5):158-161.
    [36]Carry F B,Adams R,McCann J P,et al.Postnatal characteristics of calves produced by nuclear transfer cloning[J].Theriogenology,1996,45:141-152.
    [37]Nan X,Ng HH,Johnson CA et al.Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.[J].Nature,1998,393(6683):386-389.
    [38]Nan X,Tate P,Li E, and Bird A.DNA methylation specifies chromosomal localization of MeCP2.[J].Mol CellBiol,1996,16(1):414~421.
    [39]T Ng H H,Jeppesen P.Bird A.Active rep ression of methylated genes by the chromosomal protein MBDl[J].Mol Cell Biol,2000,20(4):1394~1406.
    [40]Hendrich B,Bird A.Identification and characterization of a family of mammalian methyl-CpG binding p roteins[J].Mol Cell Biol,1998,18(11):6538~6547.
    [41]Luger K,M(a|¨)der AW.Richmond RK,Sargent DF,et al.Crystal structure of the nucleosome core particle at 2.8 A resolution[J].Nature,1997,389(6648):251~260.
    [42]Kim J M,Liu H L,Tazaki M, et al.Changes in histone acetylation during mouse oocyte meiosis.[J]Cell Biol, 2003,162(1):37~46.
    [43]Smith C M,Haimberger Z W,et al.Heritable chromatin structure: mapping "memory" in histones H3 and H4[J].Proc Natl Acad Sci USA,2002,99:16454~16461.
    [44]Enright B P,Sung L Y,Chang C C,et al.Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with S-aza-2'-deoxycytidine[J].Biol Reprod,2005,72:944-948.
    [45]McGraw S,Robert C,Massicotte L,Shard M A, et al.Quantification of histone acetylase and deacetylase transcripts during early bovine embryo development[J].Biol Reprod,2003,68:383- 389.
    [46]Reik W.Santos F,Mitsuya K,et al.Epigeneticin the mammalian zygote and earlyembryo:relationship to lineage commitment[J]Biol Reprod,2003,358:1403-1409.
    [47]Spinaci M,Seren E.Mattioli M.Maternal chromatin remodelling during maturation and after fertilization in mouse[J].Mol Reprod Devel,2004,69:215~221.
    [48]Strahl BD,Allis CD.The language of covalent histone modifications.[J].Biol Reprod.2000,403:41-45.
    [49]Agalioti T,Chen G,Thanos D.Deciphering the transcriptional histone acetylation code for a human gene[J].Cell.2002.111(3):381~392.
    [50]Sarmento OF,Digilio LC,Wang Y, Perlin J,Herr JC,and Coonrod SA.Dynamic alterations of specific histone modifications during early murine development[J].J Cell Sci, 2004.117:4449- 4459,
    [51]Li E.Chromatin modification and epigenetic reprogramming in mammalian development[J].Nat Rev Genet.2002,3:662~673.
    [52]Kuo M H.Baur E V,Struhl K,et al.Gen4 activator targets Gen5 histone acetyltransferase to specific promoters independently of transcriotion[J].Mol Cell,2000,6(6):1309~1320.
    [53]Seo SB,McNamara P,Heo S,Turner A, et al, Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein.[J].Cell,2001,104: 119-130.
    [54]Bestor TH.Activation of mammalian DNA methyl transferase by cleavage of a Zn binding regulatory domain[J].EMBO 3,1992,11:2611-2617.
    [55]Hsieh C L.In vivo activity of murine de novo methyltransferases Dnmt3a and Dnmt3b[J].Mol Cell Biol,1999,19:8211~8218.
    [56]Hate K,Okano M.Dnmt3L cooperates with the Dnmt3 family of denovo methyltransferases to establish maternal imprints in mice[J].Development,2002, 129:1983-1993.
    [57]Huntriss J,Hinkins M,01iver B,et al.Expression of mRNAs for DNA methyltransferases and methyl-CpG binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells[J].Mol Reprod Dev, 2004,67:323-336.
    [58]Lachner M,O'Sullivan R Jjenuwein T.An epigenetic road map for histone lysine methylation.[J]Cell Sci,2003,116:2117~2124.
    [59]Lachner M,Jenuwein T.The many faces of histone lysine methylation[J].Curr Opin Cell Biol,2002,14:286-298.
    [60]Grunstein M.Histone acetylation in chromatin and transcription[J].Nature,1997,389:349~352.
    [61]Santos F.Hendrich B, Reik W,Dean W.Reprogamming of DNA methylation in the early mouse embryo[J].Dev Biol,2002,241:172~182.
    [62]Kim J M,Ogura A,Nagata M,Aolci F.Analysis of the mechanism for chromatin remodelling in embryos reconstructed by somatic nuclear transfer[J].Biol Reprod,2002,67:760~766.
    [63]Gao S,Chung Y G,S Parseghian M H,King G J,Adashi E, Latham K E.Rapid HI linker histone transitions following fertilization or somatic cell nuclear transfer:evidence for a uniform developmental program in mice[J].Dev Biol,2004,266:62~75.
    [64]Latham K E,Garrets J I,Solter D.Alterations in protein synthesis following transplantation of mouse 8-cell nuclei to enucleated 1-cell embryos[J].Dev Biol,1994,163:341~350.
    [65]Teranishi T,Tanaka M,Kimoto S,Ono Y,Miyakoshi K, Kono T,Yoshimura 1' Rapid replacement of somatic linker histones with the oocyte-specific tinker histone HI foo in nuclear transfer[J].Dev Biol,2004,266:76~86.
    [66]Kang Y K,Koo D H,Park J S,Choi Y H,Lee K K.Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryo [J].FEBS Lett,2001,499:55~58.
    [67]Tateno H,Akutsu H,Kamiguchi Y.Latham KE,Yanagimachi R.Inability of mature oocytes to create unctional haploid genomes from somatic cell nuclei[J].Fertil Steril,2003,79:216~218.
    [68]Bortvin, A,Eggan, K,Skaletsky H,Akutsu H.Berry D L,Yanagimachi R, Page, D.C.and Jaenisch R.Incompletereactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei [J].Development130,1673~1680.
    [69]Keith E,Latham.Early and delayed aspect of nuclear reprogramming during cloning[J].Biol Cell.2005,97:119~132.
    [70]Chung, Y.G,Ratnam S, Chaillet J R.Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos[J].Biol.Reprod.2003,69,146~153.
    [71]Collins N, Poot R.Kukimoto I,Garcia-Jimenez C,Dellaire G and Varga-Weisz.An ACF1-ISWI chromatin-remodelling complex is required for DNA replication through heterochromatin[J].Nature Genet.2002,32,535~540.
    [72]Satoshi Kishigami,Eiji Mizutani,Hiroshi Ohta,Takafusa Hikichi,Nguyen Van Thuan,Sayaka Wakayama,Hong-Thuy Bui,Teruhiko Wakayama(2006):Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer[J].Biochemical and Biophysical Research Communications 340,183-189.
    [73]Enright Kim,Honglin Liu,Mayuko Tazaki,Masao Nagata,and Fugaku Aoki.Changes in histone acetylation during mouse oocyte meiosis[J].The Journal of Cell Biology,2003,162(1):37-46.
    [74]Kishigami S,Bui HT,Wakayama S,Tokunaga K,Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer[J].Reprod.Dev.53:165-170.
    [75]Gabbine Wee,Deog-Bon Koo,Bong-Seok Song,Ji-Su Kim,Man-Jong Kang.Inheritable Histone H4 Acetylation of Somatic Chromatins in Cloned Embryos[J]Biol.Chem,March 3,2006,281(9):6048-6057.
    [76]桑润滋.动物繁殖生物技术[M].北京:中国农业大学出版社,2002:300.
    [77]刘立新.猪胚胎干细胞嵌合体制作研究[D].北京:2003.
    [78]Tarkowski.Mouse chimeras developed from fused eggs[J].Nature.1961,190:857-860.
    [79]Gardner.Mouse chimeras obtaned by the injection of cell into the blastocyst[J].Nature.1968,220(167):596-597.
    [80]Evans,Kaufman.Establishment in culture of pluripotential cells from mouse embryos[J].Nature.1981,292:154-156.
    [81]Martin.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J].Progress In Natural Science.1981,78:7634-7638.
    [82]Feilly,Willadsen.Experimental chimerism in sheep[J].Reproduction Fertility And Development.1984,70:347-351.
    [83]Fehilly,Willadsen.Experimental chimaerism in sheep and goat[J].Nature,1984,307:634.
    [84]Cibelli,Stice.Bovine chimeric offspring production by transgenic ES generated from somatic cell nuclear transfer embryos[J].Theriogenology.1984,49:609-613.
    [85]Brem G;Tenhumberg H.Chimerism in cattle through microsurgical aggregation of morulae[J].Theriogenology.1984,22:609-613.
    [86]张忠诚.家畜繁殖学(第三版)[M].北京:中国农业出版社,1996:273.
    [87]Summer,Shelton.Synthesis of primary Bos Taurus-Bos indicus chimaeric calves[J].Animal Reproduction Science.1983,6:754-756.
    [88]李幼兰,李三光.制作小鼠嵌合体的简易方法[J].细胞生物学杂志.1982,4(3).
    [89]宋郑涛,李秋棠.从早期胚胎多能干细胞生产的嵌合鼠[J].遗传学报.1993,20(6):499-503.
    [90]林大光,经荣斌.猪的胚胎嵌合试验中若干环节的研究[J].江苏农学院学报.1992,13(1):19-24.
    [91]张锁链,旭日干,斯琴.小鼠嵌合体制作技术的研究[J].细胞生物学杂志.1989,11(4):165-166
    [92].冼美薇,吴白燕.通过显微注射法构建ES细胞嵌合小鼠[J].遗传.1996,18(1):7-10.
    [93]何维,吴鹤龄.共培养法获得MCl5-昆明嵌合鼠[J].北京大学学报(自然科学版).1997,33(2):181-184.
    [94]陈伟胜,韩嵘,尚克刚.小鼠ES细胞种系嵌合体的获得[J].遗传学报.1999,26(2):126-134.
    [95]郭雨霁,高英茂.小鼠胚胎干细胞构建嵌合体的方法[J].解剖学报.2004,35(3):324-327.
    [96]姚玉成,熊俊.通过胚胎干细胞途径获得的嵌合体小鼠中neo基因在各组织中的分布[J].遗传学报.2001,28(12):1116-1119.
    [97]Babinet C,Bordenave G R.Chimaeric rabbits from immunosurgically-prepared inner-cell-mass transplantation.[J].Embo Journal.1980,60:429-440.
    [98]Buller,Anderson.Production of ovine chimeras by inner cell mass transplantation[J].Animal Science.1987,65:317-324.
    [99]Bolizin anderson.production of sheep-goatchimeras by inner cell mass transplantation[J].Animal Science.1987,65:325-330.
    [100]Stewart.Production of chimeras between embryonic stem cells and embryos[J].Methods In Enzymology.1994,225:823-855.
    [101]Picard chartrain.Production of chimeric bovine embryos and calves by aggregation or inner cell masses with morulae[J].Molecular Reproduction And Development.1990,27:295-300.
    [102]Ruffing anderson.effect of chimerism in sheep-goat conception that developed from blastomere-aggregation embryos[J].Biology of Reproduction.1996,48:889-904.
    [103]徐艳文,庄广伦,周灿权等.应用荧光原位杂交技术进行人类早期胚胎性染色体嵌合型的初步研究[J].中华妇产科杂志.1999,34(10).
    [104]招霞,马芸.绿色荧光蛋白嵌合体小鼠的建立和鉴定[J].动物学报.2004,50(5):784-790.
    [105]马芸,陈系古.嵌合体动物技术研究进展[J].中国实验动物报.2002,10(4):250-254.
    [106]Delhaise.Quantitative estimation of chimerism in mice using microsatellite marker[J].Molecular Reproduction And Development.1993,34:127-132.
    [107]魏彩虹.应用遗传标记诊断细胞嵌合体[J].中国畜牧兽医.2004,31(11):19.
    [108]王娟,杜立新.胚胎干细胞及种系嵌合体的研究进展[J].动物医学进展.2003,24(4):15-18.
    [109]范必勤,邓满齐.哺乳动物卵的激活与孤雌发育[J].生物工程进展,1994,14(3):50-54
    [110]Swann K.Ca~(2+) oscillations and sensitization of Ca~(2+) reease in unfertilized mouse eggs injected with a sperm factor[J].Cell Calcium.1994,15:331-339.
    [111]Talor CT,Lawrence YM,Kingsland CR,et al.Oscillations in intracellular free calcium induced by spermatozona in human oocytes at fertilization[J].Hum Reprod.1993,8:2174-2179.
    [112]孙大业,郭艳林,马力耕主编.细胞信号转导(第二版)[M].北京:科学出版社.1998
    [113]Yoo JG;Lee HJ,Choe SY,et al.The use of cdc2 kinase inhibitor as a potent activator in recomstitued bovine embryos with primordial germ cells[J].Theriogenology.2001,55:297.
    [114]Kaufman M H.In: Eearly Mammalian Development: Parthenogenetic Studies[M].Cambridge University Pless.1983.
    [115]Surani MAH,Barton SC,Norris ML.Parental chromosomes confer spatial specificity in androgenetic parthenogenetic mouse chimaesas[J].Nature.1987b,326:395~397.
    [116]Hoppe P C,K Illmensee.Microsurgical peoduced homozygous diploid uniparental mice[J].Proc nat Acad Sci USA.1977,74:5657~5601.
    [117]Hoppe PC,K Illmensee.Full term development after transplation of parthenogenetic embryonic nuclei fertilized mouse egg[J].Proc nat Acad Sci USA.1982,79:1912~1916.
    [118]薛京伦主编.表观遗传学:原理、技术与实践[M].上海:上海科学技术出版社,2007.
    [119]Kono Tomohiro,Obata Yayol,Wu Quiong, Niwa Katstoshi.Ono Yukiko,Yamamoto Yuji,Par Eun-Sung,Seo Jeong-Sun and Ogawa Hidehiko.Birth of parthenogenetic mice that can develop to adulthood[J].Nature,2004,428:860~863.
    [120]Pera M F,Reubinoff B,Trounson A.Human embryonic stem cells[J]Cell Sci,2000,113:5~ 10.
    [121]Thomson J AJoseph I E,Sander S S,et al.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282(6):1145~1147.
    [122]Evans M J,Kaufman M H.Establishment in culture of pluripotential cells from mouse embryos [J].Nature,1981,292(9):154~156.
    [123]Smith A G,et al.Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides[J].Nature,1988,336:688~690.
    [124]Campbell KH,et al.Sheep cloned by nuclear transfer from a cultured cell line[J].Nature,1996,380:64—66.
    [125]Klug MG,et al.Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts[J].Clin Invest, 1996,98:216—224.
    [126]Li M,et al.Generation of purified neural precursors from embryonic stem cells by lineage selection[J].CurrBiol,1998,8:971~974.
    [127]Thomson JA,Itskovitz-Eldor J,Shapiro SS,Waknitz MA,Swiergiel JJ,Marshall VS,Jones JM.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282:1145~1147.
    [128]Munsie MJ,et al.Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei[J].Curr Biol,2000,10:989~992.
    [129]Rachel Eiges,Maya Schuldiner,et al.Establishment of human ES cell-transfected clone carrying a marker of undifferentiated cells[J].Curr Biol,2001,ll:514~518.
    [130]Rideout WM,et al.Correction of a genetic defect by nuclear transplantation and combined genetherapy[J].Cell,2002,109:17~27.
    [131]Kim JH,et al.Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease[J].Nature,2002,418:50~56.
    [132]Hwang WS,et al.Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst[J].Science,2004,303:1669~ 1674.
    [133]Martin GR.Isolation of a pluripotent cell lines from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J].Proc Natl Acad Sci,1981,78(2):7634-7638.
    [134]Axelxod HR.Embryonic Stem cell lines derived from blastocysts by a simplified technique [J].Dev Biol,1984,101:225-228.
    [135]Kaufman MH,Robertson EJ,Handysid AH,et al.Establishment of pluripotential cell lines from haploid mouse embryonic embryos[J].Embr Exp Morph,1983,73:249-261.
    [136]Wobus AM,Holzhausen H,Jakel P,et al.Characterization of a pluripotent stem cell line derived from a mouse embryo[J].Exp Cell Res,1984,152:212-219.
    [137]Smith AG,Martin L,Hooper.Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of marine embryonic carcinoma and embryonic stem cell[J].Dev Biol,1987,121:1-9.
    [138]Brook FA,Gardner RL.The origin and efficient derivation of embryonic stem cells in the mouse[J].Proc Natl Acad Sci,1997,94(11):5709-5712.
    [139]Tojo H,Nishida M,Matsuoka K,et al.Establishment of a novel embryonic stem cell line by a modified procedure[J].Cytotechnology,1995,55(2):161-165.
    [140]Pease S,Williams RL.Formation of germ-line chimeras from embryonic stem cells maintained with recombinant leukemia inhibitory factor[J].Exp Cell Res,1990,190(2):209-211.
    [141]Munsie MJ,Michalska AE,O'Brien CM,et al.Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei[J].Curr Biol,2000,10(16):989-992.
    [142]Kawase E,Yamazaki Y,Yagi T,et al.Mouse embryonic stem(ES)cell lines established from neuronal cell-derived cloned blastocytes[J].Genesis,2000,28(3-4):156-163.
    [143]Wakayama T,Rodriguez I,Perry A,et al.Mice cloned from embryonic stem cells[J].Proc Natl Acad Sci,1999,96:14984-14989.
    [144]尚克刚,胡新立.小鼠囊胚的不同遗传背景对形成ES细胞集落的影响[J].北京大学学报(自然科学版),1993,29(2):196-201.
    [145]刘红林,范必勤,宋卉,等.小鼠胎胚干细胞孤雌集落的建立[J].动物学报,1998,44(2):112-114.
    [146]何维,吴鹤岭.HDC细胞与MESPU-13细胞形成嵌合鼠能力的比较研究[J].实验生物学报,1997,30(40):363-368.
    [147]钱永胜,小鼠、猪和牛胚胎干细胞的分离与克隆[D].西北农业大学硕士研究生毕业论文,1995
    [148]紫桂萱,韩峥,尚克刚.C57BL/6J小鼠ES细胞系的建立及其特性分析[J].细胞生物学杂志,1996,18(3):121-126.
    [149]黄冰,黄文革,钟女奇等.小鼠胚胎干细胞在六种培养体系的培养观察[J].中国实验动物学报,2000,8(1):1-6.
    [150]震涛,李秋棠,尚克刚等.从早期胚胎多能性干细胞生成的嵌合体鼠[J].遗传学报,1993.20(6).499-503
    [151]童英,邹冀中,尚克刚.用大鼠心肌条件培养基建立来源于C57BL/6J小鼠的ES细胞系[J].北京大学学报(自然科学版),2000,36(4):472-476.
    [152]Cibelli J B,Stice S L,Golueke P J,Kane J J,Jerry J,Blackwell C,Ponce de Leon F A,Robl J M.Transgenic bovine chimeric of spring produced from somatic cell-derived stem-like cells [J].Nat Bioltechnol,1998,16:642-645.
    [153]Munsie M J,Michalska A E,O'Brien C M,Trounson A O,Pera M F,Mountford P S.Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei[J].CurrBiol,2000,10:989-992.
    [154]Kawase E,Yamazaki Y,Yagi T,Yanagimachi R,Pederson P A.Mouse embryonic stem(ES)cell linese stablished from neuronal cell-derived cloned blastocysts[J].Genesis,2000,28:156-163.
    [155]Wakayama T,Tabar V,Rodriguez I,Perry A C,Studer L.Diferentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer[J].Science 2001,292:740-743.
    [156]Rideout W M III,Hochedlinger K,Kyba M,Daley G,Jaenisch R.Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy[J].Cell,2002,109:17-27.
    [157]Hochedkinger K,Jaenish R.Nuclear transplantation,embryonic stem cells,and the potential for cell therapy[J].Jour Med England,2003,349:275-286.
    [158]Chen Y,He Z X,Liu A L,Wang K,Mao W W,Chu J X,Yong LU,Fang F Z,Shi Y T,Yang Q Z,Chen D Y,Wang M K,Li J S,Huang S L,Kong X Y,ShiY Z,Wang Z Q,Xia J H,Long Z G,Xue Z G,Ding W X,Shang H Z.Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit Oocytes[J].Cell Research,2003,13(4):251-263.
    [159]S.wakayama,H.Ohta,S.Kishigami,N.vanThuan,T.Hikichi,E.Mizutani,M.Miyake,T.Wakayama,Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues[J],Biol.Reprod.2005,72:932-936.
    [160]S.Wakayama,S.Kishigami,N.vanThuan,H.Ohta,T.Hikichi,E.Mizutani,R.Yanagimachi,T,Propa gation of an infertile hermaphrodite mouse lacking germ cells by using nuclear transfer and embryonic stem cell technology[J],Proc.Natl.Acad.Sci.USA,2005,102:29-33.
    [161]S.wakayama,E.Mizutani,S.Kishigami,N.vanThuan,H.Ohta,T.Hikichi,H.B.Thuy,M.Miyake,T.Wakayama,Mice cloned by nuclear transfer from somatic and ntES ceils derived from the same individuals[J],J.Reprod.Dev.(2005),Epub,Oct.14.
    [162]薛京伦主编.表观遗传学:原理、技术与实践[M].上海:上海科学技术出版社,2007.
    [163]刘红林,范必勤,汪河海,宗卉,王公金,陈宜峰;小鼠孤雌胚的体内体外发育研究[J].畜牧兽医学报,1999,30(2):103-109
    [164]何志全,窦忠英.不同化学激活剂对小鼠卵母细胞的激活效果[J].中国兽医科学.2006,36(12):1013-1018.
    [165]QY Sun,Y Lax,et al.Mitogen-activated protein kinase and cell cycle progression during mouse egg activation induced by various stimuli[J].Z Naturforsch.1999,54(3/4)285-294.
    [166]Koo DB,Chae JI,Kim JS,Wee G,et al.Inactivation of MPF and MAP kinase by single electrical stimulus for parthenogenetic development of porcine oocytes[J].Mol Reprod.2005,72(4) 542-549.
    [167]Schultz R M.Regulation of zygotic gene activation in the mouse[J].Biodssay,1993,15:531-538.
    [168]Aoki F,Worrand D M,Schultz R M.Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryos[J].Dev Biol,1997,181(2):296-307.
    [169]Abnimczuk J,Solter D,Kopcoeski H.The beneficial effect EDTA on development of mouse one-cell embryos in chemically defined medium[J].Dev.Biol.1977,61:378-383.
    [1701 Spindle A.Beneficial effects of taurine on mouse zygotes developing in protein-free culture medium[J].Theriogenology.1995,44:761-772.
    [171]王敏康,刘冀珑,李光鹏等.M16添加牛磺酸和EDTA支持昆明白小鼠体外受精并发育至囊胚[J].遗传.2000,22(5):301-302.
    [172]Chatot CL,Lewis JL,Tomes 1,et al.Development of 1-cell embryos from different strains of mice in CZB medium[J].Reprod.Fertil.1990,42:432-440.
    [173]王炜.电场导入1,4,5-三磷酸肌醇(IP3)激活小鼠卵母细胞的研究[J].西南农业大学2003.
    [174]P L(?)n(?)rt,J Ellenberg.Nuclear envelope dynamics in oocytes:from germinal vesicle breakdown to mitosis[J].Current Opinion in Cell Biology.2003,15(1):88-95.
    [175]赵望泓,张静,俞诗源等。不同浓度曲古抑菌素A对鸡胚翅芽发育的影响[J].解剖学报.2008,39(5):728-733
    [176]Kitai Kim,Paul Lerou,Akiko Yabuuchi et al,Histocompatible Embryonic Stem Cells by Parthenogenesis[J].Sci,315(26):482-487.
    [177]Susko-parrish J L,Leibfried,Rutledge ML,et al.A Method for activating bovine oocytes that causes transition to embryonic cycles without meiotic completion[J].Dev Biol.1994,166:729-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700