前交叉韧带断裂对内侧胫骨平台影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章前交叉韧带功能性分束的生物力学实验研究
     目的通过测量前交叉韧带各束在膝关节屈伸过程中的生物力学变化,探讨其相应的功能及分类,为后续实验及临床工作提供理论依据。
     方法6具新鲜成人尸体膝关节标本,依据ACL在膝关节中的位置将ACL分为:前内侧区纤维束(前内侧束)、前外侧区纤维束(前外侧束)、后内侧区纤维束(后内侧束)、后外侧区纤维束(后外侧束)。在膝关节标本上施加800N轴向载荷下,分别测试膝关节0°、30°、60°、90°状态下ACL各纤维束应变。比较各束应变的差异,采用样品聚类方法进行分类。
     结果1、膝关节0°位,ACL后外侧束、前外侧束应变均大于后内侧束、前内侧束应变,均有显著性差异,均P<0.05;后外侧束与前外侧束应变无显著性差异,P>0.05;后内侧束与前内侧束应变无显著性差异,P>0.05。30°位和90°位,ACL后内侧束、前内侧束应变均大于后外侧束、前外侧束应变,均有显著性差异,均P<0.05;后内侧束与前内侧束应变无显著性差异,P>0.05;后外侧束与前外侧束应变无显著性差异,P>0.05。60°位,应变大小依次为:后内侧束、前内侧束、后内侧束、前内侧束,束间应变比较均有显著性差异,均P<0.05。2、前内侧束与后内侧束应变变化一致,依序0°、30°、60°、90°逐渐增大,均有显著性差异,均P<0.05;前外侧束应变在膝0°、30°、60°、90°均无显著性差异,均P>0.05。后外侧束应变在膝关节60°位大于0°、30°、90°,均有显著性差异,均P<0.05;0°与90°应变无显著性差异,P>0.05;0°、90°应变均大于30°,差异均有显著性,均P<0.05。3、聚类分析:后内侧束与前内侧束归为一类,后内侧束与前内侧束归为一类。
     结论(1)前交叉韧带内存在不同功能的纤维束,后外侧区纤维和前外侧区纤维主要维持膝关节伸直稳定性;后内侧区纤维和前内侧区纤维主要维持膝关节屈曲稳定性。
     (3)结合聚类分析结果ACL可分为前内侧束、后外侧束两功能束。
     第二章前交叉韧带断裂对内侧胫骨平台影响的生物力学研究
     目的探讨ACL部分断裂和完全断裂对膝关节内侧胫骨平台的生物力学影响,为ACL损伤后继发骨关节炎的防治提供理论依据。
     方法新鲜成人尸体膝关节标本10具,依照测试先后顺序分为ACL完整组、AMB切断组、PLB切断组和ACL完全切断组。在膝关节标本上施加200~800N轴向载荷,分别测量各组膝关节0°、30°、60°、90°位,内侧胫骨平台前、中、后各部的应变,比较各组应变的差异。实验数据采用SPSS13.0统计软件进行统计学分析,检验水准为a=0.05。
     结果1.ACL完整组:①0°位各级载荷下,前部应变与中部应变,无显著性差异,p>0.05;前部、中部应变均大于后部,有显著性差异,p<0.05。②30°位,中部应变最大其次为前部,后部最小,三者差异有显著性,p<0.05。③60°位,前部均为拉应变,中部、后部均为压应变。中部应变与后部应变差异无显著性,p>0.05。④90°位,前部为拉应变,后部、中部为压应变。后部应变大于中部应变,差异有显著性,p<0.05。2.AMB断裂组①0°位各级载荷下,前部、中部、后部应变与完整组应变无显著性差异,p>0.05。②30°位各级载荷下,前部、中部应变与完整组应变无显著性差异,p>0.05;200N后部应变与完整组应变无显著性差异,p>0.05,400N~800N载荷下后部应变大于完整组应变,有显著性差异,p<0.05。③60°位各级载荷下,前部为拉应变,中部、后部为压应变。200N载荷下前部、中部、后部应变与完整组应变无显著性差异,p>0.05。400N~800N载荷下前部、中部、后部应变绝对值大于完整组,差异有显著性,p<0.05。④90°位各级载荷下,前部为拉应变,后部、中部为压应变。200N载荷下前部、中部、后部应变与完整组应变无显著性差异,p>0.05。400N~800N载荷下前部、中部、后部应变绝对值大于完整组,差异有显著性,p<0.05。3.PLB断裂组:①0°位,200N载荷下前部、中部、后部应变与完整组应变无显著性差异,p>0.05。400N~800N载荷下前部、中部、后部应变均大于完整组,有显著性差异,p<0.05。②30°位,各级载荷下前部、后部应变均与完整组无显著性差异,p>0.05。200N~600N中部应变与完整组无显著性差异,p>0.05。800N载荷下中部应变小于完整组,差异有显著性,p<0.05。③60°位,前部为拉应变,中部、后部为压应变。各级载荷下前部、中部、后部应变与完整组应变无显著性差异,p>0.05。④90°位,前部为拉应变,后部、中部为压应变。各级载荷下,载荷下前部、中部应变均与完整组无显著性差异,p>0.05。200N、400N后部压应变与完整组无显著性差异,p>0.05。600N、800N后部应变大于完整组,有显著性差异,p<0.05。4.全断组:各级载荷下0°、30°、60°、90°位,前部、中部、后部,各部位间应变均大于完整组,有显著性差异,p<0.05。
     结论(1)ACL完全断裂对内侧胫骨平台(前、中,后)各部的应变均有影响。(2)AMB断裂在屈曲位(30°、60°、90°)对内侧胫骨平台各部的应变有影响。(3)PLB断裂在膝关节伸直位(0°)对内侧胫骨平台各部的应变均有影响。提示AMB在屈曲位起稳定作用,PLB在伸直位起稳定作用。
     第三章前交叉韧带断裂对内侧胫骨平台软骨组织学影响的动物试验研究
     目的研究兔前交叉韧带断裂后不同时期内侧胫骨平台软骨组织结构的变化及IL-1β、MMP-13的表达,探讨前交叉韧带断裂后内侧胫骨平台关节软骨退变的生物学机制。
     方法48只雄性新西兰大白兔随机分为四组,行后腿单侧ACL切断,对侧假手术自身对照。分别于造模1、3、6、8周各处死12只。观察内侧胫骨平台大体形态变化,取内侧胫骨平台软骨HE染色,病理光镜观察。免疫组化检测IL-1β、MMP-13的表达。
     结果1.大体观察:在四个时间观测点上,实验组内侧胫骨平台软骨逐渐出现色泽改变、局灶充血、表面磨损、软骨表面龟裂、溃疡形成。2.HE染色:自第三周开始出现基质染色不均、软骨细胞排列紊乱、软骨细胞增生的异常。3.IL-1β表达情况:实验组第1、3、6、8周IL-1β表达均高于对照组,均有显著性差异,均p<0.05。对照组第1、3、6、8周IL-1β表达无显著性差异,均p>0.05。实验组IL-1β表达阳性率第3周高于第1周和第8周,有显著性差异,p<0.05;实验组第6周高于第1周和第8周,有显著性差异,p<0.05;实验组第3周和第6周IL-1β表达阳性率无显著性差异,p>0.05;实验组第8周IL-1β表达阳性率高于第1周,有显著性差异,p<0.05。4.MMP-13表达情况:实验组第1、3、6、8周MMP13表达均高于对照组,均有显著性差异,均p<0.05。对照组第1、3、6、8周MMP13表达均无显著性差异,均p>0.05。实验组第6周MMP13阳性表达率高于第1周、第8周,均有显著性差异,均p<0.05;实验组第3周MMP13阳性表达率高于第1周,有显著性差异,p<0.05;第3周与第6周、第8周MMP13阳性表达率均无显著性差异,均p>0.05;第1周与第8周阳性率无显著性差异,p>0.05。
     结论(1)ACL断裂可引起内侧胫骨平台软骨退变。
     (2)ACL断裂后,软骨组织IL-1β、MMP13表达增高提示IL-1β、MMP13可能是内侧胫骨平台软骨退变,OA形成的病因之一。
Chapter1 The biomechanical study of ACL bundles' functional classification
     Objective:To investigate the biomechanical function and classification of the ACL bundles and provide biomechanical evidence for the later experiments and clinical therapy.
     Methods:6 fresh cadaveric knees from adult human beings were utilized in this investigation.We classified ACL into four bundles on the basis of ACL location in knee:anteromedial area fiber bundle(anteromedial bundle)、anterolateral area fiber bundle(anterolateral bundle)、posteromedial area bundle (posteromedial bundle) and posterolateral area bundle(posterolateral bundle). The strain on the ACL bundles was measured when the knees were applied with 800N axial loading force in 0°、30°、60°、90°、positions.The bundles were functional classified by cluster analysis.
     Results:1.In 0°position,the strain on the posterolateral and anterolateral bundles was significantly larger than the posteromedial and anteromedial bundles(P<0.05),There were no significant diference between the posterolateral and anterolateral bundles(P>0.05) and so did the posteromedial and anteromedial bundles(P>0.05);In 30°and 90°position,the strain on the posteromedial and anteromedial bundles was significantly larger than the posterolateral and anterolateral bundles(P<0.05),There were no significant difference between the posteromedial and anteromedial bundles(P>0.05) and so did the posterolateral and anterolateral bundles(P>0.05);In 60°position,the strain on the posteromedial bundle was the largest,and then the anteromedial、posterolateral、anterolateral bundle,the differences among bundles were all significant(P<0.05).2.The strain on the posteromedial and anteromedial bundles was increased by degrees when the knee flexed 0°、30°、60°、90°,and all the difference were significant(P<0.01);There were no significant changes of the strain on the anterolateral bundle among different angles(P>0.05).The strain on the posterolateral bundle in 60°position was larger than 0°、30°、90°positions,the differences were significant(P<0.05);The strain in 30°position was significantly smaller than 0°and 90°positions(P<0.05),but the difference of strain between 0°and 90°positions was not significant(P>0.05). 3.Cluster analysis classfied the anteromedial bundle and the posteromedial bundle as one class and the anterolateral and posterolateral bundles as the other class.
     Conclusion:1.The posterolateral area and anterolateral area fiber bundles mainly maintain stability of the knee in extended positions.The posteromedial area and anteromedial area fiber bundles mainly maintain stability of the knee in flexed positions.
     2.Combined with the cluster analysis results,ACL may be classified into the anteromedial functional fiber bundle and the posterolateral functional fiber bundle.
     Chapter 2 The biomechanicaI innuence of ACL rupture on the medial tibial plateau
     Objective:To investigate the biomechanical influences of partial and total ACL rupture on the medial tibial plateau and provide theoretic evidence for prevention and cure ostarthritis.
     Methods:10 fresh cadaveric knees from adult human beings were classified into four group on the basis of test sequence:ACL intact group、AMB broken group、PLB broken group and ACL total broken group.The knees were applied with 200N~800N axial loading force when they flexed 0°、30°、60°、90°.The strain on the medial tibial plateau was measured and analyzed by SPSS for windows 13.0,the statistic significance was set atα=0.05.
     Results:1.In ACL intact group:①In 0°position,the strain of anterior part and the middle part of tibial plateau were not significantly different(P>0.05) and were larger than posterior part(P<0.05).②In 30°positions,the largest strain was on the middle part of the medial tibial plateau,then the posterior part and the smallest on the anterior part,and the differences among the parts were all significant(P<0.05).③In 60°position,anterior part showed to be tensile strain while middle part and posterior part compressive strain,the strain of anterior part and the middle part of tibial plateau were not significantly different(P>0.05).④In 90°position,anterior part showed to be tensile strain while middle part and posterior part compressive strain,the strain of posterior part and the middle part of tibial plateau were not significantly different(P>0.05).2.In AMB broken group:①In 0°position,The strain on the anterior part、middle part and posterior part were not significantly different from that in ACL intact group(P>0.05).②In 30°positions,the strain on the anterior part and the middle part was not significantly different from that in ACL intact group(P>0.05);Under 400N~800N loading,the stain on the posterior part was larger than that in ACL intact group,the difference was significant(P<0.05).③In 60°position,anterior part showed to be tensile strain while middle part and posterior part compressive strain.Under 200N loading, the strain on the posterior part was not significantly different from ACL intact grou(P>0.05).Under 400N~800N loading,the stain on anterior part、middle part and posterior part were larger than that on ACL intact group,the difference was significant(P<0.05).④In 90°position,anterior part showed to be tensile strain while middle part and posterior part compressive strain.Under 200N loading,the strain on the anterior part、middle part and posterior part were not significantly different from ACL intact group(P>0.05).Under 400N~800N loading,the stain on anterior part、middle part and posterior part were larger than that in ACL intact group,the difference was significant(P<0.05).3.In PLB broken group:①In 0°position,Under 200N loading,the strain on the anterior part、middle part and posterior part were not significantly different from ACL intact group(P>0.05).Under 400N~800N loading,the stain on anterior part、middle part and posterior part were larger than that on ACL intact group,the difference was significant(P<0.05).②In 30°positions,expect the strain on the middle part was smaller than that in ACL intact group under 800N loading(the difference was significant(P<0.05) ) the strain on the anterior、middle and posterior parts was not significantly different from that in ACL intact group(P>0.05).③In 60°positions,The strain on the anterior、middle and posterior parts was not significantly different from that in ACL intact group (P>0.05).④In 90°positions,expect the strain on the middle part was larger than that in ACL intact group under 600N,800N loading(the difference was significant(P<0.05) ) the strain on the anterior、middle and posterior parts was not significantly different from that in ACL intact group(P>0.05).4.In ACL total broken group:In all condition the strain on the anterior、middle and posterior parts was larger than that in ACL intact group,the difference was significant(P<0.05)
     Conclusion:1.ACL total rupture may cause abnormal load on the medial tibial plateau in all the positions.
     2.AMB rupture may cause abnormal load on the all part of the tibial plateau in flexed positions(30°、60°,90°).
     3.PLB rupture may cause abnormal load on all parts of the medial tibial plateau in extended positions(0°).
     Chapter 3 The histological influence of ACL rupture on the medial tibial plateau
     Objective:Observe tissue construction changes and IL-1、MMP-13 express in the medial tibial plateau cartilage,to further explore the degeneration mechanism of the medial tibial plateau articula cartilage after ACL rupture.
     Methods:48 male New Zealand rabbits were randomly divided into four groups,and all were under one side posterior leg ACL cut and the opposite side as the control.HE staining and immunohistochemical methods were used. Tissue construction and IL-1β、MMP-13 expression changes of the medial tibial plateau cartilage were observed 1、3、6、8 weeks later.
     Results:1.Gross observation:As the time lasted,the medial tibial plateau cartilage had the color changed、the gloss decreased、the surface abrased and even had ulcer on the cartilage.2.Routine HE staining:There are abnormal cartilage surface and cell disposition after 3 weeks.3.IL-1βexpression:All the experimental groups had higher IL-1βexpression than that in control groups (P<0.01).In experimental groups,IL-1βexpressed significantly lower in 1-week group than that in 3、6、8-week groups(p<0.05);In 6-week group,IL-1βexpressed higher than that in 3-week group and 8-week group(P<0.01).IL-1βexpressed higher in 8-week group than that in 3-week group(P<0.01).There were no signifigant differences among the control groups(P>0.05).4.MMP-13 expression:All the experimental groups had higher IL-1βexpression than that in control groups(P<0.01).In experimental groups,MMP-13 expressed significantly lower in 1-week group than that in 3、6、8-week groups(p<0.01);In 6-week group,MMP-13 expressed higher than that in 3-week group and 8-week group(P<0.01).There was no significant difference between 3-week group and 8-week group(P>0.05).There were no signifigant differences among the control groups(P>0.05).
     Conclusion:1.ACL rupture may cause cartilage degeneration on the medial tibial plateau.
     2.The increased IL-1βand MMP-13 expression suggest that IL-1β、MMP-13 may participate in cartilage degeneration on the medial tibial plateau after ACL rupture.
引文
[1]Lai WM,Hou JS,Mow VC.A triphasic theory for the swelling and deformation behaviors of articular carticular cartilage.J Biomech Eng,1991,113;245-258.
    [2]马晓玲,林元问,等,前交叉韧带的临床解剖学研究,解剖学报,1990,21(3):228-232.
    [3]吴波,杨柳.前交叉韧带解剖和生物力学特性.中国矫形外科杂志,2006,14(22):1725-7.
    [4]Musahl V,Lehner A,Watanbe Y,et al.Biology and biomechanice.Curr Opin Rheumatol,2002,14:127-33
    [5]Girgis FG,Marhall JL,Monajem ARSA.The cruciate ligaments of the knee joint.Anatomical,functiona land experimental analysis.Clin Orthop,1975,106:216-231
    [6]Smith BA,Livesay GA,WooSL-Y Biology and biomechanics of the anterior cruciate ligament.Clin Sports Med,1993,12:637-370
    [7]Amis AA,Dawkins GP.Functional anatomy of the anterior cruciate ligament:fiber bundle actions related to ligament replacements and injuries.J Bone Joint Surg Br.1991,73:260-267.
    [8]Hollis JM,Takai S,Adams DJ,Horibe S,Woo SL.The effects of knee motion and external loading on the length of the anterior cruciate ligament(ACL):a kinematic study.J Biomech Eng 1991,113(2):208-214.
    [9]Norwood LA,Cross MJ.The intercondylar shelf and the anterior cruciae ligament.Am J Sports Med,1977,5:171-176
    [10]Takahashi M,Doi M.Abe M.et al.Anatomical study of the femoral and tibial anterior cruciate ligament.Am J Sports Med,2006,34:787-92.
    [11]郭林,杨柳,杨昌棋,等.四象限分区法用于前交叉韧带多纤维束动态受力分析。医用生物力学,2007,22:356-360.
    [12]Odensten M,GIllquist J.Funcrional anatomy of the anterior cruciate ligament and a rationale for reconstruction.J Bone joint surg,1985,67A:257-262.
    [13]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method.J Biomech, 2001,34:1135-1143.
    [14]Odensten M,Gillquist J.Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction.J Bone Joint Surg Am,1985,67:257-262.
    [15]刘秀梅,陶澄,肖东民.人膝关节前、后交叉韧带解剖研究及临床意义.医学临床研究,2006,23:1085-1087.
    [16]Ferretti A,Conteduca F,Morelli F,et al.Biomechanics of a nterior cruciate ligament reconstruction using twisted doubled hamstring tendons.Int Orthop,2003;27(1):22-25.
    [17]Rosenberg TD,Graf B.Techniques for ACL reconstruction with Multi-Trac drill guide.Mansfield,MA,Acufex Microsurgical Inc.1994.
    [18]Sharon L.Hame,Keith L.Markolf,Arash J.Gabayan.Theeffect of anterior cruciate ligament graft rotation on knee laxityand graft tension:An in vitro biomechanical analysis Arthroscopy,2002(1):55-60.
    [19]Konsei Shino,Ken Nakata,Norimasa Nakamura et al.Anatomic anteriorc ruciate ligament reconstruction using two double-looped hamstring tendon grafts via twin femoral and triple tibial tunnels.Operative Techniques in Orthopaedics,2005,15;130-134.
    [20]Takahashi M,Doi M.Abe M.et al.Anatomical study of the femoral and tibial anterior cruciate ligament.Am J Sports Med,2006,34:787-92.
    [21]Mochizuki T,Muneta T,Nagase T,et al.Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anaterior cruciate ligament reconstruction.Arthroscopy.2006,22:356-61
    [22]Gabriel MT,Wong EK,Woo SL,Yagi M,Debski RE.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J Orthop Res.2004,22:85-89.
    [23]Zantop T,Herbort M,Weimann A,Raschke M,Petersen W.The role of anteromedial and posterolateral bundle of the ACL in anterior tibial translation and internal rotation:biomechanical analysis using a robotic/UFS testing system.ORS Transaction.2006.
    [24]Zantop T,Petersen W,Sekiya J,Musahl V,Fu F.ACL Anatomy and function relating to anatomic reconstruction.Knee Sugr Sports Traumatol Arthrosc.2006,14(10):982-992.
    [25]冯华,洪雷,耿向苏等。前十字韧带损伤合并内侧半月板ramp损伤。中华 骨科杂志,2005,25:651-655.
    [26]Franceschi JP,Sbihi A,Champsaur P,[Arthroscopic reconstruction of the anterior cruciate ligament using double anteromedial and posterolateral bundles]Rev Chir Orthop Reparatrice Appar Mot.2002 Nov;88(7):691-7.
    [27]Pederini L,Adriani E,Botticella C,er al.Technical note:double tible tunnel using quadriceps tendon in anterior cruciate ligament reconstruction.Arthroscopy.2000,Jul:16(5):79.
    [28]Ferretti A,Conteduca F,Morelli F,et al.Biomechanics of anterior cruciate ligament reconstruction using twisted doubled hamstring tendons.Int Orthop.2003;27(1):22-5
    [29]Edward TB,Guanche CA,Petrie SG;et al.In vitro comparison of elongation of the anterior cruciate ligament and single and dual-tunnel anterior cruciate ligament reconstructions.Orthopedics.1999.Jun:22(6):577-84.
    [30]Papageorgiou CD,Gil JE,Kanamori A,er al.The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus.Am J Sports Med,2001,29:226-31
    [1]王亦恩.骨与关节损伤.第四版.人民卫生出版社.2007,1305-1306
    [2]Zamber RW,Teitz CC,McGuier DA,et al.Articular cartilage lesions of the kn ee.Arthoscopy.1989;(5)4:258-68.
    [3]Shepherd DE,Seedhom BB.Thickness of human articular cartilage in joints of the lower limb.Ann Rheum Dis,1999;58(1):27-34.
    [4]Buckwalter JA,Mankin HJ.Articular cartilage:degeneration and osteoarthritis,repair,regeneration,and transplantation.Instr Course Lect,1998,47:487-504.
    [5]国家体育总局群体司。2000年国民体质监测报告。北京:北京体育大学出版社,2002:89-91
    [6]吴波,杨柳.前交叉韧带解剖和生物力学特性.中国矫形外科杂志,2006,14(22):1725-7.
    [7]Musahl V,Lehner A,Watanbe Y,et al.Biology and biomechanice.Curr Opin Rheumatol,2002,14:127-33
    [8]肖东民,陈素芳,李雄等.前交叉韧带重建方法的生物力学研究.医学临床研究,2005,22(12):1667-70.
    [9]冯华,张辉,郭铁能,王满宜.膝关节前十字韧带切断对内侧半月板后角应力的影响.中华骨科杂志,2006,26(7):476-8.
    [10]Dennis,Douglas,Komistek,et al.In Vivo Knee KinematicsDerived Using an Inverse Perspective Technique.Clin Orthop Relat Res.1996 Oct,331:107-117
    [11]Stiehl,James B,Dennis et al.In Vivo Kinematic Analysis of a Mobile Bearing Total Knee Prosthesis.Clin Orthop Relat Res,1997 Dec,345:60-66
    [12]Georgoulis AD,Papadonikolakis A,Papageorgiou CD,et al.Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and recon -structed knee during walking.Am J Sports Med,2003 Jan-Feb,31(1):75-79
    [13]Johal P,Williams A,Wragg P,et al.Tibio-femoral movement in the living knee.A study of weight bearing and non-weight bearing knee kinematics using 'interventional'MRI.J Biomech.2005 Feb,38(2):269-76
    [14]Li G,Zayontz S,DeFrate LE.et al.Kinematics of the knee at high flexion angles:an in vitro investigation.J Orthop Res.2004 Jan,22(1):90-5
    [15]Vergis A,Gillquist J.Sagittal plane translation of the knee during stair walking.Comparison of healthy and anterior cruciate ligament-eficient subjects.Am J Sports Med,1998 Nov- Dec,26(6):841-6
    [16]Logan MC,Williams A,Lavelle J,et al.Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging.Am J Sports Med,2004 Jun,32(4):984-9
    [17]Zantop T,Herbort M,Raschke MJ,et al.The role of the anteromedial and posteralateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation[J].Am J Sports Med,2007,35(2):223-227.
    [18]Sims WF,Jacobson KE,The posteromedial comer of the knee:medial-sided injury patterns revisited.Am J Sports Med,2004,32:337-45.
    [19]Rosen MA,Jackson DW,Berger PE.Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures.Arthroscopy,1991;7(1):45-51.
    [20]Frank CB,Jackson DW The science of reconstruction of the anterior cruciate ligament J Bone Joint Surg Am,1997;79 1556-76
    [21]Cameron M Buchgraber A,Passler H,et al.The natural history of the anterior cruciate ligament-deficient knee.Changes in Synovial fluid cytokine and keratin sulfate concentrations.Am J Sports Med,1997;Nov-Dec 25(6):751-754
    [1]Cameron M Buchgraber A,Passler H,et al.The natural history of the anterior cruciate ligament-deficient knee.Changes in Synovial fluid cytokine and keratin sulfate concentrations.Am J Sports Med,1997;Nov-Dec 25(6):751-754
    [2]Johnson DL,Urban WP,Carbom DM,et al.Articular cartilage changes seen with magnetic resonance imageing-detected bone bruises associated with acute anterior cruciate ligament rupture.Am J S ports Med,1998;26No.3:409-414
    [3]Faber KJ,Dil JR,Amendola A,et al.Occult osteochondr lesions after anterior cruciate ligament ruptuer.Six-year magnetic resonance imaging follow-up study.Am J Sports Med,1999;Jul-Aug 27(4):489-499
    [4]Irie k,Uchiyama E,Iwaso H,Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee Knee,2003;10(1):93-96.
    [5]吴宏斌,张景辉,等.兔前交叉韧带切断骨关节炎模型中MMP-1、MMpP-13及TIMP-1的mRNA表达研究,中华风湿病杂志,2002,6:169-173.
    [6]Iiu W,Burton-Wurster N,Giant TT,et al.Spontaneous and experimental osteoarthritis in dog:similarities and differences in proteoglycan levels J Orthop Res,2003;21(4);730-737
    [7]李瑞锡,李静.家兔膝关节半月板的形态观察及图像测量.云南师范大学学报:自然科学版,1922,12:74-78.
    [8]McDevitt CA,Gilbertson EM,Muir H,An experimental midel of osteoarthritis:early morphological and biochemical changes.J Bone Joint Surg Br 59:24,1977.
    [9]Abatangelo G,Botti P,Del Bue M,et al.Intra articular sodium hyaluronate injection in the pond-Nuki experimental model of osteoarthritis in dogs.Biochemical results.Clin Orthop 242:278,1989
    [10]Gardner DL,Bradley WA,O'Connor P,et al.Synovitis after surgical division of the anterior cruciate ligament of the dog.Clin Exp Rheum 2:11,1984.
    [11]Myers SL,Brandt KD,O'Connor BL,er al.Synovitis and osteoarthtitic change in canine articular cartilage after anterior cruciate ligament transaction-effect of surgical hemostasis.Arthritis Rheum 33:1406,1990
    [12]Cuilak F,Sah R,Setton LA,Physical regulation of cartilage metabolism,In:Mow VC,Hays WC,eds.Basic Orthopeadic Biomechanics.2nd ed,Philadelphia,Lippincott Raven,1997,pp 179-207.
    [13]Setton LA,Elliott DM,Mow VC.Altered mechanis of cartilage with osteoarthritis:human osteoarthritis and an experimental model of join degeneration.Osteoarthritis Catilage 7:2-14,1999.
    [14]Fell HB,Jubb RW.The effect of synovial tissue on the breakdown of articular cartilage in organ culture.Arthritis Rheum,1977,20:1359-71
    [15]Tiku K,Thakker2Varias S,Ramchardrula A,et all Articular chondro2 cytes secrete IL21,exp ress membrane IL21,and have IL21 inhibitory activity[J[1Cell Immunol,1992;140(1):12201
    [16]Landsberg R,Takeuchi E,Puzas JE1Different activation by cytokines of mitogen2activated protein kinases in bovinetemporoman dibular2joint disc cells[J]1Arch Oral Biol,1999;44(1):411
    [17]Marks PH,DonaldsonML1 Inflammatory cytokine p rofiles associated with chondral damage in the anterior cruciate ligament deficient knee[J]Arthroscopy,2005;21(11):134-271
    [18]裴明,曲绵域,于长隆.诱导型一氧化氮合酶和白介素1受体拮抗剂在骨关节炎滑膜和软骨中表达及意义[J]1中国运动医学杂志,2000;19(3):246-81
    [19]Heraud F,Heraud A,HarmandMF1Apop tosis in normal and osteoarthritis human articular cantilage[J]1Ann Rheum Dis,2000;59:959-651
    [20]Murakami S,Lefebwe V,de Crombrogghe B1Potent inhibition of the master chondrogenic factor Sox9 gene by inteleukin21 and tumor necro2 sis factor2alpha[J]1Biol Chem,2000;275:3687-921
    [21]Kolettas E,Muir H I,Barrett JC,et allChondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox29 transcription factor[J]1Rheumatology(Oxford),2001;40:1146-561
    [22]管剑龙,韩星海,施桂英,等1细胞因子和药物对软骨细胞和滑膜细胞金属蛋白酶活性的调节[J]第二军医大学学报,2000;21(9):861-41
    [23]亓建洪,赵庆华,刘延菊,等1白细胞介素21β对人软骨细胞基质金属蛋白酶13mRNA表达的作用[J]1中华风湿病学杂志,2005;9(3):138-411
    [24]Flannery CR,Little CB,Caterson B,et allEffects of culture conditions and exposure to catabolic stimulators(IL21 and retinoic acid) on the expression of matrix metallop roteinases(MMPs) and disintegrin metallo-proteinases(ADAMs) by articular cartilage chondrocytes[J]Matrix Biol,1999;18(3):2251
    [25]Hwang SG,Yu SS,Poo H,el al.c-Jun/activator protein-1 mediates interleukin-1beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes.[J]J Biol Chem,2005;280(33):2978-271
    [26]GoldringMB1 The role of cytokines as inflammatorymediators in ostesarthri2 tis:lessons from animalmodels[J]1 Connect Tissue Res,1999;40:12111
    [27]Thomas B,Thirion S,Humbert L,et al.Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes:role of p38mitogen-activated protein kinase.[J]Biochem J,2002;36:367-731
    [28]Cawston TE,Billington C.Metalloproteinases in the rheumatic diseases.J Pathol,1996,180(2):115-7.
    [29]刘智敏,周总光.基质金属蛋白酶的结构功能和调节.生物医学工程学杂志,2002,19(4):680-3
    [30]Nagase H,Woessner JF Jr.Matrix metalloproteinases.J Biol Chem,1999,274(31):21491-4.
    [31]Brew K.Dinakapandian D.Nages H.Biochim Biophys Acta,2000,1477(1-2):267-283.
    [32]HurskainenT,Hoyhytya M,Tuuttila A,et al.J Histochem Cytobem,1996,44(12);1379- 1388
    [33]Joseph A.Buckwalter,MD.MS Thomas A,et al.骨科基础科学 第二版;北京:人民卫生出版社,2001.
    [34]Kleiner DE,Steler-Stevenson WG.St ructural biochemistry and activation of matrix metalloproteinase[J].Curr Opin Cell Boil,1993,5:891
    [35]Billinghurst RC,Dahlberg L,Ionescu M,et al.Enhenced cleavage of type Ⅱ collagenases in osteoarthritic cartilage[J].J Clin Invest,1997,99:1534
    [36]Martel P,McCollum R,Fujimoto N,et al,Excess of metalloproteases over tissue inhibitor of metalloprotwase may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis.Invest,1994,70:807-815
    [37]Peter JB,Rosa S.Mechanical propertiers of t he collagen net-work in human articular cartilage as measured by osomotic stress technique[J]Arch Bioch &Bioph,1998;351(2):207
    [38][4]Homanberg GA.Cartilage damage by matrix degradation products:fibronectin Fragment[J].Clin Ortho,2001,391
    [39]Hashimoto S,Ochs RL,Komlya S,et al.Linkage of chondrocyte apoptosis an cartilage degradation in human osteoarthritis.Arthritis Rheum,1998,41:1632-8
    [1] Boisgard S, Levai JP, Geiger B, et al. Study of the variations in length of the anterior cruciate ligament during flexion of the knee: use of a 3D model reconstructed from MRI sections.Surg Radiol Anat. 1999;21(5):313-7.
    [2] Petersen W, Tillmann B. Anatomy and function of the anterior cruciate ligament. Orthopade.2002Aug;31(8):710-8.
    [3] Benjamin, M, McGonagle, D., The anatomical basis for disease localisation inseronegative spondyloarthropathy at entheses and related sites. J Anat.2001, 199:50 3-526.
    [4] Gao J ,Rasanen T ,Persliden J ,Messner K .The morphology of ligament insertions after failure at low strain velocity: an e valuation of ligament enthuses in the rabbit knee. J Anat. 1996 19:127-133
    [5] Zantop T ,Petersen W, Fu F. Anatomy of the anterior cruciate ligament. Operat Tech Orthop. 2005,15:20-28.
    [6] Benjamin M .Tendons are dynamic structures that respond tochanges in exercise levels. Scand J Med Sci Sports.2002, 12:1-2
    [7] Waggett AD , Ralphs JR, Kwan AP, Woodnutt D , Benjamin M Characterization of collagens and Proteoglycans at the insertion of the human Achilles tendon. Matix Biol. 1998, 16:457-470.
    [8] Benjamin M, Kumai T, Milz S, Boszczyk BM, BoszczykAA, RalPhs JR. The skeletal attachment of tendons - tendon enthuses. ComP Biocehm Phys A Mol Integr Physiol , 2002, 133:931 - 945
    [9] Freeman MA, Wyky B. The inetvation pf the knee joinet. An anatomical and histological study in the cat. J Anat,1967,101:505-532
    [10] Hirasawa V, Olajime S, Ohtm, et al, Nerve distribution to the human knee joint: anatomical and immunohistochemical study. Int Orthop,2000,24:1-4
    [11] Zimny ML, Schutte M, Dabezies E o Mechanoreceptors in the human anterior cruciate ligament Anat Rec, 1986,214:204-209.
    [12] Fromm B, Schafer B, Parsch D, et al. Reconstruction of the anterior cruciate ligament with a cyropreserved ACL allograft, A microangiographic and immunohistochemical study in rabbits Int Orthop, 1996,20:378-382
    [13] Raunest J, DSager M, Burgener E. Proprioception of the cruciate ligaments: receptor mapping in an animal model. Arch Orthop Trauma Surg, 1998,118:159-163.
    [14] Freeman MA, Wyke B. The innervation of the knee joint. An anatomical and histological study in the cat. J Anat, 1967,101:505-532.
    [15] Halata Z, Wagner C, Baumann KI. Swnsory nerve endings in the anterior cruciate ligament of sheep. ANat Rec, 1999,254:13-21
    [16] Arcand MA, Rhalmi S, Rivard CH. Quantification of mechanoreceptors in the canine anterior cruciate ligament. INt Orthop, 2000,24:272-275
    [17] Dyhre-Poulsen P, Krogsgaard MR, Muscular reflexes elicited by electrical stimulation of the znterior cruciate ligament in humans. J Appl Physicol. 200,89:2191-2195
    [18] Tsufa E, Okamura Y, Otsuka H, et al. Direct evidence of the anterior cruciate ligament-hamstring refex arce in humans. Am J sports Med, 2001,29:83-87
    [19] Denti M, Monteleone M, Berardi A, et al. Anterior cruciate ligament mechanoreceptors. Histologic studies on lesions an recoonstrution. Clin orthop Relat Res, 1994:29-32
    [20] Roberts D, Andersson G, Friden T, Knee joint proprioception in ACL-deficient knee is related to cartilage injury, laxity and age: a retrospective study of 54 patients. Acta Orthop Scand, 2004,75:-83.
    [21] Grob KR, kuster MS, Higgins SA, et al. Lack of correlation between different measurements of proprioception in the knee. J Bone Joint DSutg Br, 2002,84L614-618.
    [22] Wada Y, Takahashi T, Michinaka Y. et al. Mechanoteceptors of patellar tendon used for ACL reconstruction, rabbit experiments. Acta Orthop Sxand. 1997.68L559-562.
    [23] Shimizu T, Talahashi T, Wasa Y, et al. Regeneration process of mechanoreceptors in the reconstructed anterior crutiate ligament.ArchOrthop Trauma Sutg, 1999, 119:495-409.
    [24] Aune Ak. Hukkanen M, Madsen JE, et al. Nerve regeneration during patellar tendon autograft remodeling after anterior anteriot cruciate ligament reconstruction:an experimental and clinical study, J Orthop Res, 1996, 14L193-199.
    [25] Oxhi M, Iwasa J, Uchio Y, et al. The regeneration of sensory neurons in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br, 1999,81:902-906.
    [26]Ochi M,Iwasa J,Uchio Y,et al.The regeneration of sensory neurons in the reconstruction of the anterior cruciate ligament.J Bone Joint Surg Br.1999,81:902-906.
    [27]Biedert RM.Zwick EB.Ligament-muscal reflex arc after anterior cruciate ligament reconstruction:electromyographic evalution,Arch Orchop Trauma Surg,1998,118-84.
    [28]Tsuda E,Ishibashi Y,Okamura Y,et al.Restoration of anterior cruciate ligament-hamstring reflex arc after anterior cruciate ligament recinstruction.Knee Surg sports Traumatol Arthrosc,2003,11:63-67.
    [29]Iwasa J,Ochi M.Uchio Y,et al.Decrease in anterior knee laxity by electrical stimulation of normal and reconstructed anterior cruciate ligament,J Bone Joint Surg Br,2006,88:477-488.
    [30]Amoczky SP.Anatomy of the anterior cruciate ligament.Clin orthop Surg,1983,172:19.
    [31]Amoczky SP.Blood supply to the anterior cruciate ligament and supporting structures,orthop Cline North Am,1985,16:15.
    [32]Marshall JL,Amoczky SP,Rubin RM etal.Microvasculature of the cruciate ligament.Phys Sports Med,1979,7:87.
    [33]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J OrthoP Res.2004Jan;22(1):85-9.
    [34]Petersen W,Tillmann B.Anatomy and function of the anterior cruciate ligament.Orthopade.2002 Aug;31(8):710-8.
    [35]Amoczky SP,Rubin RM,Marshall JL.Microvasculature of the cruciate ligaments and its response to injury.J Bone joint surg Am,1979,61:1221.120
    [36]Meaney M.,Spector M.Themigration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro.Biomateirals,2001(22),17:2393-2402.
    [37]马晓玲,林元问,等,前交叉韧带的临床解剖学研究,解剖学报,1990,21(3):228-232.
    [38]Ainoczky SP.Anatomy of the anterior cruciate ligament.Clin Orthop,1983,172:.19-25.Girgis 等
    [39]Girgis FG,Marhall JL,Monajem ARSA.The cruciate ligaments of the kneejoi nt.Anatomical,functiona land experimental analysis.Clin Orthop, 1975,106:216-231
    [40] Smith BA, Livesay GA, Woo SL-Y. Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med,1993,12:637 - 370
    [41] Reiman PR, Jackson DW. Anatomy of the anterior cruciate ligament. In: Jackson DW, Drez D, editors. The anterior cruciate deficient knee. St. Louis :CV Mosby&Co, 1987, 17-26
    [42] Odensten M, Glllquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg, 1985, 67A: 257-262
    [43] Bernard M, Hertel P, Hornung H, et al .Femoral insertion of the ACL. Radio graphic quadrant method. Am J Knee Surg, 1997,10:14-22
    [44] Lintner DM, Dewitt SE, Moseley JB. Radiographic evaluation of native anterior cruciate ligament attachments and graft Placement for reconstruction. A cadaveric study. Am J A Sports Med, 1996,24:72-78
    [45] Morgan CD, Kalman VR, Grawl DM. Definitive landmarks for reproducible tibial tunnel Placementrec in anterior cruciate ligament reconstration. Arthroscopy, 1995,11:275-288
    [46] Howell SM, Clark JA, Farley TE. A rationale for predicting anterior cruciate graft impingement by the intercondylar roof. A magnetic resonance imaging study. Am J Sports Med, 1991, 19: 276-282
    [47] Jackson Dw, Gasser SI. Tibial tunnel Placement in ACL reconstruction. Arthroscopy, 1994,10:424-431
    [48] Howell SM,Wallace MP, Hull ML. Evaluation of the single-incision Arthroscopic technique for anterior ligament replacement. A study of tibial tunnelplacement, intraoperative graft tension, and stability. Am J Sports Med, 1999,27:284 -293
    [49] Howell SM, Gittings ME, Gottlieb E,et al. Therelationship between the angle of the tibia ltunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med, 2001, 29:567-574
    [50] Ellison AE, Berg EE. Embryology, anatomy, and function of the anterior Cruciate ligament. Orthop Clin NA, 1985,16:3-41
    [51] Ainoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop, 1983,172:19-25
    [52] Smith BA, Livesay GA, WooSL-Y Biology and biomechanics of the anterior cruciate ligament.Clin Sports Med,1993,12:637-370
    [53]Gabriel MT,Wong EK,Woo SL,Yagi M,Debski RE.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J Orthop Res.2004,22:85-89.
    [54]Zantop T,Herbort M,Weimann A,Raschke M,Petersen W.The role of anteromedial and posterolateral bundle of the ACL in anterior tibial translation and internal rotation:bio mechanical analysis using a robotic/UFS testing system.ORS Transaction.2006.
    [55]Amis AA,Dawkins GP.Functional anatomy of the anterior c ruciate ligament:fiber bundle actions related to ligament replacements and injuries.J Bone Joint Surg Br.1991,73:260-267.
    [56]Zantop T,Peasen W,Seklya J,Mussahl V,Fu F.ACL Anatomy and function relating to anatomic reconstruction.Knee Sugr Sports Traumatol Arthrosc.2006,14(10):982-992.
    [57]Hollis JM,Takai S,Adams DJ,Horibe S,Woo SL.Theeffects of knee motion and external loading on the length of the anterior cruciate ligament(ACL):a kinematic study.J Biomech Eng 1991,113(2):208-214.
    [58]Norwood LA,Cross MJ.The intercondylar shelf and the anterior cruciae ligament.Am J Sports Med,1977,5:171-176.
    [59]Takahashi M,Doi M.Abe M.et al.Anatomical study of the femoral and tibial anterior cruciate ligament.Am J Sports Med,2006,34:787-92.
    [60]郭林,杨柳,杨昌棋,等.四象限分区法用于前交叉韧带多纤维束动态受力分析。医用生物力学,2007,22:356-360.
    [61]Odensten M,Glllquist J.Funcrional anatomy of the anterior cruciate ligament and a rationale for reconstruction.J Bone joint surg,1985,67A:257-262
    [62]Bach JM,Hull HL,Patterson HA.Direct measurements of s train in the posterolateral bundle of the anterior cruciate ligament.J Biomech,1997,30:281-283.
    [63]Ferretti A,Conteduca F,Morelli F,et al.Biomechanics of a nterior cruciate ligament reconstruction using twisted doubled hamstring tendons.Int Orthop,2003;27(1):22-25.
    [64]Rosenberg TD,Graf B.Techniques for ACL reconstruction with Multi-Trac drill guide.Mansfield,MA,Acufex Microsurgical Inc.,1994.
    [65]Sharon L.Hame,Keith L.Markolf,Arash J.Gabayan.Theeffect of anterior cruciate ligament graft rotation on knee laxityand graft tension:An in vitro biomechanical analysis Arthroscopy,2002(1):55-60.
    [66] Konsei Shino, Ken Nakata, Norimasa Nakamura et al .Anatomic anteriorc ruciate ligament reconstruction using two double-looped hamstring tendon grafts via twin femoral and triple tibial tunnels. Operative Techniques in Orthopaedics, 2005,15;130-134.
    [67] Mochizuki T, Muneta T, Nagase T, et al. Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anaterior cruciate ligament reconstruction. Arthroscopy. 2006,22:356-61.
    [68] Odensten M, Gillquist J: Functional anatomy of the anterior c ruciate ligament and a rationale for reconstruction. J Bone Joint Surg 1985,67A:257-262.
    [69] Huber J, kersten D, Bouillon B, et al .Local and intraarticular infiltration of bupivacaine before surgery: effect on postoperative pain after anterior cruciate ligament reconstruction. Arthroscopy 1997;13(2):210-217.
    [70] Frank CB. Jackson DW , The science of reconstruction Of the anterior cruciate ligament. J Bone Joint Sung Am, 1997, 79(10),1556-1576
    [71] 8. Arendt E. Dick R, Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature, Am J Sports Med.l995,23(6):694-701
    [72] Demaria M, Barbiera F, Locasto A, et al. Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament. Analysis with magnetiresonance [J].Radio-Med-Torino, 1996,91:693-699
    [73] Mclean,SG ,PT Myers, RJ Neal, and MR Walters. A quantitative analysis of knee joint kinematics during the sidestep cutting maneuver: implications for non-contact anterior cruciate ligament injury. Bull. Hosp. Joint Dis. 1998, 57:30-38.
    [74] Stiehl, James B. MD. Knee kinematics and mobile bearings: new design considerations [Knee reconstruction].Current opinion in othopedics,2001 Feb,12 (1):18-25
    [75] Hollister AM, Jatana S ,Singh Ak etal. The axes of rotation of the knee.Clin Orthop, 1993,290:259-268
    [76] Churchill DL, Incavo SJ, Johnson Cc et al.The transepicondylar axis approximates the optimal flexion axis of the knee.Clin Orthop, 1998, 365:111-118
    [77] Blaha, Mancinelli, Simons, et al .Kinematics of the HumanKnee Using an Open Chain Cadaver Model. Clinical Orthopaedicsand Related Research. 2003May, 410:25-34
    [78] Asano T ,Akagi M ,Tanaka K et al .In vivo three-dimensional knee kinematics using a biplanar image-matching technique.Clin Orthop Relat Res,2001 Jul,388:157-166
    [79] Freeman MA, Pinskerova V .The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res,20 03 May,410: 35 4 3
    [80] Johal P, Williams A ,Wragg P et al .Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional'MRI. J Biomech.2005 Feb,38 (2): 269- 276
    [81] Wretenberg P ,Ramsey DK, Nemeth G et al .Tibiofemoral contact points relative to flexion angle measured with MRI.ClinBiomech (Bristol, Avon),2002 Jul,17 (6):477-485
    [82] Dennis, Douglas, Komistek, et al .In Vivo Knee KinematicsDerived Using an Inverse Perspective Technique. Clin Orthop Relat Res. 1996 Oct,331:107-117
    [83] Stiehl,James B ,Dennis et al. In Vivo Kinematic Analysis of a Mobile Bearing Total Knee Prosthesis. Clin Orthop Relat Res, 1997 Dec,345:60-66
    [84] Vergis A, Gillquist J. Sagittal plane translation of the knee during stair walking. Comparison of healthy and anterior cruciate ligament-deficient subjects. Am J Sports Med,1998 Nov- Dec, 26 (6): 841-846
    [85] Eisenhart-Rothe R, Bringmann C, Siebert M et al. Femoro-tibial and menisco-tibial translation pattenrs in patients with unilateral anterior cruciate ligament deficiency: a potential cause of secondary meniscal tears. J Orthop Res,2004 Mar,22(2):275-282
    [86] Logan M ,Dunstan E ,Robinson J et al. Tibiofemoral kinematics of the anterior cruciate ligament(A CL)-deficient weightbearing, living knee employing vertical access open "interventional" multiple resonance imaging. Am J Sports Med,2004 Apr-May,32(3):720-726
    [87] Logan MC, Williams A, Lavelle J et al. Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med,2004 Jun,32(4):984 992
    [88] Brandsson S , Karlsson J ,Sward L et al. Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre-and postoperative radiostereometric studies. Am J Sports Med,2002May-Jun,30(3):36-17
    [89] Taylor WR, Heller MO, Bergmann G Tibio-femoral loading during human gait and stair climbing. J Orthop Res,2004 May,22(3): 625 -632
    [90] Abdel-Rahman EM, Hefzy MS et al. Three-dimensional dynamic behaviour of the human knee joint under impact loading.Med Eng Phys,1998 Jun,20(4):27 690
    [91] Herzog W, Diet S ,Suter E, et al. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech. 1998 Dec;31(12):1137-45.
    [92] Johnson DL,Urban WP, Carbom DM, et al. Articular cartilage changes seen with magnetic resonance imageing-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J S ports Med,1998;26No.3:409-414
    [93] Faber KJ, Dil JR, Amendola A, et al. Occult osteochondr lesions after anterior cruciate ligament ruptuer. Six-year magnetic resonance imaging follow-up study. Am J Sports Med,1999;Ju 1-Aug 27(4):489-499
    [94] Cameron M Buchgraber A ,Passler H,et al .The natural history of the anterior cruciate ligament-deficient knee.Changes in Synovial fluid cytokine and keratin sulfate concentrations. Am J Sports Med,1997;Nov-Dec 25(6):751-754
    [95] Frank CB, Jackson DW The science of reconstruction of the anterior cruciate ligament J Bone Joint Surg Am,1997;79 1556-76
    [96] Thomas OL, Oni oo, Howard L. Clinical evaluation of the porperties of aritcular cartilage and patelofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech, 1998;Dec 31(12):1137-45
    [97] Kobayashi T ,Yoshihara Y ,Samura A et al .Chondrocalcin a s a marker of articular cartilage degeneration in anterior cruciate ligament-deficient knees.Orthopedics, 1998; Jul 21 (7):773-6
    [98] Le M, et al. anterior concrete ligament lateral substitution procedure.A quality audit of the Leicester modification.Injury,1998;Jul 29(6):417-9
    [99] Lee JK, Lawrence Y, Phelps CT, et al. Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests. Radiology, 1988, 166:861-864
    [100] McCauley TR, Moses M, Kier R, et al, MR diagnosis oftears of the anterior cruciate ligament: importance of ancillary findings. Am J Radiol, 1994,162: 115-119
    [101] Moore SL. Imaging the anterior Cruciate ligament. Orthop Clin N Am: 2002, 33:663 - 674
    [102]Remer EM,Fitzgerald ST,Friedman H,et al.Anterior cruciate ligament injury:M R imaging diagnosis and Patterns of ijnury.RadiograPhics,1992,12:901-915
    [103]Stoller DW,Cannon WD,Anderson LJ.The knee.In:Stoller DW,editor.Magentic resonance imaging in orthopedics and sports medicine.New York:L ippincottRaven,1997,203-443
    [104]Gentili A,Seeger L,Yao L,Do HM.Anterior Cruciate ligament tear:indirect signs at MR imaging.Radiology,1994,193:835-840
    [105]Sourlas J,Papachristou G,Magnissalis EA,Efstathopoulos N,Plessas S An anthropome -tric study of the anterior cruciate ligament insertion on the tibial plateau.Journal of Bone&Joint Surgery[Br].2004,86-B Supplement Ⅲ:233.
    [106]姚作宾,任国良,陈明法.前交叉韧带的应用解剖,中国临床解剖学杂1989.7(3):141-143.
    [107]Daidy DJ.Management of ruptures of the anterior cruciate ligament,中华骨科杂志,1995,15(5):280-286.
    [108]Christen B,Jakob RP.Fractures associated with patellar ligament grafts in cruciate ligament surgery[J].J Bone Joint Surg,1992;74B(4):617-619.
    [109]Lavoie P,Fletcher J,Duval N.Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the ALRS artificial ligament.Knee.2000;7(3):157-163
    [110]Sugihara A,Fujikawa K,Watanabe H.Anterior cruciate reconstruction with bioactive Leeds-Keioligaemnt(LKll):Perliminary report.J Long Term Eff Med implants.2006;16(1):41-49
    [111]Kdolsky R,Gibbons DF,SchabusR et al.Synthetic augmented repair of Proximal ruptures of the anterior cruciate ligament.Long-term results of 66 Patients.Clin Orthop Relat Res.1993;(295):183-189
    [112]Levy IM,Torzilli PA,Warren RF.The effect of medial meniscectomy on anterior--porerior motion of the knee.J Bone Joint Surg(Am),1982:64(A):883-888.
    [113]敖英芳,曲锦域,田得祥,等.骨一膑健一碳前骨膜-股四头肌触条骨块嵌入法重建交叉韧带.中华外科杂志,1997,(35)2:725-727.
    [114]林阳,朱伯通.膝关节交叉韧带损伤的修复与重建.中国中医骨伤科,1994,(2)4:49-51.
    [115]Gomez T,Ratzlaff C.McConkey JR et al.Semitendinsus repair angumentation of acute anterior cruciate ligament rupture.Canadian J Sports Sci,1990,15:137-142.
    [116]Shelboume K,Patel DV.Management of combined injuries of the anterior cruciate and medial collateral ligament.J Bone Joint Surg,1995,77A:800-1.
    [117]Daidy DJ.Management of ruptures of the anterior cruciatel ligament.中华骨科杂志,1995,15(5):280-286.
    [118]王亦恩,骨与关节损伤.人民卫生出版社.2001:975-992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700