青藏高原东部边缘重点构造部位地震各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原南部受印度板块碰撞和挤压,北部受远及俄罗斯、西伯利亚地台的阻挡,在这种构造格局下,青藏高原一方面通过自身的地壳缩短、增厚来吸收南北向的强烈挤压作用,形成了构造复杂的青藏高原东北缘;另一方面在其东西方向寻求物质流逸的通道。不论物质以何种方式逃逸,位于青藏高原东南缘的川滇地区都与高原物质东流有直接关系。因此,通过研究青藏高原东部边缘地壳上地幔形变机制,可以探查块体内深部构造、形变场特征,深化对应力应变场和构造过程的认识,对于解释板块运动、软流圈流动、地震成因和强震深部背景力源等问题具有重要的意义,尤其对青藏高原隆起的动力学过程有特殊意义。
     本文基于青藏高原东北缘甘肃区域台网41个宽频带地震台站的远震记录资料,通过PKS、SKS和SKKS震相(文中统称为XKS)的剪切波分裂分析,研究获取了每个台站下方介质的各向异性分裂参数,得到青藏高原东北缘地区上地幔各向异性分布图像,并结合GPS速度场和地壳剪切波各向异性分析青藏高原东北缘各向异性形成机制及壳幔各向异性特征。
     研究结果表明,阿尔金断裂带西侧,各向异性快波偏振呈WNW-ESE方向,与断裂带走向有一定夹角;在祁连山-河西走廊构造区,XKS快波偏振呈NW-SE方向,一致性较好,与区域断层走向方向相同;在海原断裂东部陇中盆地及其周围,XKS快波虽然总体上呈WNW-ESE方向,但在快波方向图像上也显示出较其他地区更复杂的分布,这可能与该地区处于青藏块体与鄂尔多斯地块之间的过渡区域有关。由整个区域慢波时间延迟可以得出,青藏高原东北缘各向异性层厚度呈两端厚中间薄的趋势。
     将本文的结果与地壳剪切波分裂结果综合对比分析发现,在祁连山-河西走廊构造区地壳剪切波快波偏振在该区域呈NE-SW方向,与相对于稳定欧亚大陆GPS运动速率一致,与XKS的快波偏振方向不同,地壳和上地幔快波偏振方向的差异说明了壳幔变形可能有着不同的机制;而在陇中盆地及其周缘,地壳快剪切波偏振和上地幔XKS快波偏振总体上呈WNW-ESE方向,暗示了可能相同的壳幔变形机制。
     在青藏高原东南缘,利用云南区域台网56个宽频带地震台站的连续波形数据,根据噪声互相关方法,反演得到研究区域0.5°×0.5°周期5-40s相速度分布图像和方位各向异性分布图像,并结合近震S波分裂、Pms转换波分裂和远震XKS分裂,对青藏高原东南缘地区壳幔各向异性进行综合分析。
     相速度分布结果显示,短周期(5-12s)的相速度与地壳浅部结构有关,低速异常区位于澜沧江断裂以东和程海-红河断裂以西之间、普渡河断裂以西和弥勒-师宗断裂以北一带。易门断裂和普渡河断裂之间则存在高速异常。周期16-26s相速度分布图像主要反映中下地壳范围内速度的变化情况。由红河断裂、小江断裂和丽江-剑川断裂围成的“川滇菱形块体”内呈现大区域的低速异常。高速异常主要在滇东南地区。周期30-40s主要反映下地壳至上地幔顶部附近的速度结构,其中川滇菱形块体内由低速异常又逐渐变为高速异常。纵观整个范围川滇菱形块体内相速度的变化情况,暗示中下地壳处的低速异常带很可能就是青藏高原下地壳流的通道。
     方位各向异性分布结果显示,短周期Rayleigh面波快波偏振方向与区域断裂走向有很好的一致性,快波方向随着断裂走向的变化而变化;周期16-26s相速度偏振方向与上地壳基本相同,其中,滇中块体中易门断裂和普渡河断裂附近,各向异性快波方向从NS向WN方向旋转;易门断裂以西呈NW向。一方面反映了青藏高原物质东流,一方面又说明了川滇块体受到青藏块体的南东向挤压。周期30-40s范围的各向异性,滇缅泰块体和印支块体,快波偏振方向为NS和NNW向;而在滇中块体内部,各向异性快波方向呈顺时针旋转变化,可能与青藏高原物质向东逃逸有关。
     通过与近震S波分裂、Pms转换波分裂和远震XKS分裂的对比研究,发现随着周期的增大,得到的快波偏振方向与XKS剪切波快波偏振方向接近一致,与地壳剪切波方向呈一定夹角,整体上来说,壳幔各向异性可能有着不同的形成机制。
Driven by crashing, extrusion and continuous drifting of Indian plate in the south,and synchronously prevented by Russian-Siberia platform in the north, theQinghai-Tibet plateau, on the one hand, absorbs the north-south strong compressionthrough the crust thickening and shortening, so that it forms complicated structure inthe northeast of Qinghai-Tibet plateau. On the other hand, the plateau materialsescape to east and west respectively. However, no matter what the escape way theyare, the Sichuan-Yunnan regions in the south-eastern Tibetan plateau are the domainswhere the tectonic escape and lower crust flow pass through. Investigating the crustand mantle anisotropy and deformation mechanisms, will be helpful to know the deepstructure, the characteristic of deformation field, the stress-strain field and tectonicprocess and so on. Furthermore, it is very important to make acquaintance of themechanism of the plateau uplift and the escaping of the deep materials.
     Based on teleseismic PKS,SKS and SKKS phases (XKS) recorded by41broadband stations in Gansu province in northeastern margin of Qinghai-Tibet plateau,this study obtains the splitting parameters of fast polarization direction and delay timebetween the fast and slow shear waves at each station using the minimum transverseenergy method,and then,plots the distribution map of upper mantle anisotropyaround this area. Furthermore, combined with GPS velocity field and crustalanisotropy from near-field shear-wave splitting using SAM method,we discuss thecharacteristics and formation mechanism of the crust-mantle anisotropy in thenortheastern margin of Qinghai-Tibet plateau.
     The main results demonstrate that the fast wave polarization trends WNW-ESEin the west part of Altun fault,siting at a certain degree angle to the strike of regionalstructures. In Qilian-Hexi Corridor tectonic region,the XKS fast direction is NW-SE,consistent with strike direction of the main fault in this area. In Longzhong Basin andadjacent regions, which located in the transition zone between the active Qinghai-Tibet block and comparatively stable Ordos block,with more complextectonic background, the fast direction trends WNW-ESE, but owing to local feature’sinfluence,the results vary obviously with these stations.
     By comparing the crustal anisotropy of our study with that from othershear-wave splitting analysis of direct S-wave, we find that the fast direction obtainedfrom near-field shear-wave splitting is NE-SW,consistent with GPS velocity relativeto stable Eurasian Continent, and different with XKS fast direction, which suggeststhat the deformation mechanism of them may be different. In Longzhong Basin andadjacent regions, the fast directions in the crust and in the upper mantle are consistentby and large,which means that the crust and the upper mantle possibly have the samedeformation.
     Based on continuous ambient noise recorded by56broadband stations in Yunnanprovince in southeastern margin of Qinghai-Tibet plateau,this study obtains thedistribution of Rayleigh wave phase velocity and the splitting parameters of fastpolarization direction and delay time between the fast and slow waves in5-40s periodusing ambient noise correlation. Furthermore,combined with anisotropy separatelyfrom shear-wave splitting using S-wave, Pms and XKS, we discuss the characteristicsand formation mechanism of the crust-mantle anisotropy in the southeastern marginof Qinghai-Tibet plateau.
     The results of phase velocity distribution shows that, at5-12s period, the phasevelocity is related to shallow crust structure. Low velocities exist between theLancangjiang fault and Chenghai-Honghe fault, west of Puduhe fault and north ofMile-Shizong fault. High velocities exist between Yimen fault and Puduhe fault. At16-26s period, phase velocity mainly reveals the speed variation in the middle-lowercrust. The Sichuan-Yunnan rhombic block, which enclosed by Honghe fault, Xijiangfault and Lijing-Jianchuan fault, scatters low velocity in large regions. And highvelocities mainly exist in northeast of Yunnan. At30-40s period, phase velocitymainly reveals the speed variation from the lower crust to the upper mantle.Remarkably, the velocity in Sichuan-Yunnan rhombic block gradually turns to highvelocity anomaly. According to the variation of Sichuan-Yunnan rhombic block, it is possible that the middle-lower crust is channel flow of Qinghai-Tibet Plateau.
     The results of azimuthal anisotropy distribution show that, at5-12s period, thefast wave polarization is influenced by the strike of the regional structures. At16-26speriod,fast wave polarization direction coincides with upper crust. In nearby Yimenfault and Puduhe fault in middle Yunnan block, the fast wave polarization rotates fromNS to WN, and in the west of Yimen fault, the direction trends NW, which suggestthat plateau materials flow east, and Sichuan-Yunnan block is squeezed by theQinghai-Tibet plateau. At30-40s period, in Yunnan-Burma block and Indosinianblock, the fast wave direction trends NS and NNW. And in middle Yunnan block,there is clockwise rotation about direction.
     According to comparison with S-wave splitting, Pms splitting and XKS shearwave splitting, we find that along with the increase of the period, the fast wavepolarization is similar to the XKS shear wave splitting, and sites at a certain degreeangle to the direction of fast wave in the crust. In short, crust-mantle formationmechanism may be different in the southeast of Qinghai-Tibet plateau.
引文
白志明,王椿镛.2003.云南地区上部地壳结构和地震构造环境的层析成像研究.地震学报,25(002):117-127.
    曹凤娟,尹涛,马丽,等.2005.岫岩Ms5.4地震前后视应力时空变化特征.东北地震研究,21(001):14-19.
    曹建玲,石耀霖,张怀,等.2009.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟.科学通报,54:224-234.
    常利军,王椿镛,丁志峰.2011.鄂尔多斯块体及周缘上地幔各向异性研究.中国科学(D辑:地球科学),41(5):686-699.
    常利军,王椿镛,丁志峰.2008.首都圈地区SKS波分裂研究.地震学报,30(6):551-559.
    常利军,王椿镛,丁志峰.2006.云南地区SKS波分裂研究.地球物理学报,49(1):197-204.
    常利军,王椿镛,丁志峰,等.2008.青藏高原东北缘上地幔各向异性研究.地球物理学报,51(02):431-438.
    陈九辉,刘启元,李顺成,等.2005.青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报,48(2):333-342.
    陈棋福,刘澜波,王伟君.2008.利用地脉动探测北京城区的地震动场地响应.科学通报,53(18):2229-2235.
    崔笃信,王庆良,胡亚轩,等.2009.青藏高原东北缘岩石圈变形及其机理.地球物理学报,52(6):1490-1499.
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征.中国科学(D辑),32(12):1020-1030.
    丁志峰,曾融生.1996.青藏高原横波分裂的观测研究.地球物理学报,39(2):211-220.
    房立华.2009.华北地区瑞利面波噪声层析成像研究.博士学位论文.中国地震局地球物理研究所.
    房立华,吴建平,吕作勇.2009.华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,52(3):663-671.
    高原,滕吉文.2005.中国大陆地壳与上地幔地震各向异性研究.地球物理学进展,20(1):180-185.
    高原,梁维,丁香等.2004.云南2001年施甸地震的剪切波分裂参数变化特征.地震学报,26(6):576-582.
    高原,石玉涛,梁维等.2008.剪切波分裂分析系统SAM(2007)——软件系统.中国地震,24(4):345-353.
    高原,吴晶,易桂喜,等.2010.从壳幔地震各向异性初探华北地区壳幔耦合关系.科学通报,55(29):2837-2843.
    高原,郑斯华,孙勇.1995.唐山地区地壳裂隙各向异性.地震学报,17(3):283-293.
    高原,郑斯华,王培德.1996.海南省东方地区1992年小震群剪切波分裂研究.地球物理学报,39(2):221-232.
    高原,郑斯华,周蕙兰.1999.唐山地区快剪切波偏振图像及其变化.地球物理学报,42(2):228-232.
    高锐,王海燕,王成善,等.2011.青藏高原东北缘岩石圈缩短变形——深地震反射剖面再处理提供的证据.地球学报,32(5):513-520.
    郭飚,刘启元,陈九辉,等.2004.青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究.地球物理学报,47(5):790-797.
    虢顺民,江在森.2000.青藏高原东北缘晚第四纪块体划分与运动态势研究.地震地质,22(3):219-231.
    何正勤,叶太兰,苏伟.2004.云南地区地壳中上部横波速度结构研究.地球物理学报,47(5):838-844.
    胡家富,苏有锦,朱雄关等.2003.云南的地壳S波速度与泊松比结构及其意义.中国科学(D辑:地球科学),33(08):714-722.
    胡亚轩,崔笃信,季灵运等.2011.鄂尔多斯块体及其周缘上地幔各向异性分析研究.地球物理学报,54(6):1549-1558.
    黄金莉,宋晓东,汪素云.2003.川滇地区上地幔顶部Pn速度细结构.中国科学(D辑:地球科学),33(4):144-150.
    黄金莉,赵大鹏,郑斯华.2001.川滇活动构造区地震层析成像.地球物理学报,44(z1):127-135.
    姜枚,HirnA.,等.2001.青藏高原及其部分邻区地震各向异性和土地幔特征.地球学报,22(2):111-116.
    阚荣举,韩源.1992.云南遮放至马龙地学断面(说明书)[M].北京:地质出版社.
    李白基,秦嘉政,钱晓东.2002.1995年武定65级地震余震的S波分裂.地震研究,25(2):108-114.
    李群芳.1992.不同力源作用下云南中西部构造运动和应力场特征.西北地震学报,14(2):72-78.
    李永华,吴庆举,冯强强.2010.青海地区S波分裂研究.地球物理学报,53(6):1374-1383.
    刘福田.1989.震源位置和速度结构的联合反演(Ⅰ)——理论和方法.中国科学院地球物理研究所论文摘要集(1984).
    刘希强,周蕙兰.2001.中国大陆及邻区上地幔各向异性研究.地震学报,23(4):337-348.
    刘志坤,黄金莉.2010.利用背景噪声互相关研究汶川地震震源区地震波速度变化.地球物理学报,53(4):853-863.
    罗艳,黄忠贤,彭艳菊,等.2004.中国大陆及邻区SKS波分裂研究.地球物理学报,47(05):812-821.
    马宗晋,张家声,汪一鹏.1998.青藏高原三维变形运动学的时段划分和新构造分区.地质学报,72(3):211-227.
    阮爱国,王椿镛.2002.云南地区上地幔各向异性研究.地震学报,21(03):261-267.
    石耀霖,朱守彪.2004.利用GPS观测资料划分现今地壳活动块体的方法.大地测量与地球动力学,24(2):1-5.
    石玉涛,高原,吴晶,等.2006.云南地区地壳介质各向异性——快剪切波偏振特性.地震学报,28(6):574-585.
    石玉涛,高原,吴晶,等.2008.剪切波分裂分析系统SAM(2007)——区域地震
    台网资料应用实例.中国地震,24(4):354-361.史大年,G P.1999.阿尔金断裂带地壳和上地幔结构的P波层析成像.地球物理
    学报,42(003):341-350.孙长青.2011.青藏高原东部及邻区壳幔各向异性及形变机制研究.博士学位论
    文.中国科学院地质与地球物理研究所.孙勇,郑斯华.1993.唐山地区剪切波分裂研究.中国地震,9(1):60-67.太龄雪,高原,曹凤娟,等.2009.辽宁1999年Ms5.9岫岩地震的剪切波分
    裂特征.地震学报,30(4):340-354.滕吉文,张中杰,王光杰,等.2000.地球内部各圈层介质的地震各向异性与地
    球动力学.地球物理学进展,15(1):1-35田勤俭,申旭辉,冯希杰,等.2003.渭河盆地断层活动反映的第四纪构造事件
    初步研究.地震地质,25(1):146-154.王椿镛,常利军,吕智勇,等.2007.青藏高原东部上地幔各向异性及相关的壳
    幔耦合型式.中国科学(D辑:地球科学),37(4):495-503.王椿镛,丁志峰,陈学波,等.1997.大别造山带地壳S波分裂和介质各向异性.科
    学通报,42(23):2539-2542.王椿镛,吴建平,楼海,等.2006.青藏高原东部壳幔速度结构和地幔变形场的
    研究.地学前缘,13(5):349-359.王伟君,刘澜波,陈棋福,等.2009.应用微动H/V谱比法和台阵技术探测场
    地响应和浅层速度结构.地球物理学报,52(006):1515-1525.韦伟,孙若昧,石耀霖.2010.青藏高原东南缘地震层析成像及汶川地震成因探
    讨.中国科学(D辑:地球科学),40(7):831-839.吴晶,高原,蔡晋安,等.2007.华夏地块东南部地壳地震各向异性特征初步研
    究.地球物理学报,50(6):1748-1756.徐果明,姚华建,朱良保,等.2007.中国西部及其邻域地壳上地幔横波速度结
    构.地球物理学报,50(1):193-208.许志琴,杨经绥,姜枚,等.1999.大陆俯冲作用及青藏高原周缘造山带的幌起.地
    学前缘,3(6):139-151.徐强,赵俊猛,崔仲勇,等.2009.利用接收函数研究青藏高原东南缘的地壳上地幔结构.地球物理学报,52(12):3001-3008.
    熊熊,许厚泽,滕吉文.2001.青藏高原物质东流的岩石层力学背景探讨.地壳形变与地震,21(2):1-6.
    姚陈.1989.穿透裂隙介质远震PS波的分裂.中国地震,5(1):38-47.
    姚陈,王培德,陈运泰.1992.卢龙地区S波偏振与上地壳裂隙各向异性.地球物理学报,35(3):305-315.
    杨文.2011.利用背景噪声方法研究云南强震前后的波速变化.硕士学位论文.中国地震局地震预测研究所.
    曾融生,孙为国.1992.青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论.地震学报,14:534-563.
    张辉,高原,石玉涛,等.2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报,55(1):95-104.
    张永久,高原,石玉涛,等.2009.四川区域地震台网的剪切波分裂研究.地震学报,30(2):123-134.
    张中杰.2002.地震各向异性研究进展.地球物理学进展,17(2):281-293.
    赵博,高原,石玉涛,等,2011.张家口-渤海地震带与山西地震带交汇区的地壳剪切波分裂.地球物理学报,54(6):1517-1527.
    郑斯华,高原.1994.中国大陆岩石层的方位各向异性.地震学报,16(02):131-140.
    郑秀芬,欧阳飚,张东宁,等.2009.“国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑.地球物理学报,52(5):1412-1417.
    周兵.1991.用地震面波研究上地幔各向异性.地震研究,14(4):401-408.
    An M.,Shi Y. L.2006. Lithospheric thickness of the Chinese continent. Physics of theEarth and Planetary Interiors,159(3-4):257-266.
    Ando M.1984. ScS polarization anisotropy around the Pacific Ocean. Journal ofPhysics of the Earth,32(3):179-195.
    Avouac J. P.,Tapponnier P.1993. Kinematic model of active deformation in centralAsia. Geophysical Research Letters,20(10):895-898.
    Backus G. E.1965. Possible forms of seismic anisotropy of the uppermost mantle
    under oceans. Journal of Geophysical Research,70(14):3429-3439.Beaumont C.,Jamieson R. A.,Nguyen M. H.,et al.2001. Himalayan tectonics
    explained by extrusion of a low-viscosity crustal channel coupled to focus
    surface denudation. Nature,414(6865):738-742.Bensen G. D., Ritzwoller M. H.,Barmin M. P.,et al.2007. Processing seismic
    ambient noise data to obtain reliable broad‐band surface wave dispersion
    measurements. Geophysical Journal International,169(3):1239-1260.Bjarnason I. T.,Silver P. G.,Rümpker G.,et al.2002. Shear wave splitting across the
    Iceland hot spot: Results from the ICEMELT experiment. Journal of
    Geophysical Research,107(B12):2382-2390.Booth D. C.,Crampin S.1985. Shear‐wave polarizations on a curved wavefront at
    an isotropic free surface. Geophysical Journal of the Royal Astronomical Society,
    83(1):31-45.Brenguier F.,Campillo M.,Hadziioannou C.,et al.2008. Postseismic relaxation along
    the San Andreas Fault at Parkfield from continuous seismological observations.
    Science,321(5895):1478.Brenguier F.,Shapiro N. M.,Campillo M.,et al.2008. Towards forecasting volcanic
    eruptions using seismic noise. Nature Geoscience,1(2):126-130.Campillo M.,Paul A.2003. Long-range correlations in the diffuse seismic coda.
    Science,299(5606):547-549.Claerbout J. F.1968. Synthesis of a layered medium from its acoustic transmission
    response. Geophysics,33(2):264-269.Clark M. K.,House M. A.,Royden L H,et al.2005. Late Cenozoic uplift of
    southeastern Tibet. Geology,33(6):525-528.Clark M. K.,Royden L. H.2000. Topographic ooze:Building the eastern margin of
    Tibet by lower crustal flow. Geology,28(8):703-706.Clark M. K.,Schoenbohm L. M.,Royden L H,et al.2004. Surface uplift, tectonics,
    and erosion of eastern Tibet from large-scale drainage patterns. Tectonics,23:
    TC1006(1-20).
    Crampin S.,Gao Y.2006. A review of techniques for measuring shear-wave splittingabove small earthquakes. Physics of the Earth and Planetary Interiors,159(1):1-14.
    Crampin S.,Peacock S.2005. A review of shear-wave splitting in the compliantcrack-critical anisotropic Earth. Wave Motion,41(1):59-77.
    Crampin S.1984. An introduction to wave propagation in anisotropic media.Geophysical Journal of the Royal Astronomical Society,76(1):17-28.
    Crampin S.1984. Effective anisotropic elastic constants for wave propagation throughcracked solids. Geophysical Journal of the Royal Astronomical Society,76(1):135-145.
    Debayle E.,Kennett B.,Priestiey K.2005. Global azimuthal seismic anisotropy andthe unique plate-motion deformation of Australia. Nature,433(3):509-512.
    Derode A.,Larose E.,Campillo M.,et al.2003. How to estimate the Green’s functionof a heterogeneous medium between two passive sensors? Application toacoustic waves. Applied Physics Letters,83(15):3054-3056.
    Ding G.,Chen J.,Tian Q,et al.2004. Active faults and magnitudes of left-lateraldisplacement along the northern margin of the Tibetan Plateau. Tectonophysics,380(3-4):243-260.
    England P. C.,Houseman G. A.,Osmaston M. F.,et al.1988. The Mechanics of theTibetan Plateau [and Discussion]. Philosophical Transactions of the RoyalSociety of London. Series A,Mathematical and Physical Sciences,326(1589):301-320.
    Gan W.,Zhang P.,Shen Z. K.,et al.2007. Present-day crustal motion within theTibetan Plateau inferred from GPS measurements. Journal of GeophysicalResearch,112:B8416(1-14).
    Gao S. S.,Liu K. H.,Abdelsalam M. G.2010. Seismic anisotropy beneath the AfarDepression and adjacent areas: Implications for mantle flow. Journal ofGeophysical Research,115:B12330(1-15).
    Gao S. S.,Liu K. H.2009. Significant seismic anisotropy beneath the southern Lhasa
    Terrane, Tibetan Plateau. Geochemistry, Geophysics,Geosystems,10(2):1-19.Gao Y.,Hao P.,Crampin S.2006. SWAS: a shear-wave analysis system for
    semi-automatic measurement of shear-wave splitting above small earthquakes.
    Physics of the Earth and Planetary Interiors,159(1):71-89.Gao Y.,Wu J.,Fukao Y.,et al.2011. Shear-wave splitting in the crust in North China:
    stress, faults and tectonic implications. Geophysical Journal International,187(2):
    642-654.Gripp A. E.,Gordon R. G.2002. Young tracks of hotspots and current plate velocities.
    Geophysical Journal International,150(2):321-361.Hao P.,Gao Y.,Crampin S.2008. An Expert System for measuring shear-wave
    splitting above small earthquakes. Computers&Geosciences,34(3):226-234.Harmon N.,Forsyth D.,Webb S.2007. Using ambient seismic noise to determine
    short-period phase velocities and shallow shear velocities in young oceanic
    lithosphere. Bulletin of the Seismological Society of America,97(6):2009-2023.Hess H. H.1964. Seismic anisotropy of the uppermost mantle under oceans. Nature,
    203:629-631.Hirn A.,Jiang M.,Sapin M.,et al.1995. Seismic anisotropy as an indicator of mantle
    flow beneath the Himalayas and Tibet. Nature,375(6532):571-574.Holt W. E.,Chamot-Rooke N.,Le Pichon X.,et al.2000. Velocity field in Asia
    inferred from Quarternary fault slip rates and Global Positioning System
    observations. Journal of Geophysical Research,105(B8):19-185.Huang H.,Yao H.,Van der Hilst R. D.2010. Radial anisotropy in the crust of SE
    Tibet and SW China from ambient noise interferometry. Geophysical Research
    Letters,37(21):L21310(1-5).Kennett B.,Engdahl E. R.1999. Traveltimes for global earthquake location and phase
    identification. Geophysical Journal International,105(2):429-465.Kirby E.,Reiners P. W.,Krol M. A.,et al.2002. Late Cenozoic evolution of the
    eastern margin of the Tibetan Plateau: Inferences from40Ar/39Ar and
    (U-Th)/He thermochronology. Tectonics,21(1):1-20.
    Kosarev G.L.,Makeyeva L. I.,Vinnik L P.1984. Anisotropy of the mantle inferredfrom observations of P to S converted waves. Geophysical Journal of the RoyalAstronomical Society,76(1):209-220.
    Li S.,Mooney W. D.,Fan J.2006. Crustal structure of mainland China from deepseismic sounding data. Tectonophysics,420(1-2):239-252.
    Li Y.,Wu Q.,Jiang L.,et al.2010. Complex seismic anisotropic structure beneath thecentral Tien Shan revealed by shear wave splitting analyses. Geophysical JournalInternational,181(3):1678-1686.
    Lin F. C.,Moschetti M. P.,Ritzwoller M. H.2008. Surface wave tomography of thewestern United States from ambient seismic noise:Rayleigh and Love wavephase velocity maps. Geophysical Journal International,173(1):281-298.
    Lin F. C.,Ritzwoller M. H.,Townend J.,et al.2007. Ambient noise Rayleigh wavetomography of New Zealand. Geophysical Journal International,170(2):649-666.
    Liu K. H.,Gao S. S.,Gao Y.,et al.2008. Shear wave splitting and mantle flowassociated with the deflected Pacific slab beneath northeast Asia. Journal ofGeophysical Research,113,B01305. Doi:10.1029/2007JB005178.
    Lobkis O. I.,Weaver R. L.2001. On the emergence of the Green’s function in thecorrelations of a diffuse field. The Journal of the Acoustical Society of America,110(6):3011-3017.
    Matte P.,Tapponnier P.,Arnaud N.,et al.1996. Tectonics of Western Tibet,betweenthe Tarim and the Indus. Earth and Planetary Science Letters,142(3-4):311-330.
    Mcnamara D. E.,Owens T. J.,Silver P. G.,et al.1994. Shear wave anisotropy beneaththe Tibetan Plateau. Journal of Geophysical Research,99(B7):13613-13655.
    Meissner R.,Mooney W. D.,Artemieva I.2002. Seismic anisotropy and mantle creepin young orogens. Geophysical Journal International,149(1):1-14.
    Molnar P.,Tapponnier P.1975. Cenozoic tectonics of Asia:effects of a continentalcollision. Science,189(4201):419-426.
    Montagner J. P. Nataf H. C.1986. A simple method for inverting the azimuthal
    anisotropy of surface waves. Journal of Geophysical Research,91(B1):511-520.Montagner J. P.,Tanimoto T.1991. Global upper mantle tomography of seismic
    velocities and anisotropics. Journal of Geophysical Research,96:20337-20351.Mooney W. D.,Laske G.,Masters T. G.1998. CRUST5.1:A global crustal model at
    5×5. Journal of Geophysical Research,103(B1):727-747.Nataf H. C.,Nakanishi I.,Anderson D. L.1986. Measurements of mantle wave
    velocities and inversion for lateral heterogeneities and anisotropy3. Inversion.
    Journal of Geophysical Research,91(B7):7261-7307.Paul A., Campillo M., Margerin L., et al.2005. Empirical synthesis of
    time-asymmetrical Green functions from the correlation of coda waves. Journal
    of Geophysical Research,110(B08302):1-13.PlomerováJ.,Kouba D.,Babuska V.2002. Mapping the lithosphere-asthenosphere
    boundary through changes in surface-wave anisotropy. Tectonophysics,358(1-4):
    175-185.Roux P.,Sabra K. G.,Kuperman W. A.,et al.2005. Ambient noise cross correlation
    in free space: Theoretical approach. The Journal of the Acoustical Society of
    America,117(1):79-84.Royden L. H.,Burchfiel B. C.,King R. W.,et al.1997. Surface deformation and
    lower crustal flow in eastern Tibet. Science,276(5313):788-790.Royden L. H.,Burchfiel B. C.,van der Hilst R D.2008. The geological evolution of
    the Tibetan Plateau. Science,321(5892):1054-1058.Sabra K. G.,Gerstoft P.,Roux P.,et al.2005. Extracting time-domain Green’s
    function estimates from ambient seismic noise. Geophysical Research Letters,
    32(L03310):1-5.Sabra K. G.,Gerstoft P.,Roux P.,et al.2005. Surface wave tomography from
    microseisms in Southern California. Geophysical Research Letters,32(L14311):
    1-4.Savage M. K.1999. Seismic anisotropy and mantle deformation:what have we
    learned from shear wave splitting. Reviews of Geophysics,37(1):65-106.
    Shapiro N. M.,Campillo M.,Stehly L.,et al.2005. High-resolution surface-wavetomography from ambient seismic noise. Science,307(5715):1615-1618.
    Shapiro N. M.,Campillo M.2004. Emergence of broadband Rayleigh waves fromcorrelations of the ambient seismic noise. Geophysical Research Letters,31(7):1-5.
    Shapiro N. M.,Ritzwoller M. H.,Bensen G. D.2005. Locating the Source of theTwenty-six-second Microseism by Cross-correlating Records of AmbientSeismic Noise. Eos Trans. AGU. Fall Meeting Suppl.,86(52).
    Shearer P. M.1999. Introduction to seismology. Cambridge Univ Pr.
    Shi Y. T.,Gao Y.,Su Y. J.,et al.2012. Shear-wave splitting beneath Yunnan area ofSouthwest China. Earthquake Science,25(1):25-34.
    Silver P. G.,Chan W. W.19991. Shear Wave Splitting and Sub continental MantleDeformation. Journal of Geophysical Research,96(10):16429-16454.
    Simons F. J.,van Hilst R. D.,Montagner J. P.,et al.2002. Multimode Rayleigh waveinversion for heterogeneity and azimuthal anisotropy of the Australian uppermantle. Geophysical Journal International,151:738-754.
    Smith M. L.,Dahlen F. A.1973. The azimuthal dependence of Love and Rayleighwave propagation in a slightly anisotropic medium. Journal of GeophysicalResearch,78(17):3321-3333.
    Snieder R.2004. Extracting the Green’s function from the correlation of coda waves:A derivation based on stationary phase. Physical Review E,69(46610):1-8.
    Stehly L.,Campillo M.,Shapiro N. M.2007. Traveltime measurements from noisecorrelation: stability and detection of instrumental time‐shifts. GeophysicalJournal International,171(1):223-230.
    Tapponnier P.,Peltzer G., Le Dain A. Y.,et al.1982. Propagating extrusion tectonicsin Asia:New insights from simple experiments with plasticine. Geology,10(12):611-616.
    Tapponnier P.,Zhiqin X.,Roger F.,et al.2001. Oblique stepwise rise and growth ofthe Tibet Plateau. Science.,294(5547):1671-1677.Tarantola A.,Nercessian A.1984. Three‐dimensional inversion without blocks.
    Geophysical Journal of the Royal Astronomical Society,76(2):299-306.Tarantola A.,Valette B.1982. Generalized nonlinear inverse problems solved using
    the least squares criterion. Reviews of Geophysics and Space Physics,20(2):
    219-232.Thurber C. H.1983. Earthquake locations and three-dimensional crustal structure in
    the Coyote Lake area,central California. Journal of Geophysical Research,
    88(B10):8226-8236.Vecsey L.,Plomerová J.,Babuska V.2008.Shear-wave splitting measurements
    --Problems and solutions. Tectonophysics,462(1-4):178-196.Vinnik L. P.,Farra V.,Romanowicz B.1989. Azimuthal anisotropy in the Earth from
    observations of SKS at Geoscope and NARS broadband stations. Bulletin of the
    Seismological Society of America,79(5):1542-1558.Vinnik L. P.,Makeyeva L. I.,Milev A.,et al.1992. Global patterns of azimuthal
    anisotropy and deformations in the continental mantle. Geophysical Journal
    International,111(3):433-447.Wang C. Y.,Chan W. W.,Mooney W. D.2003. Three-dimensional velocity structure
    of crust and upper mantle in southwestern China and its tectonic implications.
    Journal of Geophysical Research,108(B9):2442(1-18).Wapenaar K.,Thorbecke J.,Draganov D.2004. Relations between reflection and
    transmission responses of three-dimensional inhomogeneous media. Geophysical
    Journal International,156(2):179-194.Weaver R. L.,Lobkis O. I.2001. On the emergence of the Green’s function in the
    correlations of a diffuse field. The Journal of the Acoustical Society of America,
    109(5):3011-3017.Weaver R. L.2005. GEOPHYSICS:Information from Seismic Noise. Science,
    307(5715):1568-1569.Xu Z. J.,Song X.2009. Temporal changes of surface wave velocity associated with
    major Sumatra earthquakes from ambient noise correlation. Proceedings of theNational Academy of Sciences,106(34):14207-14212.
    Yang Y.,Zheng Y.,Ritzwoller M.2009. Surface wave phase velocities and azimuthalanisotropy in Tibet and surrounding regions from ambient noise tomography. EosTrans. AGU. Fall Meeting Suppl.,86(52).
    Yang Y.,Ritzwoller M. H.,Jones C. H.2011. Crustal structure determined fromambient noise tomography near the magmatic centers of the Coso region,south-eastern California. Geochemistry Geophysics Geosystems,12(2):Q2009(1-20).
    Yang Y.,Ritzwoller M. H.,Lin F. C.,et al.2008. Structure of the crust and uppermostmantle beneath the western United States revealed by ambient noise andearthquake tomography. Journal of Geophysical Research,113(B12):1-9.
    Yao H.,Beghein C.,Van Der Hilst R. D.2008. Surface wave array tomography in SETibet from ambient seismic noise and two‐station analysis–II. Crustal andupper‐mantle structure. Geophysical Journal International,173(1):205-219.
    Yao H.,Van Der Hilst R. D.,De Hoop M. V.2006. Surface‐wave array tomographyin SE Tibet from ambient seismic noise and two‐station analysis–I. Phasevelocity maps. Geophysical Journal International,166(2):732-744.
    Yao H.,Xu G.,Zhu L.,et al.2005. Mantle structure from inter-station Rayleigh wavedispersion and its tectonic implication in western China and neighboring regions.Physics of the Earth and Planetary Interiors,148(1):39-54.
    Yin A.,Harrison T. M.2000. Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.
    Yin A.,Rumelhart P. E.,Butler R.,et al.2002. Tectonic history of the Altyn Tagh faultsystem in northern Tibet inferred from Cenozoic sedimentation. GeologicalSociety of America Bulletin,114(10):1257-1295.
    Zatsepin S. V.,Crampin S.1997. Modelling the compliance of crustal rock—I.Response of shear‐wave splitting to differential stress. Geophysical JournalInternational,129(3):477-494.
    Zheng S.,Sun X.,Song X.,et al.2008. Surface wave tomography of China fromambient seismic noise correlation. Geochemistry Geophysics Geosystems,9(5):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700