利用背景噪声研究汶川地震震源区及周边地壳介质地震波速度变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日四川省汶川县发生了Ms8.0级强烈地震,造成了重大的人员伤亡和经济损失,这是新中国成立以来破坏性最大的地震,也是自1976年唐山地震后发生在中国大陆伤亡最惨重的一次地震。大地震发生在四川盆地与川西高原交界的龙门山断裂带上,发震断层向北东方向单侧扩展,全长超过300km,沿龙门山中央断裂和前山断裂形成约240km和72km的地表破裂带,在以龙门山断裂带为中心的较大范围内都有显著的同震地表形变;同时,地下介质的属性和状态可能也会发生一些变化,研究这些变化对于了解汶川地震机理、断裂带演化规律及地震危险性分析有着极其重要的意义。本论文利用国际上近两年最新发展的背景噪声互相关方法并结合尾波干涉的思想研究了汶川地震前后震源区及周边相对地震波速度的变化。
     基于背景噪声的地下介质速度结构及其变化的研究是目前地震学的研究热点之一。大气、海洋和固体地球相互作用产生了全球的背景噪声场,对两个地震台站的背景噪声进行互相关运算可提取其间的经验格林函数,进而反演地下介质的速度结构,而不同时期的经验格林函数波形能保持很高的稳定性和相似性,对这些波形应用尾波干涉法测量能高精度地检测地下结构随时间的变化。由于背景噪声数据的连续性,可以实现对波速变化的全时监测。
     本研究应用了2001年-2009年汶川地震震源区周边的四川区域地震台连续波形资料的垂直分量。数据处理包括三个主要步骤:首先,通过单台数据预处理得到地震背景噪声;然后,对两个台站的背景噪声进行互相关运算提取台站间的经验格林函数;最后,在0.1-0.5Hz频带下计算不同时段的经验格林函数与参考经验格林函数的走时偏移,进而得到相对地震波速度随时间的变化。数据预处理中的关键步骤是时域归一化,研究中对比了已有的几种时域归一化方法,并对滑动窗绝对值平均方法作了适当的改进,取得了较好效果。通过大量的试算对移动窗口互相关法、移动窗口互谱法、压缩-拉伸法及移动窗口压缩-拉伸法四种相对波速测量方法进行对比分析,最终选取了误差较小、可靠性较高的移动窗互谱法计算相对地震波速度变化。
     应用上述数据处理方法得到汶川地震震源区及周边上百个台站对的相对波速变化结果,根据台站对间距及经验格林函数的信噪比和钟差等参数对这些结果进行筛选,最后深入分析了41个台站对的相对波速变化。结果表明,2008年5月12日汶川Ms8.0级地震造成了震源区地震波速度的急剧降低,最大降幅达0.4%;从西南至东北300多公里的余震带内,波速变化呈现空间分段特征,大致以安县为界,余震带西南部地区在汶川主震后波速降即达到最大值,而东北部地区的最大波速降一般出现在主震后的1-4个月,相对地震波速度变化的这种分段特性与地震序列的时空分布特征有较好的对应关系;在震源区外围的四川盆地也观测到了震后波速降低,而川西高原内部则没有出现明显的波速变化。为探究汶川地震前较长时段该区地震波速度变化的“背景”,将所用资料的时间范围向前延伸到2001年,发现在汶川地震发生前的几年时间里各台站对的波速变化一直比较平稳,没有明显的线性或周期性的变化。
     本文还对检测到的地震波速度变化的物理机制进行了分析。利用背景噪声互相关方法得到的波速变化主要反映了台站对间一定的三维空间内地壳介质状态及属性的变化,尽管还不能确定这种变化的准确空间位置及引起变化的物理机制,但通过分析计算并结合其它地质与地球物理资料,我们认为强地面运动引起的地表破坏和地震的静态应力变化都不能很好地解释本文得到的地震波速度变化,这种变化可能反映了一定深度范围内断层区内部的结构破坏和断层周围的应力变化。
On 12 May 2008, an Ms 8.0 earthquake, causing heavy casualties and economic losses,occurred in Wenchuan County, Sichuan Province, China. It was the most destructive earthquake since the founding of the PRC and the deadliest one to hit China since the 1976 Tangshan earthquake. This great earthquake occurred along the Longmenshan thrust belt, which is at the eastern margin of the Tibetan Plateau and adjacent to the Sichuan basin. It ruptured over a length of 300km along the NE direction and generated 240-km and 72-km surface rupture zone on the Longmenshan central fault and front-range fault, respectively. There was significantly large range of co-seismic deformation around the Longmenshan fault zone. In the meantime, the physical properties of subsurface material around the seisgenic zone also would be changed caused by the great earthquake. Studying these changes has important significance for understanding the mechanism of the Wenchuan earthquake and the evolution of fault zone and analyzing the seismic hazard. In this thesis, we applied ambient seismic noise correlation, combining with the coda wave interferometry technique, to detect the co- and post-seismic variations of the crustal velocity around the Wenchuan earthquake fault zone.
     The research of the Earth's interior structure and its temporal variation based on the ambient seismic noise is one of the hottest topics in seismology recently. The interaction of the ocean and atmosphere with the solid Earth creates the ambient noise field throughout the Earth. Computing the cross-correlations of ambient noise at two stations can obtain the interstation empirical Green function (EGF), which can be used to invert the velocity structure. The waveforms of EGF in different period times maintain high degree of similarity, which makes it possible to detect the temporal variations of seismic velocity of the medium using coda wave interferometry. Furthermore, the continuous monitoring of velocity changes can be achieved due to the continuity of the available ambient noise.
     In this study, we used the vertical component seismograms recorded by seismic stations in the Sichuan digital seismic network during the year 2001 - 2009. The data processing procedure was divided into three phases: (1) single station data preprocess to obtain the ambient noise;(2) cross-correlation and temporal stack to extract the inter-station empirical Green function;(3) estimation of relative velocity change by measuring travel time shifts between the daily and the reference empirical Green function. The key procedure in single station data preprocess was time domain normalization. After comparing some existing normalization method, we made some improvement of running absolute mean normalization, from which we achieved better results. We did a lot of trials and comparative analyses of the techniques (moving-window cross-correlation technique, moving-window cross-spectrum technique, stretching technique and moving-window stretching technique) and parameters for estimating temporal change of seismic velocity. Finally, we chose the moving-window cross-spectrum technique to measure the velocity changes in this study because it can give a stable estimate of velocity changes and own small computing error.
     Applying the above data processing procedure, we obtained more than 100 station pair results of relative seismic velocity changes around the Wenchuan earthquake fault zone in frequency 0.1-0.5Hz. We selected the results based on the distance of station pairs and the SNR and clock error of EGF waveforms. Then 41 results were selected for further analysis. The results revealed a sudden post-seismic velocity drop for the station pairs across the Longmenshan fault, the largest of which was more than 0.4%. The seismic velocity change with time exhibited a spatial difference: in the southwest segment of the Longmenshan fault, the maximum value of velocity reduction occurred at the time immediately after the Wenchuan earthquake, whereas in the northeast segment of the fault velocity reduction appeared 1-4 months after the main earthquake, which was corresponding to the spatial-temporal distribution of the aftershocks. Furthermore, the spatial extent and magnitude of the post-seismic velocity change in the Sichuan Basin exceeded that in the mountainous regions west of the fault zone. In order to explore the background of seismic velocity change in this area before the Wenchuan earthquake, we processed the data from January 2001 and found that the velocity change in every station pair was always stable and no obvious linear or periodic trends before the Wenchuan earthquake.
     We discussed the physical mechanism of seismic velocity change observed above. The velocity change calculated by ambient seismic noise correlation reflected the changes of the states and properties of 3D crustal medium around station pair. We analyzed the results combined with other geological and geophysical observation and found that the static stress change and near-surface physical damage caused by strong ground motion could not entirely explain the measurements in this study. We inferred the temporal changes of seismic velocity maybe related to the damages from faults rupture and stress changes around the fault zones.
引文
单新建,屈春燕,宋小刚等.2009a.汶川Ms8.0级地震InSAR同震形变场观测与研究.地球物理学报,52(2):496-504.
    单新建,宋小刚,韩宇飞等.2009b.汶川Ms8.0地震前InSAR垂直形变场变化特征研究.地球物理学报,52(11):2739-2745.
    丁志峰,武岩,王辉等.2008.2008年汶川地震震源区横波分裂的变化特征.中国科学(D辑:地球科学),38(12):1600-1604.
    房立华,吴建平,吕作勇.2009.华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,52(3):663-671.
    冯德益.地震波速异常.1981.北京:地震出版社,
    冯德益.1975.1974年5月云南省永善—大关7.1级强震前波速比的异常变化.地球物理学报,18(4):235-239.
    国家重大科学工程中国地壳运动观测网络项目组.2008.GPS测定的2008年汶川Ms 8.0级地震的同震位移场.中国科学(D辑:地球科学),38(10):1195-1206.
    江在森,方颖,武艳强等.2009.汶川8.0级地震前区域地壳运动与变形动态过程.地球物理学报,52(2):505-518.
    雷建设,赵大鹏,苏金蓉等.2009.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,52(2):339-345.
    李军,金星,周峥嵘等.2009.利用地震噪声准实时监测短周期面波波速变化.地震学报,31(06):629-640.
    李昱,姚华建,刘启元等.2010.川西地区台阵环境噪声瑞利波相速度层析成像.地球物理学报,53(4):842-852.
    马宏生,刘杰,张国民等.2005.尾波Qc值随时间变化在地震预测中应用的研究.地震,25(4):39-48.
    申重阳,李辉,孙少安等.2009.重力场动态变化与汶川Ms8.0地震孕育过程.地球物理学报,52(10):2547-2557.
    苏琴,朱航,杨永林.2009.耿达短水准异常与汶川8.0级地震.大地测量与地球动力学,29(B08):103-105.
    王洪体,庄灿涛,薛兵等.2009.精密主动地震监测.地球物理学报,52(7):1808-1815.
    王伟君,刘杰.2004.1999年岫岩地震序列尾波Qc的变化过程.地震,24(4):37-44.
    王伟涛,王宝善,葛洪魁等.2009.利用主动震源检测汶川地震余震引起的浅层波速变化.中国地震,25(3):223-233.
    王卫民,赵连锋,李娟等.2008.四川汶川8.0级地震震源过程.地球物理学报,51(5):1403-1410.
    吴建平,黄媛,张天中等.2009.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,52(2):320-328.
    徐锡伟,闻学泽,叶建青等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629.
    杨微,葛洪魁,王宝善等.2010.由精密控制人工震源观测到的绵竹5.6级地震前后波速变化.地球物理学报,53(5):1149-1157.
    杨晓平,李安,刘保金等.2009.成都平原内汶川Ms8.0级地震的地表变形.地球物理学报(10):2527-2537.
    张培震,闻学泽,徐锡伟等.2009.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,54(7):944-953.
    张四新,张希,王双绪等.2008.汶川8.0级地震前后地壳垂直形变分析.大地测量与地球动力学,28(6):43-46.
    张勇,许力生,陈运泰.2009.2008年汶川大地震震源机制的时空变化.地球物理学报,52(2):379-389.
    赵翠萍,陈章立,周连庆等.2009.汶川Mw8.0级地震震源破裂过程研究:分段特征.科学通报,54(22):3475-3482.
    郑秀芬,陈朝辉,张春贺.2008.1999年台湾集集地震余震区——嘉义地区地震的剪切波分裂参数随时间变化的研究.地球物理学报,51(1):149-157.
    祝意青,徐云马,吕弋培等.2009.龙门山断裂带重力变化与汶川8.0级地震关系研究.地球物理学报,52(10):2538-2546.
    Aggarwal Y. P., Sykes L. R., Armbruster J., et al. 1973. Premonitory Changes in Seismic Velocities and Prediction of Earthquakes. Nature, 241: 101-104.
    Aki K. 1957. Space and time spectra of stationary stochastic waves with special reference to microtremors. Bulletin of the Earthquake Research Institute, 35: 415-456.
    Aki K., Chouet B. 1975. Origin of coda waves: Source, attenuation, and scattering effects. J.Geophys. Res., 80: 3322-3342.
    Aki K., De Fazio T., Reasenberg P., et al. 1970. An active experiment with earthquake fault for an estimation of the in situ stress. Bull. Seismol. Soc. Am., 60(4): 1315-1336.
    Anderson D. L. 2002. The inner inner core of Earth. Proc. Nat. Acad. Sci., 99(22): 13, 966-13, 968.
    Barmin M. P., Ritzwoller M. H., Levshin A. L. 2001. A Fast and Reliable Method for Surface Wave Tomography. Pure Appl. Geophys., 158(8): 1351-1375.
    Bensen G. D., Ritzwoller M. H., Barmin M. P., et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169(3): 1239-1260.
    Bensen G. D., Ritzwoller M. H., Shapiro N. M. 2008. Broad-band ambient noise surface wave tomography across the United States. J. Geophys. Res., 113, B5306, doi:10.1029/2007JB 005248.
    Booth D. C., Crampin S., Lovell J. H., et al. 1990. Temporal changes in shear wave splitting during an earthquake swarm in Arkansas. J. Geophys. Res., 95: 11, 151-11, 164.
    Brenguier F., Campillo M., Hadziioannou C., et al. 2008b. Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, 321: 1478-1481.
    Brenguier F., Shapiro N. M., Campillo M., et al. 2008a. Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1: 126-130.
    Brenguier F., Shapiro N. M., Campillo M., et al. 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys. Res. Lett., 34, L02305, doi: 10.1029/2006GL028586.
    Campillo M., Chen J., Froment B., et al. 2009. Evidence of depth dependence of the seismic velocity temporal change associated with the Wenchuan earthquake. Eos Trans. AGU, Fall Meet. Suppl., S22A-S24A.
    Campillo M., Paul A. 2003. Long-Range Correlations in the Diffuse Seismic Coda. Science, 299(5606): 547-549.
    Chouet B. 1979. Temporal Variation in the Attenuation of Earthquake Coda Near Stone Canyon, California. Geophys. Res. Lett., 6(3): 143-146.
    Claerbout J. F. 1968. Synthesis of a layered medium from its acoustics transmission response. Geophysics, 33: 264-269.
    Crampin S., Volti T., Stefánsson R. 1999. A successfully stress-forecast earthquake. Geophys. J. Int., 138: F1-F5.
    Crampin S., Zatsepin S. V. 1997. Modelling the compliance of crustal rock: II—Response to temporal changes before earthquakes. Geophys. J. Int., 129: 495-506.
    De Fazio T., Aki K., Alba J. 1973. Solid Earth Tide and Observed Change in the In Situ Seismic Velocity. J. Geophys. Res., 78(8): 1319-1322.
    Duvall T. L., Jefferies S. M., Harvey J. W., et al. 1993. Time distance helioseismology. Nature, 362: 430-432.
    Dziewonski A. M., Anderson D. L. 1981. Preliminary reference Earth model. Phys. Earth Planet. Int., 25(4): 297-356.
    Fukao Y., Obayashi M., Inoue H., et al. 1992. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res., 97(B4): 4809-4822.
    Gao Y., Crampin S. 2004. Observations of stress relaxation before earthquakes. Geophys. J. Int., 157: 578-582.
    Gerst A., Savage M. K. 2004. Seismic Anisotropy Beneath Ruapehu Volcano: A Possible Eruption Forecasting Tool. Science, 306(5701): 1543-1547.
    Grêt A., Snieder R., Aster R. C., et al. 2005. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys. Res. Lett., 32, L06304, doi:10.1029/2004GL021143.
    Grêt A., Snieder R., Scales J. 2006. Time-lapse monitoring of rock properties with coda wave interferometry. J. Geophys. Res., 111, B03305, doi:10.1029/2004JB003354.
    Guo Z., Gao X., Yao H., et al. 2009. Midcrustal low-velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomography. Geochem. Geophys. Geosyst., 10, Q05007, doi: 10.1029/2009GC002458.
    Hao K. X., Si H., Fujiwara H., et al. 2009. Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake Mw 7.9, China. Geophys. Res. Lett., 36, L11303, doi:10.102 9/2009GL037971.
    Hennino R., Trégourès N., Shapiro N. M., et al. 2001. Observation of Equipartition of Seismic Waves. Phys. Rev. Lett., 86(15): 3447-3450.
    Huang J., Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111, B09305, doi: 10.1029/2005JB004066.
    Hubbard J., Shaw J. H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan 7.9 earthquake. Nature, 458: 194-197.
    Ishii M., Dziewonski A. M. 2002. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc Nat Acad Sci, 99(22): 14, 026-14, 030.
    Jeffreys H., Bullen K. E. 1940. Seismological Tables. London: British Association for the Advancement of Science.
    Ji C., Hayes G. Preliminary result of the May 12, 2008 Mw 7.9 eastern Sichuan, China earthquake, http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.php. 2008.
    Jin A., Aki K. 1986. Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res., 91(B1): 665-674.
    Kanamori H., Hadley D. 1975. Crustal structure and temporal velocity change in Southern California. Pure Appl. Geophys., 113: 257-280.
    Kennett B. L. N. 2005. Seismological Tables: ak135. Canberra: Research School of Earth Sciences The Australian National University,
    Kennett B. L. N. 1991. IASPEI 1991 Seismological Tables. Canberra: Research School of Earth Sciences The Australian National University.
    Koper K. D., Seats K., Benz H. 2010. On the Composition of Earth's Short-Period Seismic Noise Field. Bull. Seismol. Soc. Am., 100(2): 606-617.
    Leary P. C., Malin P. E., Phinney R. A., et al. 1979. Systematic monitoring of millisecond travel time variations near Palmdale California. J. Geophys. Res., 84(B2): 659-666.
    Li H., Su W., Wang C., et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth Planet. Sci. Lett., 282: 201-211.
    Li L., Chen Q., Cheng X., et al. 2007. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China. Geophys. Res. Lett., 34, L23309, doi:10.1029/ 2007GL031594.
    Li S., Lai X., Yao Z., et al. 2009. Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trappedwaves. Earthq. Sci., 22(4): 417-424.
    Li X., Zhou Z., Huang M., et al. 2008. Preliminary Analysis of Strong-Motion Recordings from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008. Seismol. Res. Lett., 79(6): 844-854.
    Li Y., Chen P., Cochran E. S., et al. 2006. Seismic Evidence for Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake. Bull. Seismol. Soc. Am., 96(4B): 349-363.
    Liang C., Langston C. A. 2008. Ambient seismic noise tomography and structure of eastern North America. J. Geophys. Res., 113, B03309, doi:10.1029/2007JB005350.
    Lin F., Moschetti M. P., Ritzwoller M. H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(2): 281-298.
    Lin F., Ritzwoller M. H., Townend J., et al. 2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int., 170(9): 649-666.
    Lin J., Stein R. S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res., 109, B02303, doi: 10.1029/2003JB002607.
    Lindh A. G., Lockner D. A., Lee W. H. K. 1978. Velocity anomalies: An alternative explanation. Bull. Seismol. Soc. Am., 68: 721-734.
    Lobkis O. I., Weaver R. L. 2001. On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110: 3011-3017.
    Mcevilly T. V., Johnson L. R. 1974. Stability of P and S velocities from central California quarry blasts. Bull. Seismol. Soc. Am., 64: 343-353.
    Mcgarr A. 1974. Earthquake Prediction: Absence of a Precursive Change in Seismic Velocities before a Tremor of Magnitude 3 3 4. Science, 185: 1047-1049.
    Meier U., Shapiro N. M., Brenguier F. 2010. Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys. J. Int., 181: 985-996.
    Mjachkin V. I., Brace W. F., Sobolev G. A., et al. 1975. Two models for earthquake forerunners.Pure Appl. Geophys., 113: 169-181.
    Molnar P., Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426.
    Montelli R., Nolet G., Dahlen F. A., et al. 2004. Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle. Science, 303(5656): 338-343.
    Nadeau R. M., Mcevilly T. V. 1999. Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science, 285(5428): 718-721.
    Niu F., Silver P. G., Daley T. M., et al. 2008. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454: 204-208.
    Niu F., Silver P. G., Nadeau R. M., et al. 2003. Migration of seismic scatterers associated with the 1993 Parkfield aseismic transient event. Nature, 426: 544-548.
    Nur A. 1972. Dilatancy, pore fluids, and premonitory variations of ts tp travel times. Bull. Seismol. Soc. Am., 62(5): 1217-1222.
    Obara K. 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296: 1679-1681.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82(2): 1018-1040.
    Peng H. S., Wu Z. L., Jiang C. S. 2009. Pre-seismic Changes of Noise Correlation Function (NCF) before the 512 Wenchuan Earthquake?. Concurrency and Computation: Practice and Experience.
    Peng Z., Ben-Zion Y. 2005. Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 ?zmit and M7.1 Düzce, Turkey, earthquake sequences. Geophys. J. Int., 160: 1027-1043.
    Peng Z., Ben-Zion Y. 2006. Temporal Changes of Shallow Seismic Velocity Around the Karadere-Düzce Branch of the North Anatolian Fault and Strong Ground Motion. Pure Appl. Geophys., 163: 567-600.
    Poupinet G., Ellsworth W. L., Frechet J. 1984. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California. J. Geophys. Res., 89(B7): 5719-5731.
    Ratdomopurbo A., Poupinet G. 1995. Monitoring a Temporal Change of Seismic Velocity in aVolcano: Application to the 1992 Eruption of Mt. Merapi (Indonesia). Geophys. Res. Lett., 22(7): 775-778.
    Reasenberg P., Aki K. 1974. A Precise, Continuous Measurement of Seismic Velocity for Monitoring In Situ Stress. J. Geophys. Res., 79(2): 399-406.
    Ritzwoller M. H., Levshin A. L. 1998. Eurasian surface wave tomography: Group velocities. J. Geophys. Res., 103(B3): 4839-4878.
    Roux P., Kuperman W. A. 2004. Extracting coherent wavefronts from acoustic ambient noise in the ocean. J. Acoust. Soc. Am., 116: 1995-2003.
    Roux P., Sabra K. G., Kuperman W. A., et al. 2005. Ambient noise cross correlation in free space: Theoretical approach. J. Acoust. Soc. Am., 117(1): 79-84.
    Royden L. H., Burchfiel B. C., van der Hilst R. D. 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058.
    Rubinstein J. L., Beroza G. C. 2004. Evidence for Widespread Nonlinear Strong Ground Motion in the MW 6.9 Loma Prieta Earthquake. Bull. Seismol. Soc. Am., 94(5): 1595-1608.
    Rubinstein J. L., Beroza G. C. 2005. Depth constraints on nonlinear strong ground motion from the 2004 Parkfield earthquake. Geophys. Res. Lett., 32, L14313, doi:10.1029/2005GL023189.
    Rubinstein J. L., Uchida N., Beroza G. C. 2007. Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake. J. Geophys. Res., 112, B05315, doi: 10.1029/2006JB004440.
    Sabra K. G., Gerstoft P., Roux P., et al. 2005. Extracting time-domain Green's function estimates from ambient seismic noise. Geophys. Res. Lett., 32, L03310, doi: 10.1029/2004GL021862.
    Sato H. 1986. Temporal Change in Attenuation Intensity Before and After the Eastern Yamanashi Earthquake of 1983 in Central Japan. J. Geophys. Res., 91(B2): 2049-2061.
    Schaff D. P., Beroza G. C. 2004. Coseismic and postseismic velocity changes measured by repeating earthquakes. J. Geophys. Res., 109, B10302, doi:10.1029/2004JB003011.
    Scholz C. H., Sykes L. R., Aggarwal Y. P. 1973. Earthquake prediction: a physical basis. Science, 181: 803-810.
    Semenov A. N. 1969. Variation in the travel time of transverse and longitudinal waves before violent earthquakes. Bull. Acad. Sci. USSR Geophys. Phys. Solid Earth, 3: 245-248.
    Sens-Sch?nfelder C., Wegler U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett., 33, L21302, doi:10.1029/2006GL027797.
    Shapiro N. M., Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31, L7614, doi: 10.1029/2004GL019491.
    Shapiro N. M., Campillo M., Stehly L., et al. 2005. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307: 1615-1618.
    Shapiro N. M., Ritzwoller M. H., Bensen G. D. 2006. Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophys. Res. Lett., 33, L18310, doi:10.1029/2006GL027010.
    Shen Z., Sun J., Zhang P., et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2(10): 718-724.
    Silver P. G., Daley T. M., Niu F., et al. 2007. Active Source Monitoring of Cross-Well Seismic Travel Time for Stress-Induced Changes. Bull. Seismol. Soc. Am., 97(1B): 281-293.
    Snieder R. 2004. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E, 69, 046610, doi: 10.1103/PhysRevE.69.046610.
    Snieder R. 2006. The theory of coda wave interferometry. Pure Appl. Geophys., 163: 455-473.
    Snieder R., Grêt A., Douma H., et al. 2002. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295: 2253-2255.
    Song X., Richards P. G. 1996. Seismological evidence for differential rotation of the Earth’s inner core. Nature, 382: 221-224.
    Stehly L., Campillo M., Shapiro N. M. 2006. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., 111, B10306, doi:10.1029/2005JB004237.
    Stehly L., Campillo M., Shapiro N. M. 2007. Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys. J. Int., 171(4): 223-230.
    Tapponnier P., Molnar P. 1977. Active faulting and tectonics in China. J. Geophys. Res., 82(B20): 2905-2930.
    Thatcher W. 2009. How the Continents Deform: The Evidence From Tectonic Geodesy. Annu. Rev. Earth Planet. Sci., 37(1): 237-262.
    van der Hilst R. D., Widiyantoro S., Engdahl E. R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578-584.
    Vidale J. E., Li Y. G. 2003. Damage to the shallow Landers fault from the nearby Hector Mineearthquake. Nature, 421: 524-526.
    Waldhauser F., Ellsworth W. L. 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am., 90(6): 1353-1368.
    Wang B., Zhu P., Chen Y., et al. 2008. Continuous subsurface velocity measurement with coda wave interferometry. J. Geophys. Res., 113, B12313, doi:10.1029/2007JB005023.
    Wang Z., Fukao Y., Pei S. 2009. Structural control of rupturing of the Mw7.9 2008 Wenchuan Earthquake, China. Earth Planet. Sci. Lett., 279: 131-138.
    Wapenaar K. 2004. Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Phys. Rev. Lett., 93, 254301, doi: 10.1103/ PhysRevLett.93.254301.
    Weaver R. L., Lobkis O. I. 2001. Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies. Phys. Rev. Lett., 87, 134301, doi: 10.1103/PhysRevLett.87.134301.
    Weaver R. L., Lobkis O. I. 2006. Diffuse fields in ultrasonics and seismology. Geophysics, 71(4): S15-S19.
    Wegler U., Nakahara H., Sch?nfelder C. S., et al. 2009. Sudden Drop of Seismic Velocity after the 2004 Mw 6.6 Mid-Niigata Earthquake, Japan, Observed with Passive Image Interferometry. J. Geophys. Res., 114, B06305, doi:10.1029/2008JB005869.
    Wegler U., Sens-Sch?nfelder C. 2007. Fault zone monitoring with passive image interferometry. Geophys. J. Int., 168(23): 1029-1033.
    Whitcomb J. H., Garmany J. D., Anderson D. L. 1973. Earthquake Prediction Variation of Seismic Velocities before the San Francisco Earthquake. Science, 180: 632-635.
    Wolfe C. J., Bjarnason I. T., Vandecar J. C., et al. 1997. Seismic structure of the Iceland mantle plume. Nature, 385: 245-247.
    Xu Z., Song X. 2009. Temporal change of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proc. Nat. Acad. Sci., 106(34): 14, 207-14, 212.
    Yamamura K., Sano O., Utada H., et al. 2003. Long-term observation of in situ seismic velocity and attenuation. J. Geophys. Res., 108(B6): 2317, doi:10.1029/2002JB002005.
    Yang Y., Ritzwoller M. H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst., 9, Q02008, doi:10.1029/2007GC001814.
    Yang Y., Ritzwoller M. H., Levshin A. L., et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int., 168(3): 259-274.
    Yao H., Beghein C., van der Hilst R. D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure. Geophys. J. Int., 173(36): 205-219.
    Yao H., van der Hilst R. D., de Hoop M. V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps. Geophys. J. Int., 166(2): 732-744.
    Zhang H., Thurber C. 2005. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California. J. Geophys. Res., 110, B04303, doi:10.1029/ 2004JB003186.
    Zhang H., Wang P., van der Hilst R. D., et al. 2009. Three-dimensional passive seismic waveform imaging around the SAFOD site, California, using the generalized Radon transform. Geophys. Res. Lett., 36, L23308, doi:10.1029/2009GL040372.
    Zhang J., Gerstoft P., Shearer P. M. 2009. High-frequency P-wave seismic noise driven by ocean winds. Geophys. Res. Lett., 36, L09302, doi:10.1029/2009GL037761.
    Zhang J., Song X., Li Y., et al. 2005. Inner Core Differential Motion Confirmed by Earthquake Waveform Doublets. Science, 309: 1357-1360.
    Zhang P., Shen Z., Wang M., et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812.
    Zhao D. 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Int., 146: 3-34.
    Zhao D., Hasegawa A., Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res., 99(B11): 22, 313-22, 329.
    Zheng S., Sun X., Song X., et al. 2008. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst., 9, Q05020, doi:10.1029/2008GC001981.
    Zhou Y., Nolet G., Dahlen F. A., et al. 2006. Global upper-mantle structure from finite-frequency surface-wave tomography. J. Geophys. Res., 111, B04304, doi: 10.1029/2005JB003677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700