抗人CD44单克隆抗体HI313生物学功能研究及其单链抗体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:探讨小鼠抗人CD44单克隆抗体(HI313)对髓系白血病细胞增殖、分化的影响。构建HI313单链抗体(ScFv),为进一步治疗性抗体开发打下基础。
     实验方法:通过流式细胞仪检测,比较小鼠抗人CD44单克隆抗体HI313与HI44a的亲合力及竞争抑制作用;以胎盘兰计数和MTS法检测HI313对白血病细胞系增殖抑制的影响;Annexin V/PI和The Cycle TESE~(TM) PLUSDNA Reagent Kit检测HI313对NB4细胞凋亡及细胞周期影响;以及HI313对AML病人血细胞诱导分化作用;RT-PCR的方法克隆小鼠杂交瘤HI313的抗体轻、重链可变区基因,利用overlap-PCR方法构建HI313-ScFv融合基因,定向克隆入原核表达载体pET22b,构建重组质粒pET22b/HI313-ScFv。将重组质粒转染入BL21感受态菌株,在IPTG存在条件下,诱导表达HI313单链抗体。所得融合蛋白经复性、镍柱纯化后,通过流式细胞术检测其与天然细胞膜CD44蛋白的结合活性和特异性。
     实验结果:通过THP-1和KG1a细胞的检测,HI313克隆的相对亲合力分别为1.2nM和1.34nM;HI44a克隆的相对亲和力分别为3.5nM和5.89nM;免疫竞争实验表明HI313与HI44a识别不同抗原表位;HI313单克降抗体对NB4白血病细胞系具有强烈的抑制增殖作用,并使NB4细胞周期停留在G0/G1期;对AML病人血细胞诱导分化作用结果显示HI313可使髓系表面的成熟标志表达量增加。扩增HI1313重链可变区基因357bp,HI313轻链可变区基因339bp;成功构建HI313-ScFv单链抗体,能与KG1a细胞表面抗原结合。
     实验结论:HI313单克隆抗体具有高亲和力;且与HI44a克隆结合的不是一个抗原表位;HI313对NB4细胞具有增殖抑制作用,作用机制可能与阻滞细胞周期于G0/G1期相关;HI313能有效诱导AML病人血细胞的分化,并对AML病人的各亚型有一定的促分化作用,提示此抗体具有针对AML进行靶向治疗的潜力,为HI313人抗体的进一步基因工程改造及临床应用奠定了基础。
Objective:
     To study the biological functions of mouse anti human monoclonal antibody-HI313 , desire to construct anti-CD44 single chain fragment variable based on HI313 monoclonal antibody (HI1313-ScFv). These results provide a potential target and basis for developing CD44-targeted therapy in AML.
     Methods:
     Through observations on HI313 and HI44a monoclonal antibody affinity and competitive inhibition by flow cytometry; to analyze the affection on some CD44+ leukemia cell lines caused by HI313, we use MTS and trypan-blue dye . Annexin V/PI and The Cycle TESE~(TM) PLUS DNA Reagent Kit detect the growing inhibition and cycle of the cells; Detect HI313 effect in reverse the differentiation blockage of AML cell. Amplified both heavy chain and light chain variable region gene of HI313 McAb by RT-PCR, than splice them into ScFv in form of VH-linker-VL.That recombinant gene fragment fragment was cloned into plasmid pET22b and induced to express the recombinant protein, HI313-ScFv, by IPTG in E.coli BL21.We purified the output by Ni Sepharose~(TM), denatured/re-natured and detected it binding activity with natural cell through Flow cytometry.
     Result:
     The relative affinities of HI313 tested by THP-1 and KG1a are 1.2nM and 1.34nM, while the ones of HI44a are 3.5nM and 5.89nM. The affinities of HI313 and HI44a are both less than the normal 10nM.The FACS shows that there is no competitive inhibition between HI313 and HI44a although they are both monoclonal antibodies of CD44, which indicates that the two antibodies do not share the same epitope.The HI313 monoclonal antibody can significantly inhibit the proliferation of the leukemia cell line NB4 by blocking the cell cycle on the G_0/G_1 point, while has little effects on other cell lines.Inducing differentiation of AML hemocytes shows that HI313 can increase the expression of myelogenous mature antigens.
     The variable region gene of both HI313 heavy chain (339bp) and light chain (357bp) was cloned.To construct The spliced ScFv fusion gene with linker by overlap-PCR. All long and successfully cloned into PET22b plasmid to construct pET22b/HI313-ScFv expression vector. That can high express recombinant protein in E.coli induced by IPTG. The recombinant ScFv protein can bind nature CD44 molecular.
     Conclusion:
     Both HI313 and HI44a possess high affinity, HI313 monoclonal antibody can inhibit growth of NB4 cell and induced those cell cycle retained G0/G1 stage. After construction of HI313-ScFv. we should keep moving to study its potential usage and reform it for future clinical application.
引文
1. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256,495-497.
    
    2. Nabel GJ. Genetic, cellular and immune approaches to disease therapy: past and future.Nat Med. 2004 Feb;10(2):135-41.
    
    3. Abou-Jawde R, Choueiri T, Alemany C, Mekhail T. An overview of targeted treatments in cancer. Clin Ther. 2003 Aug;25(8):2121-37.
    
    4. Dash A, Gilliland DG. Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14:49-64.
    
    5. Kogan SC, Bishop JM. Acute promyelocytic leukemia: from treatment to genetics and back. Oncogene. 1999 Sep 20; 18(38): 5261-7.
    
    6. Newland A. Progress in the treatment of acute myeloid leukaemia in adults. Int J Hematol.2002 Aug;76 Suppl 1:253-8.
    
    7. Gorin NC, Estey E, Jones RJ, Levitsky HI, Borrello I, Slavin S. New Developments in the Therapy of Acute Myelocytic Leukemia. Hematology (Am Soc Hematol Educ Program). 2000; 69-89.
    
    8. Smith BD, Bambach BJ, Vala MS, et al. Inhibited apoptosis and drug resistance in acute myeloid leukemia. Br J Haematol. 1998; 102: 1042 -1049.
    
    9. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds.Proc Natl Acad Sci USA 1978; 75:2458-2462.
    
    10. Collins SJ, Rescetti FW, Gallagher RE, et al. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med, 1979,149: 969-974.
    
    11. Chen ZX, Xue YQ, Zhang R et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 1991; 78:1413-1419.
    
    12. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds.Proc Natl Acad Sci USA 1978; 75:2458-2462.
    
    13. Collins SJ, Rescetti FW, Gallagher RE, et al. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med, 1979,149: 969-974.
    
    14. Chen ZX, Xue YQ, Zhang R et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 1991; 78:1413-1419.
    
    15. Fenaux P, Castaigne S, Dombret H et al. All-trans-retinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: a pilot study on 26 cases. Blood 1992;80:2176-2181.
    
    16. Niu C, Yan H, Yu T et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed promyelocytic leukemia patients. Blood 1999; 94: 3315-3324.
    
    17. Yuksel S, Saydam G, Uslu R, Sanli UA, Terzioglu E, Buyukececi F, Omay SB. Arsenic trioxide and methylprednisolone use different signal transduction pathways in leukemic differentiation. Leuk Res. 2002 Apr; 26(4): 391-398。
    
    18. Passegue E , Jamieson CH , Allies LE , Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003 ; 100 (Suppl 1): 11842 - 11849
    
    19. Reya T , Morrison SJ , Clarke MF , Weissman IL . Stem cells, cancer, and cancer stem cells . Nature 2001 ; 414 : 105 - 111
    
    20. Houghton JM . Stoicov C. Nomura S. Gastric Cancer Originating from Bone Marrow-Derived Cells. Science 2004; 306(5701): 1568-1571.
    
    21. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem cell biology to cancer[J]. Nat Rev Cancer, 2003, 3(12): 895—902.
    
    22. Liqing Jin. Kristin J Hope., Qiongli Zhai.et al.Targeting of CD44 eradicates human acute myeloid leukemic stem cells. [J].nature medicine.2006.12(24): 1167-1174.
    
    23. Daniela S Krausel, Katherine Lazarides, Ulrich H von Andrian.et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells [J].nature medicine.2006,24 (10):. 1038-1489
    
    24. Duelli D, Lazeblik Y. Cell fusion: a hidden enemy [J]. Cancer Cell, 2003, 3(5):445-448.
    
    25. Pawelek J. Tumour cell hybridization and metastasis revisited[J]. Melanoma Res, 2000,10(6): 507—514.
    
    26. Pawelek JM. Tumour-cell fusion as a source of myeloid traits in cancer.Lancet Oncol[J].2005 Dec;6(12):916-918.
    
    27. Duelli D, Lazeblik Y. Cell fusion: a hidden enemy [J]. Cancer Cell, 2003, 3(5):445-448.
    
    28. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signaling regulators. Oncogene 2003; 4:33-45.
    29. Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res Part C Embryo Today. 2003;69(2): 174-96.
    
    30. Cichy J, Pure E. The liberation of CD44. J Cell Biol. 2003 Jun 9;161(5):839-43.
    
    31. Naor, D., R.V. Sionov, and D. Ish-Shalom. 1997. CD44: structure, function, and association with the malignant process. Adv. Cancer Res. 71:241—319.
    
    32. Cuff, C.A., D. Kothapalli, I. Azonobi, et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J.Clin. Invest. 2001.108:1031-1040.
    
    33. DeGrendele, H.C., P. Estess, and M.H. Siegelman. 1997. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 278:672-675.
    
    34. Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H, Herrlich P. Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest. 1998;102:1024-1034.
    
    35. Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ. Altered patterns of CD44 epitope expression in human chronic and acute myeloid leukemia. Leukemia. 1996;10:1773-1781.
    
    36. Sievers EL, Larson RA, Estey E et al. Prolonged disease-free survival in patients with acute myeloid leukemia in first relapse treated with gemtuzumab ozogamicin (Mylotarg,CMA-676) followed by hematopoietic stem cell transplantation. Blood 2000; 96:320a.
    
    37. Bross PF,Beitz J,Chen G, et al.Approval summary:Gemtuzumab Ozogamicin in relapsed acute myeloid leukemia.Clin Cancer Res.2001 ;7:1490-1496..
    
    38. Durrant S, Schuster MW, Linkesch W, et al. Preliminary report of the safety and efficacy of gemtuzumab ozogamicin(Mylotarg) given in combination with cytarabine in patients with acute myeloid leukemia(AML).Proc ASCO 2002,21:1083.
    
    39. Mulford DA, Jurcic JG. Antibody-based treatment of acute myeloid leukaemia. Expert Opin Biol Ther. 2004; 4(1): 95-105.
    
    40. Park TS, Song J, Lee KA, Paracentric inversion-associated t(8;21) variant in de novo acute myelogenous leukemia: characteristic patterns of conventional cytogenetics, FISH, and multicolor banding analysis. Cancer Genet Cytogenet[J]. 2008 May;183(1):72-76.
    
    41. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signaling regulators. Oncogene 2003; 4:33-45.
    
    42. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C, Chomienne C,Smadja-Joffe F. Ligation of the CD44 adhesion molcule reverse blockage of differentiation in human acute myeloid leukemia. Nat Med, 1999; 5(6): 669-676.
    43. Charrad RS, Gadhoum Z, Qi Jy, Glachant A, Allouche M, Jasmin C, Chomienne C,Smadja-Joffe F. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 2002; 99:290-299.
    
    44. Allouche M, Charrad RS, Bettaieb A, Greenland C, Grignon C, Smadja-Joffe F. Ligation of the CD44 adhesion molcule inhibit drug-induced apoptosis in human myeloid leukemia cells. Blood 2000;
    
    45. SONG G, L IAO X, ZHOU L, et all H I44a, an anti2CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells[ J ]1 Leuk Res, 2004,28 (10): 10892-1096196(3): 1187-1190.
    
    46. Zada AA, Singh SM, Reddy VA, Elsasser A, Meisel A, Haferlach T, Tenen DG,Hiddemann W, Behre G. Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 2003;22:2296-308.
    
    47. Zada AA, Singh SM, Reddy VA, Elsasser A, Meisel A, Haferlach T, Tenen DG,Hiddemann W, Behre G. Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 2003;22:2296-308.
    
    48. Gadhoum Z, Leibovitch MP, Qi J, Dumenil D, Durand L, Leibovitch S, Smadja-Joffe F.CD44: a new means to inhibit acute myeloid leukemia cell proliferation via p27Kip1.Blood. 2004 Feb 1; 103(3): 1991;30:10117—10125.
    
    49. .Fujimura T, Tanaka T, Ohara K, Morioka H, Uesugi S, Ikehara M, Nishikawa S.Secretion of recombinant ribonuclease T1 into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase. FEBS Lett. 1990, 4; 265(1-2):71-4.
    
    50. Wulfing C, Pluckthun A.Protein folding in the periplasm of Escherichia coli. Mol Microbiol, 1994, 12(5): 685-692.
    
    51. Ayala M, Balint RF, Fernandez-de-Cossio L, Canaan-Haden JW, Larrick JW, Gavilondo JV. Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli. Biotechniques. 1995;18(5):832, 835-8, 840-2.
    
    52. Glockshuber R, Malia M, Pfitzinger I, et al. A comparision of strategies to stabilized immunoglobulin Fv-fragments. Biochem. 1990;29:1362-1367.
    
    53. Pluckthun A. Strategies for the expression of antibody fragments in Escherichia coli.Methods, 1991,2:88-91.
    
    54. Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods, 1997,200: 69-77.
    
    55. 沈倍奋,陈志南,刘民倍,主编.重组抗体,北京 科学出版社,2005.5第一版
    
    56. nappik A, Pluckthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng, 1995, 8(1):81-89
    
    57. Knappik A, Krebber C, Pluckthun A.The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology (N Y). 1993; 11(1): 77-83.
    
    58. Lee MH, Park TI, Park YB, Kwak JW. Bacterial expression and in vitro refolding of a single-chain fv antibody specific for human plasma apolipoprotein B-100. Protein Expr Purif. 2002 Jun; 25(1): 166-73.
    
    59. Pantoliono MW, Bird RE, Johnson S, et al.Conformtaional stability, folding and ligand—binding affinity of single—chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry, 1991;30:10117—10125.
    
    60. Fujimura T, Tanaka T, Ohara K, Morioka H, Uesugi S, Ikehara M, Nishikawa S. Secretion of recombinant ribonuclease T1 into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase. FEBS Lett. 1990,4; 265(1-2): 71-4.
    
    61. Wulfing C, Pluckthun A.Protein folding in the periplasm of Escherichia coli. Mol Microbiol, 1994,12(5): 685-692.
    
    62. Ayala M, Balint RF, Fernandez-de-Cossio L, Canaan-Haden JW, Larrick JW, Gavilondo JV. Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli. Biotechniques. 1995;18(5):832, 835-8, 840-2.
    
    63. Glockshuber R, Malia M, Pfitzinger I, et al. A comparision of strategies to stabilized immunoglobulin Fv-fragments. Biochem. 1990;29:1362-1367.
    
    64. Ward ES, GussowD, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989; 341:544-546.
    
    65. Pluckthun A. Strategies for the expression of antibody fragments in Escherichia coli.Methods, 1991,2:88-91.
    
    66. Sievers EL, Larson RA, Estey E, et al. Efficacy and Safety of CMA-676 in patients with AML in first relapse. Blood. 1999; 94(Suppl 1): 696a.
    
    67. Zein N, Sinha AM, McGahren WJ et al. Calicheamicin gamma II: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988; 240: 1198-1201.
    
    68. Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods, 1997,200: 69-77.
    69. Pluckthun A. Antibody engineering: advances from the use of Escherichia coli expression systems. Biotechnology (N Y), 1991, 9(6):545-551.
    
    70. nappik A, Pluckthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng, 1995, 8(1):81-89
    
    71. Pantoliono MW, Bird RE, Johnson S, et al.Conformtaional stability, folding and ligand—binding affinity of single—chain Fv immunoglobuhn fragments expressed in Escherichia coli. Biochemistry, 1991;30:10117-10125.
    
    72. Ayala M, Balint RF, Fernandez-de-Cossio L, Canaan-Haden JW, Larrick JW, Gavilondo JV. Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli. Biotechniques. 1995;18(5):832, 835-8, 840-2..
    
    73. Ward ES, Gussow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989; 341:544-546.
    1.Mordson SJ。Uchida N. W eissman 1L. The biology of hematopoietic stem ce 11s. An nu Rev Cell Dev Biol1995; 11(1): 35. 71
    
    2. Hope KJ. Jin L. Dick JE. Human acute myeloid leukemia stem cells. Arch Med Ras 2003; 34(7): 507—514
    
    3. Holyoake T. Jiang X, Eaves C。 etal. Isolation of a highly quiescent subpopulation of primitive leukemic ce 11s in chronic myeloid leukemia. Blood 1999: 94(6): 2056-2064
    
    4. CobaledaC. Gutierrez-Cianca N. Perez-Losada J. etal. A primitive hematope ietic cellis the target for the leukemic transformation in human Philadelphia—positive acutelymphoblastic leukemia. Blood 2000; 95(3): 1007—1013
    
    5. Lapidot T, Sirard C. Vorm oor J, et al. A ce lljnitiating human acute
    
    6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from aprimitive hematopoietic cell EJ3. Nat Med, 1997, 3(7): 730—737.
    
    7. Blair A. Hog ge DE. Suthedand HJ. Most acute myeloid leukemia prog enitor ce 11s with long-term proliferative ability in vitro and in vivo have the phenotype CD34 + / CD71S/HLADRS. Blood 1998; 92(11): 4325. 4335
    
    8. Blair A。 Suthedand HJ. Primitive acute myeloid leukemia ce 11s with long-term proliferative ability in vitro and in vivo lack surface expressionof c-kit(CD117). Exp Hematol 2000; 28(6): 660-671
    
    9. Jordan CT. Upchurch D。 Szilvassy SJ。 el al. The intedeukin—3 receptor a-chain is a unique marker for human acute myelog enous leukemia stem ce 11s. Leukemia 2000; 14(9):1777—1764
    
    10. Hope KJ. Jin L。 Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stam Ce 11 classes that differ in seif-renewal capacity. Nat Immunol 2004 ; 5(7):738. 743
    
    11. Guan Y, Gerhard B, Hogge D E. Detection, isolation, and stimulation of quiesce nt primitive leukemic prog enitor Ce lIs frOm patients wi th acute myeloid. leukemia(AML). Blood 2003; 101(8): 3142—3149
    
    12. Holyoake T ? Jiang X, Eaves C, et al. Isolation of a highly quiesce nt subpe pulation of primitive leukemic Ce lIs in chronic myeloid leukemia. Blood 1999: 94(6): 2056—2064
    
    13. Bhatia R。 Holtz M, Niu N. et al. Persistence of malignant hematopeietic progenitors in chronic myelog enous leukemia patients in completecytog enetic remission following imatinib mesylate treatment. Blood 2003; 101(12): 4701-4707
    
    14. H oMS. Bhalia R. Efect of imatinib mesylate on chronic myelog enousleukemia hematopoietic progenitor cells. Leuk Lymphoma 2004; 45(2): 237—245
    15.1ida N, Bourguignon LY. New CD44 splice variants associated with human breast cancers.J Cell Physiol. 1995;162:127-133.
    
    16. Legras S, Gunthert U, Stauder R, et al. A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. Blood. 1998;9:3401-3413.
    
    17. Seiter S, Arch R, Reber S, et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med. 1993; 177:442-455
    
    18.Magyarosy E, Sebestyen A, Timar J, et al. Expression of metastasis associated proteins,CD44v6 and NM23-H1, in pediaatric acute lymphoblastic leukemia. Anticancer Res.2001;21:819-823.
    
    19. Tsutsumi S, Taketani T, Nishimura K, et al. Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements. Cancer Res.2003;63:4882-4887.
    
    20. Oh EJ, Kahng J, Kim Y, et al. Expression of functional markers in acute lymphoblastic leukemia. Leuk Res. 2003;27:903-908.
    
    21.Eisterer W, Bechter O, Soderberg O. Elevated levels of soluble .CD44 are associated with advanced disease and in vitro proliferation of neoplastic lymphocytes in B-cell chronic lymphocytic leukemia. Leuk Res. 2004;28:1043-1051.
    
    22. Bairey O, Zimra Y, Rabizadeh E, et al. Expression of adhesion molecules on leukemic B cells from chronic lymphocytic leukemia patients with predominantly splenic manifestations.Isr Med Assoc J. 2004;6:147-151.
    
    23. Molica S, Vitelli G, Levato D, et al. Elevated serum levels of soluble CD44 can identify a subgroup of patients with early B-cell chronic lymphocytic leukemia who are at high risk of disease progression. Cancer. 2001;92:713-719.
    
    24. Danl IM, Rasmussen T, Kauric G, et al. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol. 2002; 116:273-277.
    
    25. Liebisch P, Eppinger S, Schopflin C, et al. CD44v6, a target for novel antibody treatment approaches, is frenquently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica. 2005;90:489-493.
    
    26.Bendall LJ, Bradstock KF, Gottlieb DJ. Expression of CD44 variant exons in acute myeloid leukemia is more common and more complex than that observed in normal blood, bone marrow or CD34+ cells. Leukemia. 2000;14:1239-1246.
    
    27. Vaskova M, Fronkova E, Starkova J,et al. CD44 and CD27 delineate B-precursor stages with different recombination status and with an uneven distribution in nonmalignant and malignant hematopoiesis. 2008 Jan;71(l):57-66. Tissue Antigens.
    
    28. Jianing Liu, Gaofeng Bi, Pei'e Wen,et sl Down-Regulation of CD44 Contributes to the Differentiation of HL-60 Cells Induced by ATRA or HMBA. Cellular & Molecular Immunology 2007 February; Volume 4(1):59-63
    
    29. Liqing Jin. Kristin J Hope., Qiongli Zhai.et al.Targeting of CD44 eradicates human acute myeloid leukemic stem cells. [J].nature medicine.2006.12(24): 1167-1174.
    
    30. Daniela S Krausel, Katherine Lazarides, Ulrich H von Andrian.et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells [J]. nature medicine.2006,24 (10):. 1038-1489
    
    31.. Lord BI, Testa NG, Hendry JH. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46:65-72.
    
    32 Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631-2639.
    
    32. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev.Immunol. 6, 93-106 (2006).
    
    33. Nilsson, S.K. et al. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101, 856-862 (2003)
    
    34. Papayannopoulou, T., Priestley, G.V, Nakamoto, B., Zafiropoulos, V. & Scott,L.M.Molecular pathways in bone marrow homing: dominant role of α4β1 over β2-integrins and selectins. Blood 98, 2403-2411 (2001).
    
    35. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289-3296 (2000).
    
    36. Bhatia, R. & Verfaillie, C.M. Inhibition of BCR-ABL expression with antisense oligodeoxynucleotides restores bl integrin-mediated adhesion and proliferation inhibition in chronic myelogenous leukemia hematopoietic progenitors. Blood 91,3414-3422 (1998).
    
    37. DuelliD, LazeblikY. Cell fusion: a hidden enemy [J]. Cancer Cell, 2003, 3(5):445-448.
    
    38. Pawelek J. Tumour cell hybridization and metastasis revisited[J]. Melanoma Res, 2000,10(6): 507—514.
    
    39. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem cell biology to cancer[J]. Nat Rev Cancer, 2003, 3(12): 895—902.
    
    40. Houghton JM . Stoico v C. Nomura S. Gastric Cancer Odginating from Bone Marrow-Derived Cells. Science 2004; 306(5701): 1568. 1571
    
    41. Duelli D, Lazeblik Y. Cell fusion: a hidden enemy [J]. Cancer Cell, 2003, 3(5):445-448.
    42.Pawelek J.Tumour cell hybridization and metastasis revisited[J].Melanoma Res,2000,10(6):507-514.
    43.Vignery A.Osteoclasts and giant cells:macrophage-macrophage fusion mechanism[J].Int J ExpPathol,2000,81(5):291-304.
    44.Wei Guo,Joseph 1,Lasky et al.Cancer Stem Cell[J].sInternational Pediatric Research Foundation,Inc.2006,59(4);59R-64R.
    45.唐佩弦.造血干细胞研究发展历史引发的思考[J].中国实验血液学杂志.2005;13(5):723-732
    46.吴克复.马小彤.郑国光.白血病干细胞及其微环境[J].中国实验血液学杂志.2007:15(6)
    47.Flynn CM,Kaufman DS.Donor Cell Leukemia:insight into cancer stem cells and the stem cell niche.Blood,2007;109:2688-2692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700