基于遥感的近20年银川市热力景观变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化改变了地表土地利用/覆被类型和格局,使得城市热环境发生改变,引起一系列生态问题。研究典型地区城市热环境变化,可以从热环境的角度反映城市化强度的空间分布,评价城市化对生态与环境的影响,亦可为提出调控城市热岛效应措施提供理论依据,同时,为同类城市的生态规划、环境监测以及城市化可持续发展提供有意义参考。
     基于遥感,本文以单窗算法反演了银川市的地表温度,利用探索性空间统计分析的原理与方法,结合半变异函数,分析了地表温度热场的结构、空间特征表达和空间异质性。同时,应用景观生态学理论与方法,分析了整个研究区的热环境景观格局特征与演化规律,研究了土地利用/覆被对热环境的影响,得到以下结论:
     1.研究区热场:近20年,研究区热场发生了很大变化,裸地和建设用地形成了主要的高温区域。随城区面积扩大,城区高温区范围亦扩大。地表温度热场均有显著的空间自相关性,表现为随土地利用/覆被的不同,高温区域和低温区域呈空间聚集分布,热场存在很好的空间依赖性。
     2.热力景观格局分布:研究区大范围为绿岛和弱热岛,生态环境良好。近20年绿岛面积在下降,热岛范围扩大,高等级热力斑块面积在1989年最大,2000年较小,2011年又有所增加;从城区来看,热岛范围在扩大,但主城区中心出现低等级热力斑块,生态与环境改善。
     3.热力景观格局演变:类型水平上,各类热力景观斑块基本上在2000年之前趋于破碎化,2000年之后趋于聚集,斑块形状趋于规则化;景观水平上,热力景观整体经历了2000的破碎化后,逐渐趋于聚集,斑块的形状亦趋于规则化,景观面积在各类斑块间的分配趋向均匀,反映了对城市的规划等人为活动加强。
     4.热力景观转化规律:在人为活动的干扰下,由水域和绿地形成的绿岛是最稳定的热力景观类型;低等级景观类型(绿岛和弱绿岛)和高等级景观类型(强热岛和极强热岛)两者内部较容易转化,但两者之间难转化。中等热岛较易转化为低等级景观类型和高一级的强热岛,较难转化为极强热岛。
     5.地表温度和土地利用/覆被类型的关系:裸地的平均地温最高,其次是建设用地,绿地和水体平均地温较低。裸地和建设用地对高等级热力景观有很大贡献,是城市热环境强度的主要贡献因子。绿地和水体的降温作用对分割和控制城市热岛效应分布具有重要的实际意义,因此,合理的规划绿地和水体有助于改善城市的热环境。
     6.地表温度和土地利用/覆被格局的关系:在整个景观水平,地表温度和土地利用/覆被景观格局指数之间没有很好的整体相关性。较之景观整体水平,在类型水平上,土地利用/覆被的景观格局指数和地表温度的相关性更好,反映出不同的土地利用/覆被格局对地表温度的影响大小不同。所以,同类土地利用/覆被的空间格局对地表温度的影响更大。
     7.在一定尺度和辐射背景假设下,建立了土地利用/覆被格局和地表温度之间的的回归模型,从而定量的分析了不同土地利用/覆被及其格局对地表温度的影响程度。并在同样假设下,分析表明,近20年,主要城区的地表温度升高了约16.89%。
With the process of urbanization, land use/cover types and pattern changes a lot, which alters the urban thermal environment and arouses a series of ecological problems. Studying the mechanism of urban thermal environment change in typical zones can reflect the distribution of urbanization intensity from the perspective of urban thermal environment, evaluate the impact of urbanization on ecology and environment, provide theoretical basis for measures of regulating and controlling urban heat island effect (UHI), and finally provide good references for ecological urban planning, environmental monitoring, and sustainable development of similar scale cities.
     Based on3LandsatETM+/TM images of Yinchuan from1989to2011, this paper retrieved land surface temperature (LST) by Qin's mono-window algorithm. With exploratory spatial data analysis (ESDA) method and variograms, LST thermal pattern, spatial characteristic and spatial heterogeneity were analyzed. Moreover, by the theories and method of Landscape ecology, thermal landscape pattern and variation rule were studied, and impact of land use/covers on thermal environment were also analyzed, and finally some results were attained as follows:
     1. Thermal environment characteristics of study area:In recent20years, thermal environment alters a lot, and high-LST area consist of built land and bare land. As urban area expands, high-LST area of urban area enlarges. LST distribution has positive spatial autocorrelation, namely, with the change of land use/covers, high-LST area and low-LST area have spatial aggregation in distribution, and LST distribution has good spatial dependence.
     2. Thermal landscape pattern:Cool island and weak heat island patches account for large area in study area, which shows ecology and environment in study area are well. In recent20years, cool island area decreased and urban heat island area increased. High-grade thermal patches area was maximum in1989, had a little area reduction, and increased in2011; Urban heat island area in all urban areas are expanding, but there exist low-grade thermal patches in main urban areas, which improve the ecology and environment in main urban areas.
     3. Thermal landscape pattern variation:At class level, all thermal patch types mainly tended to be more fragmented from1989to2000, more aggregated from2000to2011, and patches shape tended to be simplified; At landscape level, urban thermal landscape pattern saw a turning point in2000:urban thermal landscape pattern was more fragmented from1989to2000, but, it became more aggregated and patches shape tended to be simplified from2000to2011. Each grade of urban thermal patch types became even-distributed. These changes indicate the increase of human activities intensity.
     4. Thermal patches transition:Under the influence of human intervention, cool island consisting of green land and waterbody was the stablest urban thermal patches. The low-grade thermal patches (cool island and weak heat island) were easy to transfer among themselves, but they were difficult to transfer to high-grade thermal patches. Moderate heat island was easy to transfer to the low-grade thermal patches or higher-level thermal patches. The high-grade thermal patches (strong heat island and Strongest heat island) were easy to transfer among themselves, but they were difficult to transfer to low-grade thermal patches.
     5. Relationship between LST and land use/cover types:Average LST of bare land is highest, and average LST of green land and waterbody are lower. Bare land and built land contribute much to the formation of high-grade thermal patches, hence, they are main contributor to urban heat island intensity. Green land and built land with cooling effect have actual significance on segmenting and controlling urban heat island distribution, therefore, rational planning of green land and waterbody pattern conduce to improve urban thermal environment.
     6. Relationship between LST and land use/covers pattern:At the landscape level, LST and landscape metrics have little significant correlation. Compared with landscape level, at the class level, correlation between LST and landcape metrics is more significant, which indcates different land use/covers patterns have different impact on LST. Hence, pattern of the same land use/cover influence LST more.
     7. Under the certain scale and radiation background, through building regression model, the effect degree of land use/cover types and pattern on LST were analyzed quantitatively. Given the same hypothesis, the results showed:in recent20years, the average LST in main urban areas increased by16.89%.
引文
[1]余华.福建省城市化与生态环境协调发展演进分析[J].南昌工程学院学报.2012,30(6):35-39.
    [2]王雷,李丛丛,应清,等.中国1990-2010年城市扩张卫星遥感制图[J].科学通报.2012,57(16):1388-1399.
    [3]Fernandez JE. Resource consumption of new urban construction in China[J]. Journal of Industrial Ecology.2007,11(2):99-115.
    [4]岳文泽.基于遥感影像的城市景观格局及其热环境效应研究[博士]:华东师范大学;2005.
    [5]肖荣波,欧阳志云,李伟峰.城市热岛的生态环境效应[J].生态学报.2005,25(8):2055-2060.
    [6]http://www.epa.gov/hiri/pilot/index.htm.
    [7]http://www.cbnex.com/projects/adaptation/cool-toronto-project.html.
    [8]周淑贞,束炯.城市气候学.北京:气象出版社;1994.
    [9]Streutker DR. A remote sensing study of the urban heat island of Houston, Texas[J]. International Journal of Remote Sensing.2002,23(13):2595-2608.
    [10]徐永明,覃志豪,朱焱.基于遥感数据的苏州市热岛效应时空变化特征分析[J].地理科学.2009,(004):529-534.
    [11]赵云升,杜嘉,宋开山,等.基于卫星遥感的夏季长春市城区热场分析[J].地理科学.2006,26(001):70-74.
    [12]PriyadarsiniHien W, Waidavid C. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy.2008,82(8):727-745.
    [13]方锋,白虎志,赵红岩,等.中国西北地区城市化效应及其在增暖中的贡献率[J].高原气象.2007,26(003):579-585.
    [14]Yang X, Hou Y, Chen B. Observed surface warming induced by urbanization in east China[J]. J. Geophys. Res.2011,116:D14113.
    [15]周雅清,任国玉.城市化对华北地区最高,最低气温和日较差变化趋势的影响[J].高原气象.2009,(005).
    [16]罗小波,刘明皓.HJ-1B卫星遥感数据在重庆市城市热环境监测的应用分析[J].中国科学:信息科学.2011,(S1):108-116.
    [17]宫阿都,徐捷,赵静,等.城市热岛研究方法概述[J].自然灾害学报.2008,17(006):96-99.
    [18]吴息,王少文.对城市热岛长期变化趋势分析方法的进一步探讨[J].南京气象学院学报.1997,20(001):]31-135.
    [19]Morris C, Simmonds I, Plummer N. Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city[J]. Journal of Applied Meteorology.2001,40(2): 169-182.
    [20]张玲,徐宗学,阮本清.北京城市热岛效应对气温和降水量的影响[J].自然资源学报.2006,21(5):746-755.
    [21]Zhang XX, Wu PF, Chen B. Relationship between vegetation greenness and urban heat island effect in Beijing City of China[J]. Procedia Environmental Sciences.2010,2:1438-1450.
    [22]Li J-j, Wang X-r, Wang X-j et al. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China[J]. Ecological Complexity.2009,6(4): 413-420.
    [23]张瑜.基于Landsat5 TM数据的西安市城市化进程与热岛效应关系研究[硕士]:西北大学;2009.
    [24]夏佳,但尚铭,陈刚毅. 成都市热岛效应演变趋势与城市变化关系研究[J].成都信息工程学院学报.2007,22(1):6-11.
    [25]傅伯杰,吕一河,陈利顶,等.国际景观生态学研究新进展[J].生态学报.2008,28(002):798-804.
    [26]陈云浩,李晓兵,史培军,等.上海城市热环境的空间格局分析[J].地理科学.2002,22(3):317-323.
    [27]盂丹,李小娟,宫辉力,等.北京地区热力景观格局及典型城市景观的热环境效应[J].生态学报.2010,(13):3491-3500.
    [28]黄聚聪,赵小锋,唐立娜,等.城市化进程中城市热岛景观格局演变的时空特征-—以厦门市为例[J].生态学报.2012,(02):622-631.
    [29]Zhang X, Zhong T, Feng X et al. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing[J]. International Journal of Remote Sensing.2009,30(8):2105-2118.
    [30]张新乐,张树文,李颖,等.基于遥感影像的哈尔滨市城市热环境变化[J].干旱区地理.2009,32(2):310-316.
    [31]陈利顶,刘洋,吕一河,等.景观生态学中的格局分析:现状,困境与未来[J].生态学报.2008,28(011):5521-5531.
    [32]彭锋.基于RS与GIS的银川市土地利用/土地覆盖变化研究[硕士]:兰州大学;2011.
    [33]常洪斌.建设大银川发展大郊区大力推进银川市城市化进程[J].市场经济研究.2001,(5):49-51.
    [34]李微.西部银川建设“宜居城市”的研究[硕士]:河北农业大学;2010.
    [35]李凤琴,谭华.近50年来城市化对银川市区局地气候的影响[J].宁夏工程技术.2009,8(004):303-305.
    [36]杜灵通.基于Landsat ETM+数据的银川城市热岛研究[J].测绘科学.2008,33(4):169-171.
    [37]李剑萍,张学艺,官景得,等.运用EOS/MODIS资料对银川城市热场的遥感分析[J].农业网络信息.2008,(010):107-110.
    [38]Karaca M, Tayanc M, Toros H. Effects of urbanization on climate of Istanbul and Ankara[J]. Atmospheric environment.1995,29(23):3411-3421.
    [39]李卓仑,王乃昂,轧靖,等.近40年兰州城市气候季节性变化与城市发展[J].高原气象.2007,(03):586-592.
    [40]江田汉,束炯,邓莲堂.上海城市热岛的小波特征[J].热带气象学报.2004,20(005):515-522.
    [41]Ackerman B. Temporal march of the Chicago heat island[J]. Journal of climate and applied meteorology.1985,24(6):547-554.
    [42]Voogt JA, Oke T. Radiometric temperatures of urban canyon walls obtained from vehicle traverses[J]. Theoretical and applied climatology.1998,60(1):199-217.
    [43]Yamashita S. Detailed structure of heat island phenomena from moving observations from electric tram-cars in metropolitan Tokyo[J]. Atmospheric environment.1996,30(3):429-435.
    [44]李国栋,王乃昂,张俊华,等.兰州市城区夏季热场分布与热岛效应研究[J].地理科学.2008,28(5):709-714.
    [45]Zehnder JA. Simple modifications to improve fifth-generation Pennsylvania State University-National Center for Atmospheric Research mesoscale model performance for the Phoenix, Arizona, metropolitan area[J]. Journal of Applied Meteorology.2002,41(9):971-979.
    [46]李维亮,刘洪利,周秀骥,等.长江三角洲城市热岛与太湖对局地环流影响的分析研究[J].中国科学(D辑:地球科学).2003,(02):97-104.
    [47]Chen F, Kusaka H, Tewari M et al. Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area. In:Fifth Symposium on the Urban Environment; 2004; 2004. p.9-11.
    [48]Chen F, Kusaka H, Bornstein R et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems[J]. International Journal of Climatology.2011,31(2):273-288.
    [49]Zhang H, Sato N, Izumi T et al. Modified RAMS-Urban Canopy Model for Heat Island Simulation in Chongqing, China[J]. Journal of Applied Meteorology and Climatology.2008,47(2): 509-524.
    [50]Rozoff CM, Cotton WR, Adegoke JO. Simulation of St. Louis, Missouri, land use impacts on thunderstorms[J]. Journal of Applied Meteorology.2003,42(6):716-738.
    [51]Howard L. The climate of London:deduced from meteorological observations made in the metropolis and at various places around it:Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter; 1833.
    [52]Oke T. The heat island of the urban boundary layer:characteristics, causes and effects: Kluwer Academic; 1995.
    [53]Quattrochi DA, Luvall JC, Rickman DL et al. A decision support information system for urban landscape management using thermal infrared data:Decision support systems[J]. Photogrammetric Engineering and Remote Sensing.2000,66(10):1195-1207.
    [54]Voogt JA, Oke TR. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment.2003,86(3):370-384.
    [55]Rao P. Remote sensing of urban heat islands from an environmental satellite[J], Bulletin of the American Meteorological Society.1972,53(7):647-648.
    [56]范天锡,潘钟跃.北京地区城市热岛特性的卫星遥感[J].气象.1987,10:29-32.
    [57]钱彬,范心圻.北京城市热岛的卫星遥感调查[J].遥感信息.1988,(01):6-19.
    [58]孙奕敏,李檬,解以杨.天津市区城市热岛温度场的特征和红外遥感技术的应用[J].中国环境科学.1984,4(1):34-41.
    [59]周红妹,丁金才.气象卫星在上海市热场分布动态监测中的应用研究[J].大气科学研究与应用.1998,3:19-24.
    [60]李旭文.苏南大运河沿线城市热岛现象的卫星遥感分析[J].国土资源遥感.1993,4:28-33.
    [61]杨英宝,苏伟忠,江南.南京市热岛效应时空特征的遥感分析[J].遥感技术与应用. 2008,(6):488-492.
    [62]Gallo K, McNab A, Karl T et al. The use of a vegetation index for assessment of the urban heat island effect[J]. Remote Sensing.1993,14(11):2223-2230.
    [63]Chen XL, Zhao HM, Li PX et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote Sensing of Environment.2006, 104(2):133-146.
    [64]历华,曾永年,柳钦火.基于遥感的长沙市城市热岛与土地利用/覆盖变化研究[J].国土资源遥感.2008,4:47-52.
    [65]曹璐,胡瀚文,孟宪磊,等.城市地表温度与关键景观要素的关系[J].生态学杂志.2011,(10):2329-2334.
    [66]张建明,王鹏龙,马宁,等.河谷地形下兰州市城市热岛效应的时空演变研究[J].地理科学.2012,32(12):1530-1537.
    [67]Qin Z, Dall'Olmo G, Kamieli A et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J]. Journal of Geophysical Research.2001,106(D19):22655-22670.
    [68]尹楠,周云轩,王黎明,等NOAA/AVHRR的分裂窗算法在地表温度反演中的应用[J].测绘与空间地理信息.2005,28(004):8-11.
    [69]Mao K, Qin Z, Shi J et al. A practical split-window algorithm for retrieving land-surface temperature from MODIS data[J]. International Journal of Remote Sensing.2005,26(15): 3181-3204.
    [70]Wan Z, Li ZL. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. Geoscience and Remote Sensing, IEEE Transactions on. 1997,35(4):980-996.
    [71]Gillespie A, Rokugawa S, Matsunaga T et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. Geoscience and Remote Sensing, IEEE Transactions on.1998,36(4):1113-1126.
    [72]Qin Z, Kamieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing.2001,22(18):3719-3746.
    [73]Jimenez-Munoz JC. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research.2003,108(D22).
    [74]柳钦火,仲波,吴纪桃,等.环境遥感定量反演与同化:科学出版社;2011.
    [75]冯晓刚.城市热岛效应演变与成因遥感研究:陕西师范大学;2011.
    [76]MALARET E, Bartolucci L, Lozano DF et al. Landsat-4 and Landsat-5 Thematic Mapper data quality analysis[J]. Photogrammetric Engineering and Remote Sensing,1985,51:1407-1416r
    [77]覃志豪,李文娟,徐斌,等.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[J].海洋科学进展.2004,22(B10):129-137.
    [78]覃志豪,Wenjuan L, Minghua Z et al.单窗算法的大气参数估计方法[J].国土资源遥感.2003,(002):37-43.
    [79]Sobrino J. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment.2004,90(4):434-440.
    [80]黄妙芬,邢旭峰,王培娟,等.用LANDSAT/TM热红外通道反演地表温度的三种方 法比较[J].干旱区地理.2006,29(001):132-137.
    [81]白洁,刘绍民,扈光.针对TM/ETM+遥感数据的地表温度反演与验证[J].农业工程学报.2008,24(09):148-154.
    [82]Sugita M, Brutsaert W. Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE[J]. International Journal of Remote Sensing.1993, 14(9):1659-1676.
    [83]张兆明,何国金.Landsat 5 TM数据辐射定标[J].科技导报.2008,26(7):54-58.
    [84]Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment.2009,113(5):893-903.
    [85]Sobrino JA, Coll C, Caselles V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5[J]. Remote Sensing of Environment.1991,38(1):19-34.
    [86]覃志豪,LIWenjuan, ZHANG Minghua,等.单窗算法的大气参数估算方法[J].国土资源遥感.2003,56(2):37-43.
    [87]杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学.2002,26(1):9-22.
    [88]Van De Griend AA, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing.1993,14(6):1119-1131.
    [89]覃志豪,李文娟,徐斌,等.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[J].海洋科学进展.2004,22(B10):129-137.
    [90]Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote sensing of Environment.1997,62(3):241-252.
    [91]Valor E, Caselles V. Mapping land surface emissivity from NDVI:Application to European, African, and South American areas[J]. Remote sensing of Environment.1996,57(3): 167-184.
    [92]任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报.2005,(06):942-956.
    [93]林学椿,于淑秋.北京地区气温的年代际变化和热岛效应[J].地球物理学报.2005,48(1):39-45.
    [94]姜会飞,廖树华,阿帕尔.地面温度与气温关系的统计分析[J].中国农业气象.2004,25(3):1-4.
    [95]张松林,张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报:自然科学版.2007.46(4):93-97.
    [96]徐建华.计量地理学:高等教育出版社;2006.
    [97]万鲁河.王绍巍.陈晓红.基于GeoDA的哈大齐工业走廊GDP空间关联性[J].地理研究.2011,30(6):977-984.
    [98]冯听,杜世宏,舒红.空间权重矩阵对空间自相关的影响分析-—以我国肾综合征出血热疾病为例[J].武汉大学学报:信息科学版.2011,36(012):1410—1413.
    [99]封磊.洪伟,吴承祯,等.福州市人口分布的空间自相关分析[J].江西农业大学学报.2008,30(3):569-574.
    [100 ]赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用[J].水生生物学报. 2000,24(5):514-520.
    [101]Adams CF, Harris BP, Stokesbury KDE. Geostatistical comparison of two independent video surveys of sea scallop abundance in the Elephant Trunk Closed Area, USA[J]. ICES Journal of Marine Science:Journal du Conseil.2008,65(6):995-1003.
    [102]陶江平,龚昱田,谭细畅,等.长江葛洲坝坝下江段鱼类群落变化的时空特征[J].中国科学:生命科学.2012,(08):677-688.
    [103]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用.北京:科学出版社;2001.
    [104]郑新奇,付梅臣.景观格局空间分析技术及其应用.北京:科学出版社;2010.
    [105]宫兆宁,张翼然,宫辉力,等.北京湿地景观格局演变特征与驱动机制分析[J].地理学报.2011,66(1):77-88.
    [106]何鹏,张会儒.常用景观指数的因子分析和筛选方法研究[J].林业科学研究.2009,22(004):470-474.
    [107]布仁仓,胡远满,常禹,等.景观指数之间的相关分析[J].生态学报.2005,25(10):2764-2775.
    [108]程维明.玛纳斯河流域景观格局及其演化研究:北京:中国科学院研究生院;2003.
    [109]孙飒梅,卢昌义.遥感监测城市热岛强度及其作为生态监测指标的探讨[J].厦门大学学报:自然科学版.2002,41(1):66-70.
    [110]曾辉,唐江,郭庆华.珠江三角洲东部地区常平镇景观组分转移模式及动态变化研究[J].地理科学.1999,(01):74-78.
    [111]Chen X, Zhao H, Li P et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote Sensing of Environment.2006, 104(2):133-146.
    [112]李金香,雷磊,田源.干旱区典型绿洲热场分布规律研究——以渭干河-库车河三角洲绿洲为例[J].中国沙漠.2011,31(4):992-1000.
    [113]Purevdorj T, Tateishi R, Ishiyama T et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing.1998,19(18):3519-3535.
    [114]查勇,倪绍祥.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报.2003,7(1):37-40.
    [115]Price JC. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. Geoscience and Remote Sensing, IEEE Transactions on.1990,28(5):940-948.
    [116]Carlson TN, Gillies RR, Perry EM. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews.1994,9(1):161-173.
    [117]Sandholt L Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assesment of surface mnisture status[J].Remote Sensing of Environment.2002,79(2-3):213-224.
    [118]Weng Q. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment 2004,89(4):467-483.
    [119]李俊祥,王玉洁,沈晓虹,等.上海市城乡梯度景观格局分析[J].生态学报.2004,24(9):1973-1980.
    [120]Wichansky PS, Steyaert LT, Walko RL et al. Evaluating the effects of historical land cover change on summertime weather and climate in New Jersey:Land cover and surface energy budget changes[J]. Journal of Geophysical Research.2008,113(D10):D10107.
    [121]朱飞鸽.上海市城市化过程中城市热岛的时空动态变化研究[硕士]:华东师范大学;2011.
    [122]胡姝婧.近15年北京城区植被覆盖遥感监测及其对热环境影响研究[硕士]:首都师范大学;2011.
    [123]马勇刚,塔西甫拉提.特依拜,黄粤,等.城市景观格局变化对城市热岛效应的影响——以乌鲁木齐市为例[J].干旱区研究.2006,(01):172-176.
    [124]王鹏.城市景观格局与城市热岛效应的多尺度分析[硕士]:四川农业大学;2007.
    [125]Turner MG, O'Neill RV, Gardner RH et al. Effects of changing spatial scale on the analysis of landscape pattern[J]. Landscape ecology.1989,3(3):153-162.
    [126]龚建周,夏北成.景观格局指数间相关关系对植被覆盖度等级分类数的响应[J].生态学报.2007,27(10).
    [127]甄霖,谢高地,杨丽,等.泾河流域分县景观格局特征及相关性[J].生态学报.2005,25(12):3343-3353.
    [128]白永平,狄保忻,王鹏龙,等.陇海一兰新一北疆铁路沿线城市紧凑度及其影响因素研究[J].经济地理.2012,32(07):37-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700