环境减灾小卫星在安徽淮北区域干旱监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱对经济、社会尤其是农业有着直接的负面影响。跟其他灾害相比,它出现次数频繁、持续时间长、受灾范围大、潜在危害大,对农业等经济部门造成的直接损失重,干旱作为最大的自然灾害之一,越来越引起公众的重视。对干旱进行动态监测,及时准确地反映旱情发生的范围、程度和发展变化趋势,具有深刻的意义。
     在传统的干旱评价方面,结合资料获取可行性,选取了非常具有代表性的标准化降水指数利用降水量数据对安徽省1957 ~2006年历年干旱情况进行了统计分析,并对其干旱演变规律进行了总结。在比较了1个月、6个月和12个月时间尺度的标准化降水指数后,发现以12个月为时间尺度的标准化降水指数最适宜用来作长期的干旱评价分析。
     由于土壤湿度是决定农业旱情时空动态变化的重要因素,本文将测站点的土壤湿度进行反距离加权法空间插值,从而得到土壤墒情插值图,而传统的土壤水分测量方法费时耗力,遥感数据具有空间连续和快速更新的特点,可以反映出土地利用类型、土壤及植被等下垫面时空分布状况。将站点数据和遥感信息结合起来进行干旱评价,可以很大程度地弥补前述传统监测方法的不足。因此研究运用遥感技术进行土壤水分反演的方法,对于干旱评价和监测就具有重要的意义。本文在充分总结国内外干旱监测和评价研究进展的基础上,着重对如何运用“地面实测加遥感解译”的方式进行干旱监测研究,采用我国最新自主研制出的环境小卫星遥感数据,对安徽省北部地区的植被供水指数进行了反演,然后将植被供水指数数据和研究区实测土壤水分数据进行拟合,推算出植被供水指数转换成土壤水分的公式,由此得到整个研究区的土壤水分。根据我国的土壤水分旱情评定标准对研究区的干旱情况进行了评价。接下来对该方法和插值方法进行了比较,并且结合行政区、DEM及土地利用分类数据对旱情进行了统计分析。本文对环境减灾卫星数据的应用作出了有益的探索,结果表明,利用环境小卫星数据进行干旱监测和评价是可行的。
Drought has direct negative impact on economy and society, especially on agriculture. Compared with other disasters, it appears more frequently with longer duration and larger affected area, thus causes more losses. Drought arouses more and more attention of the public. Drought monitoring, which timely and accurately reflects the characteristics of droutht—the affected area of drought, extent and trends, has profound significance to the whole society.
     In a traditional way to evaluate drought, Standardized Precipitation Index (SPI) was choosed as drought indicator, using the precipitation data over the years 1957 to 2006 in Anhui Province. Statistics and summerrization are made. In comparing the time scale effect of SPI (1-month, 6 months and 12 months), the 12-month time scale SPI was found the most suitable for long-term evaluating drought.
     As the soil moisture is an important factor to determine the situation of agriculture in temporal and spatial change, the soil moisture of tested sites was calculated by inverse distance weighted interpolation, so interpolation maps of soil moisture is obtained. However the traditional method of measurement of soil moisture consumes a lot of time and energy,
     Remote sensing images are continuous data and can be updated rapidly, which can reflect temporal and spatial distribution of underlying surface such as the type of land use, soil and vegetation. Combined measured soil moisture data with remote sensing data to evaluate drought, can largely make up the aforementioned deficiencies of traditional monitoring methods. So research on the application of remote sensing of soil moisture inversion method has great significance for evaluation and monitoring of drought. In this paper, based on a full review of domestic and international progress in drought monitoring and evaluation, the approach of how to use "ground truth plus remote sensing interpretation" to monitor drought was focused.
     China’s latest self-developed HJ satellite data was used to inversed the drought in northern part of Anhui Province.Then Vegetation Supply Water Index and the soil water study area were regressed, the formula of vegetation index transeferrd to soil moisture data was calculated, then resultant soil moisture throughout the study area was obtained. According to our assessment of the standard soil moisture drought, drought conditions on the study area were evaluated. Next, this method and the interpolation method are compared, and the combination of administrative, DEM and land use classification data on drought were analyzed too. In this paper, the application of satellite data for environmental disaster reduction was made as useful exploration, the results show that the use of HJ satellite data for environmental monitoring and evaluation of drought is feasible.
引文
[1] Henry, A. J., 1906: Climatology of the United States, Bulletin Q. U.S. Weather Bureau Bull. 361, Washington, DC, 51–58.
    [2] Steila, D., 1987: Drought. The Encyclopedia of Climatology, J. E. Oliver and R. W. Fairbridge, Eds., Van Nostrand Reinhold, 388–395.
    [3] Rechard R. Heim Jr, 2002: A Review of Twentieth-Century Drought Indices Used in the United States. Bulletin of the American Meteorological Society. 8, 1149-1165.
    [4] Munger, T.T., 1916: Graphic method of representing and comparing drought intensities. Mon. Wea. Rev, 44, 642–643.
    [5] Marcovitch,S., 1930: The measure of droughtiness. Mon.Wea.Rev.,58,113.
    [6] Thornthwaite,C.W.,1931: The climate of North America according to a new classification.Geogr. Rev.,21,633–655.
    [7] Thornthwaite, C.W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 55–94.
    [8] van Bavel, C.H.M., and F.J. Verlinden, 1956: Agricultural drought in North Carolina. Tech.Bull.122, North Carolina Agricultural Experiment Station, 60 pp.
    [9] Dickson,R.R.,1958:A note on the computation of agricultural drought days.Weekly Weather and Crop Bulletin,Vol.XLV,7–8.
    [10] World Meteorological Organization, 1975a: Drought and agriculture.WMO Note 138,Publ.WMO-392, Geneva, Switzerland,127 pp.
    [11] Thornthwaite,C.W., J.R.Mather,1955:The water budget and its use in irrigation.Water—Yearbook of Agriculture 1955,A.Stefferud,Ed.,U.S.Dept.of Agriculture, 346–358.
    [12] Doesken,N.J., and D.Garen,1991:Drought monitoring in the western United States using a Surface Water Supply Index.Preprints,Seventh Conf.on Applied Climatology,Salt Lake City, UT, Amer. Meteor.Soc. 266–269.
    [13] Palmer,W.C.,1965:Meteorological drought.U.S.Weather Bureau Research Paper 45,58 pp.
    [14] Guttman,N.B.,1991:A sensitivity analysis of the Palmer Hydrologic Drought Index.Water Resour.Bull.,27,797–807.
    [15] Shear,J.A.,and D.Steila,1974:The assessment of drought intensity by a new index.Southeast.Geogr.,13, 195–201.
    [16] Steila,D.,1987:Drought.The Encyclopedia of Climatology,J.E.Oliver and R.W.Fairbridge,Eds.,Van Nostrand Reinhold,388–395.
    [17] Wilhite,D.A.,and M.H.Glantz,1985:Understanding the drought phenomenon: The role of definitions. Water Int., 10,111–120.
    [18] Doesken,N.J.,and D.Garen,1991: Drought monitoring in the western United States using a Surface Water Supply Index.Preprints,Seventh Conf.on Applied Climatology,Salt Lake City, UT, Amer. Meteor.Soc.,266–269.
    [19] Garen,D.C.,1993:Revised Surface-Water Supply Index for western United States.J.Water Resour.Plan. Manage., 119, 437–454.
    [20] Jesslyn F. Brown, Brian D. Wardlow, Tsegaye Tadesse, Michael J. Hayes, Bradley C. Reed. The Vegetation Drought Response Index(VegDRI):A New Integrated Approach for Monitoring Drought Stress in Vegetation[J]GIScience & Remote Sensing, 2008, 45, No.1, p.16-46
    [21]竺可桢,李良骐.华北之干旱及其前因后果[J]地理学报, 1934, (02) .
    [22] K.Y. Chen. the floods and droughts of the lower yangtze valley and their predictions[J], Acta Geographica Sinica, 1935, (3)
    [23]谢义炳.清代水旱灾之周期研究[J]气象学报, 1943, (Z1) .
    [24]徐淑英.黄河流域各地区的旱涝统计关系[J]气象学报, 1956, (04).
    [25]杨鉴初,徐淑英.黄河流域的降水特点与干旱问题[J]地理学报, 1956,(04).
    [26]尹光显.湖北省历年干旱规律与农业生产关系的初步分析.中国农业科学, 1963, (12).
    [27]陈仲全.干旱指标及兰州的干旱规律[J]甘肃师范大学学报, 1963, (4).
    [28]钱纪良,林之光.关子中国干湿气候区划的初步研究[J]地理学报, 1965, (01) .
    [29]卢其尧,卫林,杜钟朴,林振耀.中国干湿期与干湿区划的研究[J]地理学报, 1965, (01) .
    [30]姚君平,罗瑶年,杨新道.干旱对花生早熟种籽仁发育及其品质影响究研初报[J].中国油料,1982,(3).
    [31]王万里,林芝萍,章秀英,吴亚华.灌浆—成熟期间土壤干旱对小麦籽粒充实和物质运转的影响[J].植物生理学报,1982,(1).
    [32]盛宏达.小麦灌浆期干旱对籽粒产量的影响[J].干旱地区农业研究,1984,(2).
    [33]李锦树,王洪春,王文英,朱亚芳.干旱对玉米叶片细胞透性及膜脂的影响[J].植物生理学报,1983,(3).
    [34]汤章城,吴亚华,王育启,王洪春.高粱苗对干旱的反应和调节适应能力[J].植物生态学与地植物学丛刊,1984,(1).
    [35]汤章城,.植物对水分胁迫的反应和适应性——Ⅱ植物对干旱的反应和适应性[J].植物生理学通讯,1983,(4).
    [36]顾慰连,戴俊英,沈秀瑛,王畅,.玉米不同生育时期的抗旱性[J].植物生理学通讯,1989,(3).
    [37]上官周平,陈培元.土壤干旱对小麦叶片渗透调节和光合作用的影响[J].华北农学报,1989,(4).
    [38]石大伟.作物抗旱指标研究的探讨[J].干旱地区农业研究,1984,(2).
    [39]李克煌,施其仁,千怀遂.干旱指标的初步探讨[J]河南大学学报(自然科学版),1988,(01).
    [40]范嘉泉,郑剑非.帕尔默气象干旱研究方法介绍[J]气象科技, 1984, (01) .
    [41]安顺清,邢久星.修正的帕默尔干旱指数及其应用[J].气象,1985,(12).
    [42]鞠笑生,杨贤为,陈丽娟,王有民.我国单站旱涝指标确定和区域旱涝级别划分的研究[J].应用气象学报. 1997 (1)
    [43]田国良,杨希华,郑柯.冬小麦旱情遥感监测模型研究[J]环境遥感, 1992,(02) .
    [44]肖乾广,陈维英,盛永伟等.用气象卫星监测土壤水分的实验研究[J].应用气象学报,1994,5(3): 312-318.
    [45]余涛,田国良.热惯量法在监测土壤表层水分中的研究[J].遥感学报, 1997,l(1):24—31.
    [46]隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报, 1997,1(3):220-224.
    [47]刘良明.基于EOSMODIS数据的遥感干旱预警模型研究[D].武汉大学,2004.
    [48]陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J]环境遥感, 1994,(02) .
    [49]李喆,谭德宝,秦启明等,基于特征空间的?懈珊导嗖夥椒ㄗ凼鯷J].长江科学院院报,2010,1(27):37-41
    [50]王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报(信息科学版),2001,(5).
    [51]陈世荣,孙灏,张宝军.环境减灾H-lA,1B卫星在干旱监测中的应用研究及实现.航天器工程,2009,6(18):138-141
    [52] Donald A.Wilhite.Drought and Water Crises Science ,Technology, and Management Issues[M].彭顺风,孙勇,王式成等译,东南大学出版社,2008.p.4.
    [53] Gibbs,W.J.,and J.V.Maher,1967:Rainfall Deciles as Drought Indicators.Australian Bureau of Meteorology, Bull.48,37 pp.
    [54] Bhalme,H.N.,and D.A.Mooley ,1980:Large-scale droughts/floods and monsoon circulation.Mon. Wea.Rev.,108,1197–1211.
    [55] van Rooy,M.P.,1965:A rainfall anomaly index independent of time and space.Notos,14,43–48.
    [56] McKee,T.B.,N.J.Doesken,and J.Kleist,1993:Drought monitoring with multiple timescales.Preprints, Eighth Conf.on Applied limatology,Anaheim,CA, Amer.Meteor.Soc.,179–184.
    [57] John Keyantash and John A. Dracup, The Quantification of Drought: An Evaluation of Drought Indices.J.Bulletin of the American Meteorological Society, 2002,8.
    [58]覃志豪,Zhang MH,Karnieli A,等.用陆面卫星TM6数据演算地表温度的单窗算法[J].地理学报, 2001, 56(4): 456—466
    [59]黄勇,姚筠等,安徽省2种干旱遥感定量检测方法分析[J],安徽农业科学,2006,34(19):5132-5134
    [60]段四波,阎广建,钱永刚等,利用HJ-1B模拟数据反演地表温度的两种单通道算法[J],自然科学进展,2008,18(9):1001-1008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700