FoxO1转录因子对RAW264.7细胞自体吞噬及抗原呈递效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究由农业部重大专项-抗布病与结核病关键功能基因的筛选与验证资助。
     当Mtb这种胞内寄生菌侵入宿主细胞后,Mtb通过一些逃逸机制逃避宿主的免疫监控作用后可成功寄生于宿主的吞噬细胞内。由于机体内存在着复杂的免疫反应,培养细胞模型所得的Mtb毒力因子表型研究数据比感染动物模型所得相关数据更准确。目前,常用细胞模型有RAW264.7与THP-1两种。本研究主要通过Solexa/Illumina高通量测序技术分析被人结核分枝杆菌(H37Rv)或牛分枝杆菌(BCG)感染3小时后的RAW264.7细胞全基因组转录表达谱变化。实验结果显示:(1)与BCG相比,RAW264.7中1,917差异表达基因中的1,135个基因被H37Rv感染后上调表达,782个基因被H37Rv下调表达;(2)上述1,917个差异表达的基因中,1822个在GenBank有记录,95个是新基因;(3)GO分析与KO分析显示,71%差异基因共参与210条代谢或信号通路;(4)与病原体识别受体和结核分枝杆菌和宿主的相互作用有关通路共28条。Real Time-PCR验证结果与高通量测序结果高度一致。上述发现的差异表达基因将为进一步研究Mtb作用的宿主细胞蛋白分子奠定基础。
     最新研究发现转录因子FoxO1可诱发心肌细胞内自体吞噬的产生。自体吞噬在增强宿主有效控制和杀灭入侵宿主的Mtb和提高结核疫苗效率方面起重要作用。本研究的前期实验结果发现,当细胞受到H37Rv与BCG感染RAW264.7后,RAW264.7中转录因子FoxO1表达量显著性下降。本研究利用pEGFP-N1表达载体与pCMV-tdTomato表达载体成功构建重组载体pCMV-tdTomato-FoxO1,并将其通过脂质体转染方法转入RAW264.7中。RealTime-PCR实验结果表明,被重组载体pCMV-tdTomato-FoxO1转染12h时,RAW264.7中目的基因FoxO1,FoxO3,LC3,Gabarapl1,Atg12的表达量分别为转染0h时表达量的3.6倍,1.7倍,2.9倍,2.7倍,5.2倍(p<0.05; n=3)。12h后,5个目的基因的表达量均有所降低;24h时,目的基因表达量仍高于其在对照组中的表达量,FoxO12.1倍,FoxO31.5倍,LC31.9倍,Gabarapl11.8倍,Atg123.8倍,(p<0.05; n=3)。Western blotting实验结果表明,RAW264.7被重组载体pCMV-tdTomato-FoxO1转染前12h,LC3II蛋白水平表达量逐渐提高,LC3I蛋白水平表达量逐渐降低;12h时,LC3II蛋白水平表达量达最高值;12h后,LC3II蛋白水平表达量逐渐降低。MDC染色检测自体吞噬现象实验证明,RAW264.7被重组载体pCMV-tdTomato-FoxO1转染24h后,自噬空泡的积聚显著增强。激光共聚焦观察自体吞噬相关蛋白在细胞中的分布实验证明,FoxO1过表达24h后自体吞噬标志物LAMP-1与GABARAPL1会从细胞质转移到细胞内膜上,在吞噬体周围富集;自体吞噬标志物LC3会从细胞质转移到细胞内膜上。
     Real Time-PCR实验结果表明,被重组载体pCMV-tdTomato-FoxO1转染12h时,RAW264.7中H_2-EAb_1与H2-Eb1的表达量分别为转染0h时表达量的4.4倍,7.5倍(p<0.05;n=3)。12h后,2个目的基因的表达量均有所降低;24h时,目的基因表达量仍高于其0h时的表达量,H2-EAb13.2倍,H_2-Eb_15.4倍(p<0.05; n=3)。为探索RAW264.7中FoxO1过表达诱导的自体吞噬现象的发生对上调MHC II分子相关基因的表达对RAW264.7抗原呈递能力的影响,我们接着进行了抗原呈递实验。抗原呈递实验中使用的抗原为BCG与CFP10,PBS为阴性对照。实验组的抗原呈递细胞为FoxO1过表达的RAW264.7,对照组的抗原呈递细胞为FoxO1正常表达的RAW264.7。抗原呈递实验的效应细胞为用BCG、CFP10与PBS三免后的BALB/c小鼠的脾淋巴细胞或外周血单核细胞。为分析FoxO1过表达对MTB抗原的呈递效率,我们采用MTT法对淋巴细胞增殖做了测定。MTT法检测体外淋巴细胞增殖水平实验证实,FoxO1过表达可以促进体外淋巴细胞增殖。同时采用ELISA的方法对实验组与对照组抗原呈递后细胞悬液上清中IL-2、IFN-γ与TNF-α这3种细胞因子的浓度进行了测定。ELISA检测证实,FoxO1过表达可以提高RAW264.7细胞抗原处理和抗原呈递功能,提高细胞培养上清中IFN-γ、IL-2和TNF-α的含量。
     综上所述,转录因子FoxO1过表达可引发RAW264.7中自体吞噬现象的发生,提高RAW264.7表面MHC-II分子相关基因的表达,增强RAW264.7的抗原处理和抗原呈递效率。
This research was granted by department of agriculture transgenes special purpose-screenand verification of key point function gene resist to brucelliasis and tuberculosis(2009ZX08009-163B).
     Mtb is an intracellular pathogenic bacterium which can utilize various strategies to escapehost immune supervision after being ingested by phagocyte. As complex immunoreaction in vivo,phenotype of Mtb virulence factor is more accurate in vitro cell model. Using Solexa/Illuminahigh-flux sequencing technology to analyze the profile of gene expression from RAW264.7infected by H37Rv and BCG. Results showed that compared with RAW264.7infected by BCG,there were1,135up-regulated genes and782down-regulated genes in1917different expressedgenes in RAW264.7infected by H37Rv. There were1182genes found on GenBank whereas95genes had not been found in those1917different expressed genes. GO analysis and KO analysisresults showed that71%different expressed genes were involved in210Metabolism and signalpathways.28pathways were involved with pathogen recognize receptor and interaction betweenMtb and host. All the results of Solexa/Illumina high-flux sequencing were validated by real timePCR, and real time PCR results were coincidence with that of Solexa/Illumina high-fluxsequencing.
     Solexa/Illumina high-flux sequencing results showed that transcription factor FoxO1hadbeen affected by H37Rv and BCG significantly. Arunima Sengupta et al. found transcription factorFoxO can induce autophagy in myocardial cell. Importantly, autophagy can enhance the ability ofhost to kill and control Mtb that invaded host and Mtb vaccine. Using pEGFP-N1andpCMV-tdTomato built successfully pCMV-tdTomato-FoxO1which was transfected intoRAW264.7by using TransLipid Transfection Reagent. FoxO1, FoxO3, LC3, Gabarapl1and Atg12mRNA levels is at the summit on12-hour liposome transfection, FoxO13.6fold, FoxO31.7fold,LC32.9fold, Gabarapl12.7fold and Atg125.2fold (p<0.05; n=3). After the time of12-hourliposome transfection, the mRNA levels of those studied gene began to decrease. It is interestingto note that the mRNA levels of those studied gene had been higher than the beginning mRNAlevel of them, FoxO12.1fold, FoxO31.5fold, LC31.9fold, Gabarapl11.8fold and Atg123.8fold (p<0.05; n=3). Western blotting results showed, at the first12-hour liposome transfection,LC3II protein isoform was increased as LC3I protein isoform was decreased. LC3II protein isoform was at the peak at the time of12-hour liposome transfection. Following48h, LC3IIprotein isoform was gradually decreased.MDC dyeing results showed FoxO1over expression canenhance gathering vacuolar. Immunofluorescence results showed that FoxO1over expression canenhance LAMP-1, GABARAPL1and LC3transport from cytoplasm to Intracellular Membranes.
     Real time PCR results showed that, at the first6-hour liposome transfection, the mRNAlevels of studied gene (H_2-EAb_1, H_2-Eb_1) were all a few lower than the beginning mRNA level ofthem. Expression of H2-EAb1, H2-Eb1mRNA levels is at the summit on12-hour liposometransfection, H_2-EAb_14.4fold, H2-Eb17.5fold (p<0.05; n=3). After the time of12-hour liposometransfection, the mRNA levels of those studied gene began to decrease. The mRNA levels of thosestudied gene had been higher than the beginning mRNA level of them, H2-EAb13.2fold, H2-Eb15.4fold (p<0.05; n=3). In order to study the effect of transcription factor FoxO1on autophagy andefficiency of antigen presentation in RAW264.7, antigen presentation analysis were done withFoxO1over expressed RAW264.7as antigen presentation cell, BCG and CFP10as antigen. Afterantigen presentation, MTT results showed that FoxO1over expression can increase perilymphaticcell proliferation in vitro. ELISA results showed that secrete level of IL-2, IFN-γ and TNF-α incell suspension after antigen presentation was increased significantly.
     Above all, transcription Factor FoxO1has can induce the the autophagy, increase theexpression of MHC-II related gene and enhance the efficiency of antigen presentation inRAW264.7.
引文
[1]Who: Tuberculosis facts [J].2010.
    [2]WHO: WHO progress report2011[J].2011.
    [3]Shah N S, Wright A, Bai G H, et al. Worldwide emergence of extensively drug-resistanttuberculosis[J]. Emerg Infect Dis,2007,13(3):380-7.
    [4]Van Rie A,Enarson D XDR tuberculosis: an indicator of public-health negligence[J]. Lancet,2006,368(9547):1554-6.
    [5]Smith N H, Gordon S V, de la Rua-Domenech R, et al. Bottlenecks and broomsticks: themolecular evolution of Mycobacterium bovis[J]. Nat Rev Microbiol,2006,4(9):670-81.
    [6]Huard R C, Fabre M, de Haas P, et al. Novel genetic polymorphisms that further delineate thephylogeny of the Mycobacterium tuberculosis complex[J]. Journal of Bacteriology,2006,188(12):4271-4287.
    [7]Mostowy S, Inwald J, Gordon S, et al. Revisiting the evolution of Mycobacterium bovis[J].Journal of Bacteriology,2005,187(18):6386-95.
    [8]Sreevatsan S, Pan X, Stockbauer K E, et al. Restricted structural gene polymorphism in theMycobacterium tuberculosis complex indicates evolutionarily recent global dissemination[J].Proc Natl Acad Sci U S A,1997,94(18):9869-74.
    [9]Brosch R, Gordon S V, Marmiesse M, et al. A new evolutionary scenario for theMycobacterium tuberculosis complex[J]. Proc Natl Acad Sci U S A,2002,99(6):3684-9.
    [10]Garnier T, Eiglmeier K, Camus J C, et al. The complete genome sequence of Mycobacteriumbovis[J]. Proc Natl Acad Sci U S A,2003,100(13):7877-82.
    [11]Kantor I N, LoBue P A,Thoen C O Human tuberculosis caused by Mycobacterium bovis inthe United States, Latin America and the Caribbean[J]. Int J Tuberc Lung Dis,2010,14(11):1369-73.
    [12]Jong B C, Antonio M, Awine T, et al. Use of Spoligotyping and Large SequencePolymorphisms To Study the Population Structure of the Mycobacterium tuberculosisComplex in a Cohort Study of Consecutive Smear-Positive Tuberculosis Cases in TheGambia[J]. Journal of Clinical Microbiology,2009,47(4):994-1001.
    [13]de Jong B C, Antonio M,Gagneux S Mycobacterium africanum-Review of an Important Causeof Human Tuberculosis in West Africa[J]. Plos Neglected Tropical Diseases,2010,4(9).
    [14]Kallenius G, Koivula T, Ghebremichael S, et al. Evolution and clonal traits of Mycobacteriumtuberculosis complex in Guinea-Bissau[J]. Journal of Clinical Microbiology,1999,37(12):3872-8.
    [15]Means T K, Wang S, Lien E, et al. Human toll-like receptors mediate cellular activation byMycobacterium tuberculosis[J]. J Immunol,1999,163(7):3920-7.
    [16]Bodnar K A, Serbina N V,Flynn J L Fate of Mycobacterium tuberculosis within murinedendritic cells[J]. Infection and Immunity,2001,69(2):800-809.
    [17]Henderson R A, Watkins S C,Flynn J L Activation of human dendritic cells followinginfection with Mycobacterium tuberculosis[J]. J Immunol,1997,159(2):635-43.
    [18]Hertz C J, Kiertscher S M, Godowski P J, et al. Microbial lipopeptides stimulate dendritic cellmaturation via Toll-like receptor2[J]. J Immunol,2001,166(4):2444-50.
    [19]Gatfield J,Pieters J Essential role for cholesterol in entry of mycobacteria into macrophages[J].Science,2000,288(5471):1647-1650.
    [20]Ernst J D Macrophage receptors for Mycobacterium tuberculosis[J]. Infect Immun,1998,66(4):1277-81.
    [21]Schafer G, Jacobs M, Wilkinson R J, et al. Non-opsonic recognition of Mycobacteriumtuberculosis by phagocytes[J]. J Innate Immun,2009,1(3):231-43.
    [22]Schafer G, Guler R, Murray G, et al. The role of scavenger receptor B1in infection withMycobacterium tuberculosis in a murine model[J]. PLoS One,2009,4(12): e8448.
    [23]Visintin A, Mazzoni A, Spitzer J H, et al. Regulation of Toll-like receptors in humanmonocytes and dendritic cells[J]. J Immunol,2001,166(1):249-55.
    [24]van Crevel R, Ottenhoff T H,van der Meer J W Innate immunity to Mycobacteriumtuberculosis[J]. Clin Microbiol Rev,2002,15(2):294-309.
    [25]Bowdish D M, Sakamoto K, Kim M J, et al. MARCO, TLR2, and CD14are required formacrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacteriumtuberculosis[J]. Plos Pathogens,2009,5(6): e1000474.
    [26]Jo E K, Yang C S, Choi C H, et al. Intracellular signalling cascades regulating innate immuneresponses to Mycobacteria: branching out from Toll-like receptors[J]. Cell Microbiol,2007,9(5):1087-98.
    [27]Winau F, Hegasy G, Kaufmann S H E, et al. No life without death-apoptosis as prerequisitefor T cell activation[J]. Apoptosis,2005,10(4):707-715.
    [28]Russell D G Mycobacterium tuberculosis and the intimate discourse of a chronic infection[J].Immunol Rev,2011,240(1):252-68.
    [29]Nathan C,Shiloh M U Reactive oxygen and nitrogen intermediates in the relationship betweenmammalian hosts and microbial pathogens[J]. Proceedings of the National Academy ofSciences of the United States of America,2000,97(16):8841-8848.
    [30]Alvarez M N, Peluffo G, Piacenza L, et al. Intraphagosomal Peroxynitrite as aMacrophage-derived Cytotoxin against Internalized Trypanosoma cruzi CONSEQUENCESFOR OXIDATIVE KILLING AND ROLE OF MICROBIAL PEROXIREDOXINS ININFECTIVITY[J]. Journal of Biological Chemistry,2011,286(8):6627-6640.
    [31]Jordao L, Bleck C K, Mayorga L, et al. On the killing of mycobacteria by macrophages[J].Cell Microbiol,2008,10(2):529-48.
    [32]Chan J, Xing Y, Magliozzo R S, et al. Killing of virulent Mycobacterium tuberculosis byreactive nitrogen intermediates produced by activated murine macrophages[J]. J Exp Med,1992,175(4):1111-22.
    [33]Denis M Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli viathe generation of reactive nitrogen intermediates[J]. Cell Immunol,1991,132(1):150-7.
    [34]Chan J, Tanaka K, Carroll D, et al. Effects of nitric oxide synthase inhibitors on murineinfection with Mycobacterium tuberculosis[J]. Infect Immun,1995,63(2):736-40.
    [35]Flynn J L, Scanga C A, Tanaka K E, et al. Effects of aminoguanidine on latent murinetuberculosis[J]. J Immunol,1998,160(4):1796-803.
    [36]Scanga C A, Mohan V P, Tanaka K, et al. The inducible nitric oxide synthase locus confersprotection against aerogenic challenge of both clinical and laboratory strains ofMycobacterium tuberculosis in mice[J]. Infection and Immunity,2001,69(12):7711-7717.
    [37]Nathan C Inducible nitric oxide synthase in the tuberculous human lung[J]. Am J Respir CritCare Med,2002,166(2):130-1.
    [38]Chan E D, Chan J,Schluger N W What is the role of nitric oxide in murine and human hostdefense against tuberculosis? Current knowledge[J]. American Journal of Respiratory Celland Molecular Biology,2001,25(5):606-612.
    [39]MacMicking J D, Taylor G A,McKinney J D Immune control of tuberculosis byIFN-gamma-inducible LRG-47[J]. Science,2003,302(5645):654-9.
    [40]O'Brien L, Carmichael J, Lowrie D B, et al. Strains of Mycobacterium tuberculosis differ insusceptibility to reactive nitrogen intermediates in vitro[J]. Infect Immun,1994,62(11):5187-90.
    [41]Long R, Light B,Talbot J A Mycobacteriocidal action of exogenous nitric oxide[J].Antimicrob Agents Chemother,1999,43(2):403-5.
    [42]Long R, Jones R, Talbot J, et al. Inhaled nitric oxide treatment of patients with pulmonarytuberculosis evidenced by positive sputum smears[J]. Antimicrobial Agents andChemotherapy,2005,49(3):1209-1212.
    [43]Rhoades E R,Orme I M Susceptibility of a panel of virulent strains of Mycobacteriumtuberculosis to reactive nitrogen intermediates[J]. Infect Immun,1997,65(4):1189-95.
    [44]Ehrt S, Shiloh M U, Ruan J, et al. A novel antioxidant gene from Mycobacteriumtuberculosis[J]. J Exp Med,1997,186(11):1885-96.
    [45]Ruan J, St John G, Ehrt S, et al. noxR3, a novel gene from Mycobacterium tuberculosis,protects Salmonella typhimurium from nitrosative and oxidative stress[J]. Infect Immun,1999,67(7):3276-83.
    [46]Chen L, Xie Q W,Nathan C Alkyl hydroperoxide reductase subunit C (AhpC) protectsbacterial and human cells against reactive nitrogen intermediates[J]. Mol Cell,1998,1(6):795-805.
    [47]Yu K, Mitchell C, Xing Y, et al. Toxicity of nitrogen oxides and related oxidants onmycobacteria: M. tuberculosis is resistant to peroxynitrite anion[J]. Tuber Lung Dis,1999,79(4):191-8.
    [48]Bryk R, Griffin P,Nathan C Peroxynitrite reductase activity of bacterial peroxiredoxins[J].Nature,2000,407(6801):211-5.
    [49]Greenberg S,Grinstein S Phagocytosis and innate immunity[J]. Curr Opin Immunol,2002,14(1):136-45.
    [50]Aderem A,Underhill D M Mechanisms of phagocytosis in macrophages[J]. Annu RevImmunol,1999,17:593-623.
    [51]Swanson J A Shaping cups into phagosomes and macropinosomes[J]. Nature ReviewsMolecular Cell Biology,2008,9(8):639-649.
    [52]Vieira O V, Botelho R J,Grinstein S Phagosome maturation: aging gracefully[J]. Biochem J,2002,366(Pt3):689-704.
    [53]Haas A The phagosome: compartment with a license to kill[J]. Traffic,2007,8(4):311-30.
    [54]Russell D G, Mwandumba H C,Rhoades E E Mycobacterium and the coat of many lipids[J]. JCell Biol,2002,158(3):421-6.
    [55]Russell D G Mycobacterium tuberculosis: Here today, and here tomorrow[J]. Nature ReviewsMolecular Cell Biology,2001,2(8):569-577.
    [56]Desjardins M Biogenesis of phagolysosomes: the 'kiss and run' hypothesis[J]. Trends CellBiol,1995,5(5):183-6.
    [57]Pitt A, Mayorga L S, Stahl P D, et al. Alterations in the protein composition of maturingphagosomes[J]. J Clin Invest,1992,90(5):1978-83.
    [58]Fratti R A, Backer J M, Gruenberg J, et al. Role of phosphatidylinositol3-kinase and Rab5effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest[J]. J CellBiol,2001,154(3):631-44.
    [59]Cossart P,Sansonetti P J Bacterial invasion: the paradigms of enteroinvasive pathogens[J].Science,2004,304(5668):242-8.
    [60]Fernandes M C, L'Abbate C, Andreoli W K, et al. Trypanosoma cruzi cell invasion and traffic:Influence of Coxiella burnetii and pH in a comparative study between distinct infectiveforms[J]. Microbial Pathogenesis,2007,43(1):22-36.
    [61]Roy C R,Tilney L G The road less traveled: transport of Legionella to the endoplasmicreticulum[J]. J Cell Biol,2002,158(3):415-9.
    [62]Holden D W Trafficking of the Salmonella vacuole in macrophages[J]. Traffic,2002,3(3):161-9.
    [63]Lerm M, Holm A, Seiron A, et al. Leishmania donovani requires functional Cdc42and Rac1to prevent phagosomal maturation[J]. Infect Immun,2006,74(5):2613-8.
    [64]Black C M, Paliescheskey M, Beaman B L, et al. Acidification of phagosomes in murinemacrophages: blockage by Nocardia asteroides[J]. J Infect Dis,1986,154(6):952-8.
    [65]Vergne I, Chua J, Singh S B, et al. Cell biology of mycobacterium tuberculosis phagosome[J].Annu Rev Cell Dev Biol,2004,20:367-94.
    [66]Fernandez-Mora E, Polidori M, Luhrmann A, et al. Maturation of Rhodococcusequi-containing vacuoles is arrested after completion of the early endosome stage[J]. Traffic,2005,6(8):635-653.
    [67]Armstrong J A,Hart P D Response of cultured macrophages to Mycobacterium tuberculosis,with observations on fusion of lysosomes with phagosomes[J]. J Exp Med,1971,134(3Pt1):713-40.
    [68]Clemens D L Characterization of the Mycobacterium tuberculosis phagosome[J]. TrendsMicrobiol,1996,4(3):113-8.
    [69]Flynn J L,Chan J Immune evasion by Mycobacterium tuberculosis: living with the enemy[J].Curr Opin Immunol,2003,15(4):450-5.
    [70]Tufariello J M, Chan J,Flynn J L Latent tuberculosis: mechanisms of host and bacillus thatcontribute to persistent infection[J]. Lancet Infectious Diseases,2003,3(9):578-590.
    [71]Brown C A, Draper P,Hart P D Mycobacteria and lysosomes: a paradox[J]. Nature,1969,221(5181):658-60.
    [72]Frehel C, de Chastellier C, Lang T, et al. Evidence for inhibition of fusion of lysosomal andprelysosomal compartments with phagosomes in macrophages infected with pathogenicMycobacterium avium[J]. Infect Immun,1986,52(1):252-62.
    [73]Sturgill-Koszycki S, Schaible U E,Russell D G Mycobacterium-containing phagosomes areaccessible to early endosomes and reflect a transitional state in normal phagosomebiogenesis[J]. EMBO J,1996,15(24):6960-8.
    [74]Anes E, Kuhnel M P, Bos E, et al. Selected lipids activate phagosome actin assembly andmaturation resulting in killing of pathogenic mycobacteria[J]. Nat Cell Biol,2003,5(9):793-802.
    [75]Pereira-Leal J B,Seabra M C Evolution of the Rab family of small GTP-binding proteins[J]. JMol Biol,2001,313(4):889-901.
    [76]Clemens D L, Lee B Y,Horwitz M A Deviant expression of Rab5on phagosomes containingthe intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila isassociated with altered phagosomal fate[J]. Infection and Immunity,2000,68(5):2671-2684.
    [77]Ullrich H J, Beatty W L,Russell D G Direct delivery of procathepsin D to phagosomes:implications for phagosome biogenesis and parasitism by Mycobacterium[J]. Eur J Cell Biol,1999,78(10):739-48.
    [78]Vieira O V, Botelho R J, Rameh L, et al. Distinct roles of class I and class IIIphosphatidylinositol3-kinases in phagosome formation and maturation[J]. J Cell Biol,2001,155(1):19-25.
    [79]Vieira O V, Harrison R E, Scott C C, et al. Acquisition of Hrs, an essential component ofphagosomal maturation, is impaired by mycobacteria[J]. Molecular and Cellular Biology,2004,24(10):4593-4604.
    [80]Vergne I, Chua J,Deretic V Tuberculosis toxin blocking phagosome maturation inhibits anovel Ca(2+)/calmodulin-PI3K hVPS34cascade[J]. Journal of Experimental Medicine,2003,198(4):653-659.
    [81]Lawe D C, Sitouah N, Hayes S, et al. Essential role of Ca2+/calmodulin in early endosomeantigen-1localization[J]. Molecular Biology of the Cell,2003,14(7):2935-2945.
    [82]Roberts E A, Chua J, Kyei G B, et al. Higher order Rab programming in phagolysosomebiogenesis[J]. J Cell Biol,2006,174(7):923-9.
    [83]Zerial M,McBride H Rab proteins as membrane organizers[J]. Nature Reviews Molecular CellBiology,2001,2(2):107-117.
    [84]Cardoso C M, Jordao L,Vieira O V Rab10regulates phagosome maturation and itsoverexpression rescues Mycobacterium-containing phagosomes maturation[J]. Traffic,2010,11(2):221-35.
    [85]Kyei G B, Vergne I, Chua J, et al. Rab14is critical for maintenance of Mycobacteriumtuberculosis phagosome maturation arrest[J]. Embo Journal,2006,25(22):5250-5259.
    [86]McDonough K A, Kress Y,Bloom B R Pathogenesis of tuberculosis: interaction ofMycobacterium tuberculosis with macrophages[J]. Infect Immun,1993,61(7):2763-73.
    [87]Myrvik Q N, Leake E S,Wright M J Disruption of phagosomal membranes of normal alveolarmacrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence[J].Am Rev Respir Dis,1984,129(2):322-8.
    [88]van der Wel N, Hava D, Houben D, et al. M. tuberculosis and M. leprae translocate from thephagolysosome to the cytosol in myeloid cells[J]. Cell,2007,129(7):1287-98.
    [89]Brodin P, Majlessi L, Marsollier L, et al. Dissection of ESAT-6system1of Mycobacteriumtuberculosis and impact on immunogenicity and virulence[J]. Infect Immun,2006,74(1):88-98.
    [90]Levine B,Klionsky D J Development by self-digestion: molecular mechanisms and biologicalfunctions of autophagy[J]. Dev Cell,2004,6(4):463-77.
    [91]Deretic V Autophagy in infection[J]. Curr Opin Cell Biol,2010,22(2):252-62.
    [92]Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group AStreptococcus[J]. Science,2004,306(5698):1037-40.
    [93]Gutierrez M G, Master S S, Singh S B, et al. Autophagy is a defense mechanism inhibitingBCG and Mycobacterium tuberculosis survival in infected macrophages[J]. Cell,2004,119(6):753-766.
    [94]Intemann C D, Thye T, Niemann S, et al. Autophagy Gene Variant IRGM-261T Contributes toProtection from Tuberculosis Caused by Mycobacterium tuberculosis but Not by M.africanum Strains[J]. Plos Pathogens,2009,5(9).
    [95]Kathania M, Raje C I, Raje M, et al. Bfl-1/A1acts as a negative regulator of autophagy inmycobacteria infected macrophages[J]. International Journal of Biochemistry&Cell Biology,2011,43(4):573-585.
    [96]Purdy G E,Russell D G Ubiquitin trafficking to the lysosome: keeping the house tidy andgetting rid of unwanted guests[J]. Autophagy,2007,3(4):399-401.
    [97]Singh S B, Davis A S, Taylor G A, et al. Human IRGM induces autophagy to eliminateintracellular mycobacteria[J]. Science,2006,313(5792):1438-41.
    [98]Deretic V Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosomematuration block and how to bypass it[J]. Future Microbiology,2008,3(5):517-524.
    [99]Delgado M A, Elmaoued R A, Davis A S, et al. Toll-like receptors control autophagy[J]. EmboJournal,2008,27(7):1110-1121.
    [100]Deretic V, Singh S, Master S, et al. Mycobacterium tuberculosis inhibition of phagolysosomebiogenesis and autophagy as a host defence mechanism[J]. Cellular Microbiology,2006,8(5):719-727.
    [101]Jo E K Innate immunity to mycobacteria: vitamin D and autophagy[J]. CellularMicrobiology,2010,12(8):1026-1035.
    [102]Chen M J, Gan H X,Remold H G A mechanism of virulence: Virulent Mycobacteriumtuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial innermembrane disruption in macrophages leading to necrosis[J]. Journal of Immunology,2006,176(6):3707-3716.
    [103]Gan H X, He X B, Duan L, et al. Enhancement of antimycobacterial activity of macrophagesby stabilization of inner mitochondrial membrane potential[J]. Journal of Infectious Diseases,2005,191(8):1292-1300.
    [104]Riendeau C J,Kornfeld H THP-1cell apoptosis in response to mycobacterial infection[J].Infection and Immunity,2003,71(1):254-259.
    [105]O'Sullivan M P, O'Leary S, Kelly D M, et al. A caspase-independent pathway mediatesmacrophage cell death in response to Mycobacterium tuberculosis infection[J]. Infection andImmunity,2007,75(4):1984-1993.
    [106]Schaible U E, Winau F, Sieling P A, et al. Apoptosis facilitates antigen presentation to Tlymphocytes through MHC-I and CD1in tuberculosis[J]. Nature Medicine,2003,9(8):1039-1046.
    [107]Pan H, Yan B S, Rojas M, et al. Ipr1gene mediates innate immunity to tuberculosis[J].Nature,2005,434(7034):767-72.
    [108]Placido R, Auricchio G, Falzoni S, et al. P2X(7) purinergic receptors and extracellular ATPmediate apoptosis of human monocytes/macrophages infected with Mycobacteriumtuberculosis reducing the intracellular bacterial viability[J]. Cell Immunol,2006,244(1):10-8.
    [109]Fairbairn I P, Stober C B, Kumararatne D S, et al. ATP-mediated killing of intracellularmycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death byphagosome-lysosome fusion[J]. Journal of Immunology,2001,167(6):3300-3307.
    [110]Biswas D, Qureshi O S, Lee W Y, et al. ATP-induced autophagy is associated with rapidkilling of intracellular mycobacteria within human monocytes/macrophages[J]. BmcImmunology,2008,9.
    [111]Keane J, Remold H G,Kornfeld H Virulent Mycobacterium tuberculosis strains evadeapoptosis of infected alveolar macrophages[J]. Journal of Immunology,2000,164(4):2016-2020.
    [112]Spira A, Carroll J D, Liu G, et al. Apoptosis genes in human alveolar macrophages infectedwith virulent or attenuated Mycobacterium tuberculosis-A pivotal role for tumor necrosisfactor[J]. American Journal of Respiratory Cell and Molecular Biology,2003,29(5):545-551.
    [113]Balcewicz-Sablinska M K, Keane J, Kornfeld H, et al. Pathogenic Mycobacteriumtuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting ininactivation of TNF-alpha[J]. J Immunol,1998,161(5):2636-41.
    [114]Duan L, Gan H, Arm J, et al. Cytosolic phospholipase A2participates with TNF-alpha in theinduction of apoptosis of human macrophages infected with Mycobacterium tuberculosisH37Ra[J]. J Immunol,2001,166(12):7469-76.
    [115]Wymann M P,Schneiter R Lipid signalling in disease[J]. Nature Reviews Molecular CellBiology,2008,9(2):162-176.
    [116]Chen M J, Divangahi M, Gan H X, et al. Lipid mediators in innate immunity againsttuberculosis: opposing roles of PGE(2) and LXA(4) in the induction of macrophage death[J].Journal of Experimental Medicine,2008,205(12):2791-2801.
    [117]Klionsky D J,Emr S D Autophagy as a regulated pathway of cellular degradation[J]. Science,2000,290(5497):1717-21.
    [118]Yorimitsu T,Klionsky D J Autophagy: molecular machinery for self-eating[J]. Cell DeathDiffer,2005,12Suppl2:1542-52.
    [119]Roberts P, Moshitch-Moshkovitz S, Kvam E, et al. Piecemeal microautophagy of nucleus inSaccharomyces cerevisiae[J]. Mol Biol Cell,2003,14(1):129-41.
    [120]Sattler T,Mayer A Cell-free reconstitution of microautophagic vacuole invagination andvesicle formation[J]. J Cell Biol,2000,151(3):529-38.
    [121]Yu L, Strandberg L,Lenardo M J The selectivity of autophagy and its role in cell death andsurvival[J]. Autophagy,2008,4(5):567-73.
    [122]Kanki T,Klionsky D J The molecular mechanism of mitochondria autophagy in yeast[J]. MolMicrobiol,2010.
    [123]Levine B Eating oneself and uninvited guests: autophagy-related pathways in cellulardefense[J]. Cell,2005,120(2):159-62.
    [124]Klionsky D J The molecular machinery of autophagy: unanswered questions[J]. J Cell Sci,2005,118(Pt1):7-18.
    [125]Majeski A E,Dice J F Mechanisms of chaperone-mediated autophagy[J]. Int J Biochem CellBiol,2004,36(12):2435-44.
    [126]Jensen P E Recent advances in antigen processing and presentation[J]. Nat Immunol,2007,8(10):1041-8.
    [127]Shen L,Rock K L Priming of T cells by exogenous antigen cross-presented on MHC class Imolecules[J]. Curr Opin Immunol,2006,18(1):85-91.
    [128]Raghavan M, Del Cid N, Rizvi S M, et al. MHC class I assembly: out and about[J]. TrendsImmunol,2008,29(9):436-43.
    [129]Vyas J M, Van der Veen A G,Ploegh H L The known unknowns of antigen processing andpresentation[J]. Nat Rev Immunol,2008,8(8):607-18.
    [130]Li Y, Wang L X, Yang G, et al. Efficient cross-presentation depends on autophagy in tumorcells[J]. Cancer Res,2008,68(17):6889-95.
    [131]Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-inducedautophagy in malignant glioma cells by phosphatidylinositol3-kinase/protein kinase Binhibitors[J]. Cancer Res,2005,65(8):3336-46.
    [132]Seglen P O,Gordon P B3-Methyladenine: specific inhibitor of autophagic/lysosomal proteindegradation in isolated rat hepatocytes[J]. Proc Natl Acad Sci U S A,1982,79(6):1889-92.
    [133]Rosenzweig K E, Youmell M B, Palayoor S T, et al. Radiosensitization of human tumor cellsby the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002correlates withinhibition of DNA-dependent protein kinase and prolonged G2-M delay[J]. Clin Cancer Res,1997,3(7):1149-56.
    [134]Huang J,Klionsky D J Autophagy and human disease[J]. Cell Cycle,2007,6(15):1837-49.
    [135]Levine B,Deretic V Unveiling the roles of autophagy in innate and adaptive immunity[J].Nat Rev Immunol,2007,7(10):767-77.
    [136]Schmid D,Munz C Innate and adaptive immunity through autophagy[J]. Immunity,2007,27(1):11-21.
    [137]Andrade R M, Wessendarp M, Gubbels M J, et al. CD40induces macrophageanti-Toxoplasma gondii activity by triggering autophagy-dependent fusion ofpathogen-containing vacuoles and lysosomes[J]. J Clin Invest,2006,116(9):2366-77.
    [138]Ling Y M, Shaw M H, Ayala C, et al. Vacuolar and plasma membrane stripping andautophagic elimination of Toxoplasma gondii in primed effector macrophages[J]. J Exp Med,2006,203(9):2063-71.
    [139]Luder C G,Seeber F Toxoplasma gondii and MHC-restricted antigen presentation: ondegradation, transport and modulation[J]. Int J Parasitol,2001,31(12):1355-69.
    [140]Dorn B R, Dunn W A, Jr.,Progulske-Fox A Bacterial interactions with the autophagicpathway[J]. Cell Microbiol,2002,4(1):1-10.
    [141]Szeto J, Kaniuk N A, Canadien V, et al. ALIS are stress-induced protein storagecompartments for substrates of the proteasome and autophagy[J]. Autophagy,2006,2(3):189-99.
    [142]Pierre P Dendritic cells, DRiPs, and DALIS in the control of antigen processing[J]. ImmunolRev,2005,207:184-90.
    [143]Watts C The exogenous pathway for antigen presentation on major histocompatibilitycomplex class II and CD1molecules[J]. Nat Immunol,2004,5(7):685-92.
    [144]Cresswell P Invariant chain structure and MHC class II function[J]. Cell,1996,84(4):505-7.
    [145]Sant A J,Miller J MHC class II antigen processing: biology of invariant chain[J]. Curr OpinImmunol,1994,6(1):57-63.
    [146]Maric M A, Taylor M D,Blum J S Endosomal aspartic proteinases are required forinvariant-chain processing[J]. Proc Natl Acad Sci U S A,1994,91(6):2171-5.
    [147]Riese R J, Wolf P R, Bromme D, et al. Essential role for cathepsin S in MHC classII-associated invariant chain processing and peptide loading[J]. Immunity,1996,4(4):357-66.
    [148]Watts C Antigen processing in the endocytic compartment[J]. Curr Opin Immunol,2001,13(1):26-31.
    [149]Sherman M A, Weber D A,Jensen P E DM enhances peptide binding to class II MHC byrelease of invariant chain-derived peptide[J]. Immunity,1995,3(2):197-205.
    [150]Sloan V S, Cameron P, Porter G, et al. Mediation by HLA-DM of dissociation of peptidesfrom HLA-DR[J]. Nature,1995,375(6534):802-6.
    [151]Denzin L K,Cresswell P HLA-DM induces CLIP dissociation from MHC class II alpha betadimers and facilitates peptide loading[J]. Cell,1995,82(1):155-65.
    [152]Pieters J MHC class II compartments: specialized organelles of the endocytic pathway inantigen presenting cells[J]. Biol Chem,1997,378(8):751-8.
    [153]Zhou D, Li P, Lin Y, et al. Lamp-2a facilitates MHC class II presentation of cytoplasmicantigens[J]. Immunity,2005,22(5):571-81.
    [154]Schmid D, Pypaert M,Munz C Antigen-loading compartments for major histocompatibilitycomplex class II molecules continuously receive input from autophagosomes[J]. Immunity,2007,26(1):79-92.
    [155]Crotzer V L,Blum J S Cytosol to lysosome transport of intracellular antigens during immunesurveillance[J]. Traffic,2008,9(1):10-6.
    [156]Li P, Gregg J L, Wang N, et al. Compartmentalization of class II antigen presentation:contribution of cytoplasmic and endosomal processing[J]. Immunol Rev,2005,207:206-17.
    [157]Lunemann J D,Munz C Autophagy in CD4+T-cell immunity and tolerance[J]. Cell DeathDiffer,2009,16(1):79-86.
    [158]Strawbridge A B,Blum J S Autophagy in MHC class II antigen processing[J]. Curr OpinImmunol,2007,19(1):87-92.
    [159]Dul J L, Davis D P, Williamson E K, et al. Hsp70and antifibrillogenic peptides promotedegradation and inhibit intracellular aggregation of amyloidogenic light chains[J]. J Cell Biol,2001,152(4):705-16.
    [160]Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation ofpeptides from intracellular source proteins[J]. Proc Natl Acad Sci U S A,2005,102(22):7922-7.
    [161]Riedel A, Nimmerjahn F, Burdach S, et al. Endogenous presentation of a nuclear antigen onMHC class II by autophagy in the absence of CRM1-mediated nuclear export[J]. Eur JImmunol,2008,38(8):2090-5.
    [162]Nimmerjahn F, Milosevic S, Behrends U, et al. Major histocompatibility complex classII-restricted presentation of a cytosolic antigen by autophagy[J]. Eur J Immunol,2003,33(5):1250-9.
    [163]Dorfel D, Appel S, Grunebach F, et al. Processing and presentation of HLA class I and IIepitopes by dendritic cells after transfection with in vitro-transcribed MUC1RNA[J]. Blood,2005,105(8):3199-205.
    [164]Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viralnuclear antigen after autophagy[J]. Science,2005,307(5709):593-6.
    [165]Tewari M K, Sinnathamby G, Rajagopal D, et al. A cytosolic pathway for MHC classII-restricted antigen processing that is proteasome and TAP dependent[J]. Nat Immunol,2005,6(3):287-94.
    [166]Lich J D, Elliott J F,Blum J S Cytoplasmic processing is a prerequisite for presentation of anendogenous antigen by major histocompatibility complex class II proteins[J]. J Exp Med,2000,191(9):1513-24.
    [167]Malnati M S, Marti M, LaVaute T, et al. Processing pathways for presentation of cytosolicantigen to MHC class II-restricted T cells[J]. Nature,1992,357(6380):702-4.
    [168]Dissanayake S K, Tuera N,Ostrand-Rosenberg S Presentation of endogenously synthesizedMHC class II-restricted epitopes by MHC class II cancer vaccines is independent oftransporter associated with Ag processing and the proteasome[J]. J Immunol,2005,174(4):1811-9.
    [169]Dani A, Chaudhry A, Mukherjee P, et al. The pathway for MHCII-mediated presentation ofendogenous proteins involves peptide transport to the endo-lysosomal compartment[J]. J CellSci,2004,117(Pt18):4219-30.
    [170]Taylor G S, Long H M, Haigh T A, et al. A role for intercellular antigen transfer in therecognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+Tcells[J]. J Immunol,2006,177(6):3746-56.
    [171]Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cellrepertoire and is essential for tolerance[J]. Nature,2008,455(7211):396-400.
    [172]Levine B,Kroemer G Autophagy in the pathogenesis of disease[J]. Cell,2008,132(1):27-42.
    [173]Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellularself-digestion[J]. Nature,2008,451(7182):1069-75.
    [174]Lee H K,Iwasaki A Autophagy and antiviral immunity[J]. Curr Opin Immunol,2008,20(1):23-9.
    [175]Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virus encephalitisby beclin, a novel Bcl-2-interacting protein[J]. J Virol,1998,72(11):8586-96.
    [176]Talloczy Z, Virgin H W t,Levine B PKR-dependent autophagic degradation of herpessimplex virus type1[J]. Autophagy,2006,2(1):24-9.
    [177]Lee H K, Lund J M, Ramanathan B, et al. Autophagy-dependent viral recognition byplasmacytoid dendritic cells[J]. Science,2007,315(5817):1398-401.
    [178]Honda K, Yanai H, Negishi H, et al. IRF-7is the master regulator of type-Iinterferon-dependent immune responses[J]. Nature,2005,434(7034):772-7.
    [179]Cao W, Manicassamy S, Tang H, et al. Toll-like receptor-mediated induction of type Iinterferon in plasmacytoid dendritic cells requires the rapamycin-sensitivePI(3)K-mTOR-p70S6K pathway[J]. Nat Immunol,2008,9(10):1157-64.
    [180]Gutierrez M G, Master S S, Singh S B, et al. Autophagy is a defense mechanism inhibitingBCG and Mycobacterium tuberculosis survival in infected macrophages[J]. Cell,2004,119(6):753-66.
    [181]Delgado M A, Elmaoued R A, Davis A S, et al. Toll-like receptors control autophagy[J].EMBO J,2008,27(7):1110-21.
    [182]Samaddar J S, Gaddy V T, Duplantier J, et al. A role for macroautophagy in protectionagainst4-hydroxytamoxifen-induced cell death and the development of antiestrogenresistance[J]. Mol Cancer Ther,2008,7(9):2977-87.
    [183]Lleo A, Invernizzi P, Selmi C, et al. Autophagy: highlighting a novel player in theautoimmunity scenario[J]. J Autoimmun,2007,29(2-3):61-8.
    [184]Pua H H, Dzhagalov I, Chuck M, et al. A critical role for the autophagy gene Atg5in T cellsurvival and proliferation[J]. J Exp Med,2007,204(1):25-31.
    [185]Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymousSNPs identifies a susceptibility variant for Crohn disease in ATG16L1[J]. Nat Genet,2007,39(2):207-11.
    [186]Prescott N J, Fisher S A, Franke A, et al. A nonsynonymous SNP in ATG16L1predisposes toileal Crohn's disease and is independent of CARD15and IBD5[J]. Gastroenterology,2007,132(5):1665-71.
    [187]Rioux J D, Xavier R J, Taylor K D, et al. Genome-wide association study identifies newsusceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis[J]. NatGenet,2007,39(5):596-604.
    [188]Parkes M, Barrett J C, Prescott N J, et al. Sequence variants in the autophagy gene IRGMand multiple other replicating loci contribute to Crohn's disease susceptibility[J]. Nat Genet,2007,39(7):830-2.
    [189]Saitoh T, Fujita N, Jang M H, et al. Loss of the autophagy protein Atg16L1enhancesendotoxin-induced IL-1beta production[J]. Nature,2008,456(7219):264-8.
    [190]Jagannath C, Lindsey D R, Dhandayuthapani S, et al. Autophagy enhances the efficacy ofBCG vaccine by increasing peptide presentation in mouse dendritic cells[J]. Nat Med,2009,15(3):267-76.
    [191]Li H, Yin Y, Dong D, et al.[Establishment of RAW264.7cell line stably expressingMycobacterium tuberculosis protein ESAT-6][J]. Sheng Wu Gong Cheng Xue Bao,2011,27(9):1390-6.
    [192]李传友,邢爱英,李亮等.结核分支杆菌感染巨噬细胞后氮氧化物的产生及细胞因子表达的研究[J].中华结核和呼吸杂志,2003(04):24-27.
    [193]高峰,李卫民,李传友等.牛分枝杆菌感染巨噬细胞(THP-1)全基因表达谱变化的研究[J].中国防痨杂志,2009(03):150-156.
    [194]Deb C, Lee C M, Dubey V S, et al. A novel in vitro multiple-stress dormancy model forMycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen[J].PLoS One,2009,4(6): e6077.
    [195]Noel S, Sharma S, Shanker R, et al. Primaquine-induced differential gene expressionanalysis in mice liver using DNA microarrays[J]. Toxicology,2007,239(1-2):96-107.
    [196]Kissner T L, Ruthel G, Alam S, et al. Activation of MyD88signaling upon staphylococcalenterotoxin binding to MHC class II molecules[J]. PLoS One,2011,6(1): e15985.
    [197]Friberg I M, Lowe A, Ralli C, et al. Temporal anomalies in immunological gene expressionin a time series of wild mice: signature of an epidemic?[J]. PLoS One,2011,6(5): e20070.
    [198]Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required forautophagosome formation in mammalian cells[J]. J Cell Biol,2008,181(3):497-510.
    [199]Weigelt K, Ernst W, Walczak Y, et al. Dap12expression in activated microglia fromretinoschisin-deficient retina and its PU.1-dependent promoter regulation[J]. J Leukoc Biol,2007,82(6):1564-74.
    [200]Korbel D S, Schneider B E,Schaible U E Innate immunity in tuberculosis: myths and truth[J].Microbes Infect,2008,10(9):995-1004.
    [201]Tapping R I,Tobias P S Mycobacterial lipoarabinomannan mediates physical interactionsbetween TLR1and TLR2to induce signaling[J]. J Endotoxin Res,2003,9(4):264-8.
    [202]Means T K, Jones B W, Schromm A B, et al. Differential effects of a Toll-like receptorantagonist on Mycobacterium tuberculosis-induced macrophage responses[J]. J Immunol,2001,166(6):4074-82.
    [203]Jones B W, Means T K, Heldwein K A, et al. Different Toll-like receptor agonists inducedistinct macrophage responses[J]. J Leukoc Biol,2001,69(6):1036-44.
    [204]Thoma-Uszynski S, Stenger S, Takeuchi O, et al. Induction of direct antimicrobial activitythrough mammalian toll-like receptors[J]. Science,2001,291(5508):1544-7.
    [205]Underhill D M, Ozinsky A, Smith K D, et al. Toll-like receptor-2mediatesmycobacteria-induced proinflammatory signaling in macrophages[J]. Proc Natl Acad Sci U SA,1999,96(25):14459-63.
    [206]Bafica A, Scanga C A, Feng C G, et al. TLR9regulates Th1responses and cooperates withTLR2in mediating optimal resistance to Mycobacterium tuberculosis[J]. J Exp Med,2005,202(12):1715-24.
    [207]Kleinnijenhuis J, Joosten L A, van de Veerdonk F L, et al. Transcriptional andinflammasome-mediated pathways for the induction of IL-1beta production byMycobacterium tuberculosis[J]. Eur J Immunol,2009,39(7):1914-22.
    [208]Pompei L, Jang S, Zamlynny B, et al. Disparity in IL-12release in dendritic cells andmacrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs[J]. JImmunol,2007,178(8):5192-9.
    [209]Pieters J Mycobacterium tuberculosis and the macrophage: maintaining a balance[J]. CellHost Microbe,2008,3(6):399-407.
    [210]Xu Y, Jagannath C, Liu X D, et al. Toll-like receptor4is a sensor for autophagy associatedwith innate immunity[J]. Immunity,2007,27(1):135-44.
    [211]Mege J L, Mehraj V,Capo C Macrophage polarization and bacterial infections[J]. Curr OpinInfect Dis,2011,24(3):230-4.
    [212]Flynn J L,Chan J Immunology of tuberculosis[J]. Annu Rev Immunol,2001,19:93-129.
    [213]Singh V, Jain S, Gowthaman U, et al. Co-administration of IL-1+IL-6+TNF-alpha withMycobacterium tuberculosis infected macrophages vaccine induces better protective T cellmemory than BCG[J]. PLoS One,2011,6(1): e16097.
    [214]Rohde K, Yates R M, Purdy G E, et al. Mycobacterium tuberculosis and the environmentwithin the phagosome[J]. Immunol Rev,2007,219:37-54.
    [215]Hestvik A L, Hmama Z,Av-Gay Y Mycobacterial manipulation of the host cell[J]. FEMSMicrobiol Rev,2005,29(5):1041-50.
    [216]Guerin I,de Chastellier C Pathogenic mycobacteria disrupt the macrophage actin filamentnetwork[J]. Infect Immun,2000,68(5):2655-62.
    [217]Guerin I,de Chastellier C Disruption of the actin filament network affects delivery ofendocytic contents marker to phagosomes with early endosome characteristics: the case ofphagosomes with pathogenic mycobacteria[J]. Eur J Cell Biol,2000,79(10):735-49.
    [218]Perskvist N, Roberg K, Kulyte A, et al. Rab5a GTPase regulates fusion betweenpathogen-containing phagosomes and cytoplasmic organelles in human neutrophils[J]. J CellSci,2002,115(Pt6):1321-30.
    [219]Sengupta A, Molkentin J D,Yutzey K E FoxO transcription factors promote autophagy incardiomyocytes[J]. J Biol Chem,2009,284(41):28319-31.
    [220]朱云霞,赵爱琴,赵俊利等.衰老1型星形胶质细胞的Aβ1-40及相关分子表达变化[J].神经解剖学杂志,2010(01):32-36.
    [221]Munafo D B,Colombo M I A novel assay to study autophagy: regulation of autophagosomevacuole size by amino acid deprivation[J]. J Cell Sci,2001,114(Pt20):3619-29.
    [222]Campuzano J, Aguilar D, Arriaga K, et al. The PGRS domain of Mycobacterium tuberculosisPE_PGRS Rv1759c antigen is an efficient subunit vaccine to prevent reactivation in a murinemodel of chronic tuberculosis[J]. Vaccine,2007,25(18):3722-9.
    [223]Cantrell D A,Smith K A The interleukin-2T-cell system: a new cell growth model[J].Science,1984,224(4655):1312-6.
    [224]Stern J B,Smith K A Interleukin-2induction of T-cell G1progression and c-mybexpression[J]. Science,1986,233(4760):203-6.
    [225]Beadling C, Johnson K W,Smith K A Isolation of interleukin2-induced immediate-earlygenes[J]. Proc Natl Acad Sci U S A,1993,90(7):2719-23.
    [226]Beadling C,Smith K A DNA array analysis of interleukin-2-regulated immediate/earlygenes[J]. Med Immunol,2002,1(1):2.
    [227]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained byactivated T cells expressing IL-2receptor alpha-chains (CD25). Breakdown of a singlemechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-64.
    [228]Thornton A M,Shevach E M CD4+CD25+immunoregulatory T cells suppress polyclonal Tcell activation in vitro by inhibiting interleukin2production[J]. J Exp Med,1998,188(2):287-96.
    [229]Thornton A M, Donovan E E, Piccirillo C A, et al. Cutting edge: IL-2is critically requiredfor the in vitro activation of CD4(+)CD25(+) T cell suppressor function[J]. Journal ofImmunology,2004,172(11):6519-6523.
    [230]Waldmann T A The biology of interleukin-2and interleukin-15: implications for cancertherapy and vaccine design[J]. Nat Rev Immunol,2006,6(8):595-601.
    [231]Waldmann T A,Tagaya Y The multifaceted regulation of interleukin-15expression and therole of this cytokine in NK cell differentiation and host response to intracellular pathogens[J].Annual Review of Immunology,1999,17:19-49.
    [232]Barouch D H, Letvin N L,Seder R A The role of cytokine DNAs as vaccine adjuvants foroptimizing cellular immune responses[J]. Immunol Rev,2004,202:266-74.
    [233]Li H, Li R, Zhong S, et al. The immunogenicity and protective efficacy of Mtb8.4/hIL-12chimeric gene vaccine[J]. Vaccine,2006,24(9):1315-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700