血卟啉单甲醚光动力学疗法抑制增生性瘢痕的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     增生性瘢痕(HS)是成纤维细胞异常增殖和细胞外基质过度沉积的纤维化疾病,是医学界亟待解决的难题。本文研究以血卟啉单甲醚(HMME)为光敏剂的光动力学疗法(PDT)对瘢痕成纤维细胞(HSF)增殖与功能的影响并初步探讨其作用机制,在动物瘢痕模型上观察HMME-PDT的生物学效应,为临床应用HMME-PDT防治增生性瘢痕提供实验依据。
     方法:
     1.HSF对HMME的吸收特性及HMME-PDT对其增殖效应的研究:取原代培养的第4~6代HSF,经流式细胞仪(FCM)检测孵育浓度(0~40μg/ml)和孵育时间(0~120min)对HSF细胞吸收HMME的影响;MTT法检测HMME-PDT对HSF细胞存活率的影响;银染法检测HSF中核仁组成区相关嗜银蛋白(AgNORs)的表达情况;FCM分析细胞周期的变化。
     2.HMME-PDT对HSF中TGF-β_1/Smad信号通路的影响:用酶联免疫吸附法(ELISA)检测HMME-PDT后HSF分泌至上清液的TGF-β_1蛋白表达量;用Smad3-FITC标记后在荧光显微镜上观察细胞内Smad3的荧光强度;将细胞分为对照组、光敏剂组、照光组和HMME-PDT组,经Western-blot方法检测各组细胞浆内TGF-β_1、磷酸化和非磷酸化Smad3、Smad7蛋白的表达量。
     3.HMME-PDT诱导HSF凋亡效应的研究:Hoechst33258染色后在荧光显微镜上观察HMME-PDT后HSF细胞形态学变化;Annexin V-FITC-PI双染后经FCM检测HMME-PDT后HSF细胞凋亡率和坏死率;将HSF爬片后分为对照组、HMME-PDT组和Z-DEVD-FMK抑制剂组,Caspase3-FITC-PI染色后在荧光显微镜上观察各组细胞内Caspase3的荧光强度;收集各组细胞在active-Caspase3-FITC单染后经FCM检测active-Caspase3阳性细胞百分率;收集各组细胞在PI单染后经FCM检测细胞凋亡率。
     4.HMME-PDT对兔耳瘢痕的效应研究:建立兔耳瘢痕模型后,将瘢痕块分为不同组别,照光功率密度为20mW/cm~2,光敏剂剂量为10mg/kg,分别在给药后即刻、0.5、1、3h给予2.5、5、10、20J/cm~2的能量密度照光,治疗后第10天用游标卡尺测量并计算瘢痕增生指数(HI);HE染色后观察瘢痕厚度、细胞及胶原分布等形态学变化;观察HMME-PDT后瘢痕中微血管数量、形态变化,采用Weidner计数方法,计算平均微血管密度(MVD);运用透射电镜观察兔耳瘢痕增生块中成纤维细胞超微结构的变化。
     结果:
     1.在一定孵育浓度范围内(0~40μg/ml),HSF细胞对HMME的吸收量随孵育浓度的增高和孵育时间的增加而增大。实验范围内的HMME-PDT对HSF细胞的杀伤效应与孵育浓度和激光能量密度正相关;HMME-PDT能够减少HSF细胞中AgNORs的含量,使I.S%值降低;HMME-PDT降低HSF增殖指数,改变各期细胞的分布比例,抑制S期DNA合成,使细胞滞留在G_0/G_1期。
     2.HSF分泌至细胞上清液的TGF-β_1蛋白含量较高,而HMME-PDT后降低;HSF合成的TGF-β_1蛋白水平高,HMME-PDT后HSF中的TGF-β_1和磷酸化Smad3蛋白含量减少,Smad7蛋白含量增加,光敏剂组和照光组中上述蛋白的表达无显著改变;PDT不能改变HSF内Smad3蛋白表达量,但其在细胞内的分布发生变化,进入细胞核的Smad3蛋白减少。
     3.HMME-PDT治疗后细胞核染色质高度凝聚,呈团块颗粒状,或呈波纹状、折缝样改变;AnnexinV-FITC-PI双染结果表明PDT后凋亡率显著升高,并伴有细胞坏死的发生,但组内坏死率低于凋亡率;对照组和Z-DEVD-FMK抑制剂组HSF的细胞浆中Caspase3-FITC荧光微弱,PDT组荧光显著增强;对照组active-Caspase-3阳性细胞百分率低,HMME-PDT组上升,Z-DEVD-FMK组降低;PI染色分析表明对照组凋亡率低,PDT组的凋亡率显著升高,Z-DEVD-FMK组的凋亡率低于PDT组,但仍然显著高于对照组。
     4.在本研究的兔耳增生性瘢痕块中,静脉注射HMME10mg/kg后30min,给予功率密度为20mW/cm~2,能量密度为5J/cm~2的630nm红光照射能对瘢痕块产生较理想的抑制效应;对照组兔耳瘢痕块真皮层显著增厚,血管分布丰富,HMME-PDT组瘢痕块厚度下降,MVD显著减少;在透射电镜下观察到对照组中有大量HSF,胞浆内粗面内质网丰富,高尔基体发达,线粒体增加,PDT组胞浆内粗面内质网萎缩且数量减少,核蛋白体有不同程度的脱颗粒和解聚,胞质中见较多游离核糖体,线粒体肿胀,嵴溶解。
     结论:
     1.HSF对HMME的吸收随孵育浓度和孵育时间的增加而增加,HMME-PDT处理HSF时,光敏剂孵育浓度和激光能量密度是影响细胞存活率的重要因素,PDT改变各期细胞的分布比例,抑制细胞增殖。
     2.HMME-PDT能够阻止TGF-β_1的信号经由Smad蛋白传向细胞核,改变TGF-β_1、磷酸化Smad3和Smad7在HSF细胞水平的表达,使细胞增殖及胶原合成有关的靶基因得不到激活,从而抑制HSF增殖和胶原合成。
     3.HMME-PDT诱导HSF发生的凋亡效应与Caspase-3的激活密切相关,但该凋亡效应并不依赖于Caspase-3,可能与AIF等因子的释放或其它信号途径的激活有关。
     4.HMME-PDT对兔耳增生性瘢痕的生物学效应是一个光动力综合作用的结果,与光敏剂的剂量和激光照光时间、给药后至照光的时间间隔及能量密度密切相关。在瘢痕形成早期,HMME-PDT能够抑制兔耳HSF的增殖,破坏蛋白合成场所,并能诱导部分细胞进入凋亡途径,HMME-PDT有可能成为瘢痕防治的有效方法。
Objective:
     Photodynamic therapy (PDT) is a promising treatment for various kinds of dermatosis. Hypertrophic scar (HS) is a pathological process characterized by fibroblastic hyperproliferation. In this study, we investigated the cellular response to PDT which induced by hematoporphyrin monomerthyl ether (HMME) in human fibroblasts from hypertrophic scar (HSF), and explored the cell signal mechanisms initially. Furthermore, we observed the biological effects of HMME-PDT on hypertrophic scarring in a rabbit ear model.
     Methods:
     1. The absorption characteristics of HSF on HMME and the inhibitory effect of HMME-PDT: Fibroblasts were cultured from nontreated burn hypertrophic scars, and the 4-6 passage cells were used in the experiments. HSF was incubated with HMME at different concentrations (0~40μg/ml) and different incubation time (0-120min). The absorption characteristics of HSF on HMME were detected by flow cytometry (FCM). Cell viability after HMME-PDT was detected by MTT assay. The AgNORs expression was determined with the standard silver-staining method and the cell cycle was calculated by FCM.
     2. TGF-β_1/Smad signal mechanisms in HSF mediated by HMME-PDT: The expression of TGF-β_1 in supernatant of HSF was detected by enzyme linked immunosorbent assay (ELISA). Fluorescence intensity of Smad3 was observed with immunofluorescence staining. The expression of TGF-β_1 Smad3, Phospho-Smad3, and Smad7 was analyzed by Western blot.
     3. The apoptotic effects of HSF induced by HMME-PDT: The morphological changes in HSF were observed with Hoechst 33258 staining. The rate of apoptotic or necrotic cells was respectively detected by FCM through double staining of Annexin V-FITC and popodium iodide (PI). Caspase-3 activity assay and immunofluorescence staining method were applied to the investigate Caspase-3 expression in HSF by FCM and fluorescence microscope.
     4. Effect of HMME-PDT on Hypertrophic Scarring in Rabbit Ear Model: After the acute model of dermal hypertrophic scar in the rabbit ear was established, scar wounds randomly received HMME-PDT with different treatment parameters. Hypertrophic index (HI) was measured by slide caliper. Scar histomorphology and thickness were observed with haematoxylin-eosin staining. The microvessel density (MVD) was calculated under microscope. HSF was observed under transmission electron microscope (TEM).
     Results:
     1. The absorption of HMME by HSF was increased with increased concentration and incubation time. HMME-PDT inhibited the proliferation of HSF significantly. The growth curve was declined following the increased HMME concentration and light dose. HMME-PDT decreased the expression of AgNORs and led to cell cycle arrest in G_0/G_1 phase.
     2. HMME-PDT down-regulated the protein level of TGF-β_1 both in supernatant of HSF and in HSF. It prevented the activation of Smad3 while increased the expression of Smad7 protein.
     3. Marked morphological features of cell apoptosis were viewed under the fluorescent microscope through Hoechst 33258 staining. The analysis of FCM indicated that the apoptotic rate was significantly increased after HMME-PDT, accompanied by the presence of active-caspase-3. The apoptotic rate was still high after used Z-DEVD-FMK which could inactivate caspase-3.
     4. Compared with the control group, HMME-PDT in the experimental group (photosensitizer dose 10mg/kg, power density 20mw/cm~2 , energy fluence 5J/cm~2 ) reduced scar formation, and the HI. Mitochondria, rough ER and Golgi of HSF were abundant in the control group, while decreased and destroyed by PDT. Some fibroblasts underwent marked apoptosis after HMME-PDT.
     Conclusions:
     1. Incubation concentration and time are two important factors for the absorption of HMME by HSF. HMME-PDT inhibits the proliferation of HSF which depending on HMME concentration and laser energy density, and also blocks the cell cycle.
     2. HMME-PDT induces HSF apoptosis, and stimulates caspase-3 activation, but caspase-3 is dispensable for apoptosis in this process.
     3. HMME-PDT can inhibit the TGF-β_1/Smad signal transduction pathway and prevent HSF's proliferation and collagen's synthesis.
     4. HMME-PDT can inhibit hypertrophic scarring in rabbit ear. The biological effect is determined by photosensitizer, interval injection of photosensitizer and irradiation, power density and energy fluence. HMME-PDT may have good potent effects on the formation of hypertrophic scar.
引文
1.Z Huang.Photodynamic therapy in China:Over 25 years of unique clinical experience Part One—History and domestic photosensitizers.Photodiagn Photodyn Ther.2006,3:3-10.
    2.Dougherty TJ,Grindey RF,Weishaupt DG;et al.photoradiationtherapy Ⅱ-hematoporphyrin and light.JNCI,1975,55:115.
    3.顾瑛,李峻亨,江亿平,等.光动力学疗法选择性治疗鲜红斑痣的临床研究附40例报告.中国激光医学杂志.1992,1:6-10.
    4.Babitas P,Landthaler M,Szeimies RM.Photodynamic therapy in dermatology.Eur J Dermatol.2006,16:340-348.
    5.李荟元,鲁开化,郭树忠.新编瘢痕学.第四军医大学出版社.2005,第一版:15-24.
    6.Blazic TM,Brajac I.Defective induction of senescence during wound healing is a possible mechanism of keloid formation.Med Hypotheses.2006,66:649-652.
    7.Hovest MG,Bruggenolte N,Hosseini KS,et al.Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage loci at telomeres.Mol Biol Cell.2006,17:1758-1767.
    8.Chiu LL.,Sun CH,Yeh AT,et al.Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture.Lasers Surg Med.2005,37:231-244.
    9.Strong LH.,Berthiaume F,Yarmush ML.,Control of fibroblast populated collagen lattice contraction by antibody targeted photolysis of fibroblasts.Lasers Surg Med,1997,21:235-247.
    10.梁睿媛,梅国栋,朱文英等.竹红菌光化疗治疗肥厚性瘢痕62例报告.中华皮肤科杂志.1982,15:87.
    11.顾瑛,李峻亨,许德余,等.新型光敏剂-血卟啉单甲醚临床应用研究的初步报道.中国激光医学杂志.1993,2(4):235-246.
    12.刘凡光,顾瑛,富秋涛,等,光动力疗法治疗鲜红斑痣的基础研究—血啉甲醚与血卟啉衍生物吸收特性的比较.中国激光医学杂志.2001,10:9-12.
    13.邓小虎,黄烽,顾瑛,等.血啉甲醚和血卟啉衍生物在类风湿关节炎滑膜细胞中吸收特性的对比研究.军医进修学院学报.2001,22:183-185.
    14.刘凡光,顾瑛,关澄宇,等.光动力疗法防治损伤性血管内膜增生的实验研究.激光生物学报,2001,2:120-123.
    15.Eming SA,Krieg T,Davidson JM Inflammation in wound repair:molecular and cellular mechanisms.J Invest Dermatol.2007,127:514-525.
    16.Darby IA,Hewitson TD.Fibroblast differentiation in wound healing and fibrosis.Int Rev Cytol.2007,257:143-179.
    17.瑞菲尔·努纳兹.流式细胞术原理与科研应用简明手册.第一版.北京:化学工业出版社,2005.17-24.
    18.Gillette RW,Conway H.Tissue culture studies ofkeloids.Exp Cell Res.1959,18:313-317.
    19.Zhang Z,Li XJ,Liu Y,et al.Recombinant human decorin inhibits cell proliferation and downregulates TGF-betal production in hypertrophic scar fibroblasts.Burns.2007,33:634-641.
    20.Garner WL,Karmoil S,Rodriguez JL,et al.Phenotypic differences in cytokine responsiveness of hypertrophic scar versus normal dermal fibroblasts.J Invest Dermatol.1993,101:875-879.
    21.Dabiri G;Campaner A,Morgan JR,et al.A TGF-betal-dependent autocrine loop regulates the structure of focal adhesions in hypertrophic scar fibroblasts.J Invest Dermatol.2006,126:963-970.
    22.Colwell AS,Phan TT,Kong W,et al.Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation.Plast Reconstr Surg.2005,116:1387-1392.
    23.Yamauchi T.Effects of TGF-beta and TGF-beta-neutralizing antibody on normal skin fibroblasts and scar-derived fibroblasts.Kurume Med J.2002,49:171-176.
    24.陈文晖,吴激,许德余等.正交实验设计优选血卟啉单甲醚的制备反应条件.第二军医大学学报,1996,17:393-395.
    25.戴维德,李晓松,曾晶,等.血卟啉单甲醚蛋白结合状态对其亚细胞分布的影响.中国激光医学杂志,2006,3:137-140.
    26.临床药物代谢动力学.北京:科学出版社,2003.8-15.
    27.Sobolev AS,Jans DV,Rosenkranz AA.Targeted intracellular delivery of photosensitizers.Prog Biophys Mol Biol.2000,73:51-90.
    28.Shulok JR,Wade MH,Lin CW.Subcellular localization of hematoporphyrin derivative in bladder tumor cells in culture.Photochem Photobiol.1990,51:451-457.
    29.Matsuoka LY,Uitto J,Wortsman J,et al.Ultrastructural characteristics of keloid fibroblasts.Am J Dermatopathol.1988,10:505-508.
    30.吴义方,利天增,吴强,等.增生性烧伤瘢痕成纤维细胞的超微结构研究.电子显微学报,2004,2:112-114.
    31.Ghazizadeh M,Miyata N,Sasaki Y,et al.Silver-stained nucleolar organizer regions in hypertrophic and keloid scars.Am J Dermatopathol,1997,19:468-472.
    32.Saluja M,Vandana KL.The diagnostic and prognostic implications of silver-binding nucleolar organizer regions in periodontal lesions.Indian J Dent Res.2008,19:36-41.
    33.瑞菲尔·努纳兹.流式细胞术原理与科研应用简明手册.化学工业出版社.2005,第一版:27-31.
    34.Kogan BY.Nonlinear photodynamic therapy.Saturation of a photochemical dose by photosensitizer bleaching.Photochem Photobiol Sci.2003,2:673-676.
    35.Bauer NB,Zervos D,Moritz A.Argyrophilic nucleolar organizing regions and Ki67 equally reflect proliferation in fine needle aspirates of normal,hyperplastic,inflamed,and neoplastic canine lymph nodes(n=101).J Vet Intern Med.2007,21:928-935.
    36. Eslami B, Rahimi H, Rahimi F, et al. Diagnostic value of silver nitrate staining for nucleolar organizer regions in selected head and neck tumors. J Cancer Res Ther. 2006, 2: 129-131.
    37. Zawacka-Pankau J, Issaeva N, Hossain S, et al. Protoporphyrin IX interacts with wild-type p53 protein in vitro and induces cell death of human colon cancer cells in a p53-dependent and -independent manner. J Biol Chem. 2007, 282: 2466-2472.
    38. Ahmad N, Feyes DK, Agarwal R, et al. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci U S A. 1998, 95: 6977-6982.
    39. Vantieghem A, Xu Y, Assefa Z, et al. Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem. 2002,277:37718-37731.
    40. Hwang SJ, Cha JY, Park SG, et al. Diol- and Triol-Type Ginseng Saponins Potentiate the Apoptosis of NIH-3T3 Cells Exposed to Methyl Methanesulfonate. Toxicol Appl Pharmacol. 2002, 181: 192-202.
    41. Hour TC, Shiau SY, Lin JK. Suppression of N-methyl-N'-nitro-N -nitrosoguanidine- and S-nitrosoglutathione-induced apoptosis by Bcl-2 through inhibiting glutathione-S-transferase π in NIH-3T3 cells. Toxicol Lett. 1999, 110: 191-202.
    42. Ali-Bahar M, Bauer B, Tredget EE, et al. Dermal fibroblasts from different layers of human skin are heterogeneous in expression of collagenase and types I and III procollagen mRNA. Wound Repair Regen. 2004, 12: 175-182.
    43. Sirri V, Roussel P, Hernandez-Verdun D. The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron. 2000, 31: 121-126.
    44. Scott PG, Ghahary A, Tredget EE. Molecular and cellular aspects of fibrosis following thermal injury. Hand Clin. 2000, 16: 271-87.
    45. Faler BJ, Macsata RA, Plummer D, et al. Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther. 2006, 18: 55-62.
    46. Phan TT, Lim IJ, Chan SY, et al. Suppression of transforming growth factor beta/smad signaling in keloid-derived fibroblasts by quercetin: implications for the treatment of excessive scars. J Trauma. 2004, 57: 1032-1037.
    47. Liu W, Wang DR, Cao YL. TGF-beta: a fibrotic factor in wound scarring and a potential target for anti-scarring gene therapy. Curr Gene Ther. 2004, 4: 123-136.
    48. Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004, 35: 83-92.
    49. Levy L,Hill CS.Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006,17: 41-58.
    50. Ihn H. Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008, 49:103-113.
    51. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007, 13:3056-3062.
    52. Chen SJ, Yuan W, Mori Y, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999, 112:49-57.
    53. Hyytiainen M, Penttinen C, Keski-Oja J. Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci. 2004, 41:233-264.
    54. Gold LI, Sung JJ, Siebert JW, et al. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol. 1997, 150: 209-222.
    55. Heckenkamp J, Aleksic M, Gawenda M, et al. Modulation of human adventitial fibroblast function by photodynamic therapy of collagen matrix. Eur J Vasc Endovasc Surg. 2004, 28: 651-659.
    56. Bock O, Yu H, Zitron S, et al. Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta Derm Venereol. 2005, 85: 216-220.
    57. Schmid P, Itin P, Cherry G, et al. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am JPathol. 1998, 152: 485-493.
    58. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg. 2001,108: 423-429.
    59. Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol. 2003, 29: 397-404.
    60. Adam PJ, Regan CP, Hautmann MB, et al. Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem. 2000, 275: 37798-37806.
    61. Tomasek JJ, McRae J, Owens GK, et al. Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-betal control element.Am JPathol. 2005, 166: 1343-1351.
    62. Strong LH, Berthiaume F, Yarmush ML. Control of fibroblast populated collagen lattice contraction by antibody targeted photolysis of fibroblasts. Lasers Surg Med. 1997, 21: 235-247.
    63. Chen SJ, Yuan W, Lo S, et al. Interaction of smad3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. J Cell Physiol. 2000, 183: 381-392.
    64. Choi MS, Yoo MS, Son DJ, et al. Increase of collagen synthesis by obovatol through stimulation of the TGF-beta signaling and inhibition of matrix metalloproteinase in UVB-irradiated human fibroblast. J Dermatol Sci. 2007, 46: 127-137.
    65. Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene. 2004, 23:4232-4237.
    66. Yu H, Bock 0, Bayat A, et al. Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg. 2006, 59: 221-229.
    67. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007, 1776: 86-107.
    68. Desmouliere A, Redard M, Darby I, et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995, 146: 56-66.
    69. Greenhalgh DG. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007, 257:143-79.
    70. Agarwal ML, Clay ME ,Harvey EJ,et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells.Cancer Res. 1991, 51:5993-5996.
    71. Hovest MG, Bruggenolte N, Hosseini KS, et al. Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres. Mol Biol Cell. 2006, 17:1758-1767.
    72. Messadi DV, Le A, Berg S, et al. Expression of apoptosis-associated genes by human dermal scar fibroblasts. Wound Repair Regen. 1999, 7: 511-517.
    73. Kessel D, Luguya R, Vicente MG. Localization and photodynamic efficacy of two cationic porphyrins varying in charge distributions. Photochem Photobiol. 2003,78:431-435.
    74. Noodt BB, Rodal GH, Wainwright M, et al. Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells. Int J Cancer. 1998, 75: 941-948.
    75. Kessel D, Arroyo AS. Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage. Photochem Photobiol Sci. 2007, 6:1290-1295.
    76. Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B. 2000, 57: 1-13.
    77. Ding X, Xu Q, Liu F, et al. Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett. 2004, 216: 43-54.
    78. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca~(2+): a control point for apoptosis. Science. 2003, 300: 135-139.
    79. Kinzler I, Haseroth E, Hauser C, et al. Role of mitochondria in cell death induced by Photofrin-PDT and ursodeoxycholic acid by means of SLIM. Photochem Photobiol Sci. 2007, 6: 1332-1340.
    80. Matsubara A, Nakazawa T, Noda K, et al. Photodynamic therapy induces caspase-dependent apoptosis in rat CNV model. Invest Ophthalmol Vis Sci. 2007, 48: 4741-4747.
    81. Grebenova D, Kuzelova K, Smetana K, et al. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells. J Photochem Photobiol B. 2003, 69: 71-85.
    82. Varnes ME, Chiu SM, Xue LY, et al. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem Biophys Res Commun. 1999, 255: 673-679.
    83. Chiu SM, Oleinick NL. Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photodynamic therapy. Br J Cancer. 2001, 84: 1099-1106.
    84. Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol. 1997, 66: 479-483.
    85. Luna MC, Wong S, Gomer CJ. Photodynamic therapy mediated induction of early response genes. Cancer Res. 1994, 54: 1374-1380.
    86. Rasch MH, Tijssen K, Lagerberg JW, et al. The role of protein kinase C activity in the killing of Chinese hamster ovary cells by ionizing radiation and photodynamic treatment. Photochem Photobiol. 1997, 66: 209-213.
    87. Zhuang S, Demirs JT, Kochevar IE. Protein kinase C inhibits singlet oxygen-induced apoptosis by decreasing caspase-8 activation. Oncogene. 2001, 20: 6764-6776.
    88. Xue LY, Chiu SM, Oleinick NL. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res. 2001, 263: 145-155.
    89. Furre IE, Shahzidi S, Luksiene Z, et al. Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res. 2005, 65:11051-11060.
    90. Karmakar S, Banik NL, Patel SJ, et al. 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett. 2007, 415: 242-247.
    91. Morris DE, Wu L, Zhao LL, Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg. 1997, 100:674-681.
    92. Brown RJ, Lee MJ, Sisco M, et al. High-dose ultraviolet light exposure reduces scar hypertrophy in a rabbit ear model.Plast Reconstr Surg.2008,121:1165-1172.
    93.尤维涛,秦泽莲,牛星焘,等.维拉帕米对兔耳增生性瘢痕作用的实验研究.中华医学美容杂志.2000,6:252-255.
    94.Alexiades-Armenakas M.Laser-mediated photodynamic therapy.Clin Dermatol.2006,24:16-25.
    95.顾瑛.血卟啉单甲醚用于新型光动力疗法治疗鲜红斑痣的综合研究.军医进修学院博士学位论文,2000:26-29.
    96.Akasaka Y,Ito K,Fujita K,et al.Activated caspase expression and apoptosis increase in keloids:cytochrome c release and caspase-9 activation during the apoptosis of keloid fibroblast lines.Wound Repair Regen.2005,13:373-382.
    97.Overhaus M,Heckenkamp J,Kossodo S,et al.Photodynamic therapy generates matrix barrier to invasive vascular cell migration.Circ Res.2000,86:334-340.
    98.Weidner N.Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors.Breast Cancer Res Treat.1995,36:169-180.
    99.Amadeu T,Braune A,Mandarim-de-Lacerda C,et al.Vascularization pattern in hypertrophic scars and keloids:a stereological analysis.Pathol Res Pract.2003,199:469-473.
    100.Urioste SS,Arndt KA,Dover JS.Keloids and hypertrophic scars:review and treatment strategies.Semin Cutan Med Surg 1999,18:159-171.
    101.Slemp AE,Kirschner RE.Keloids and scars:a review of keloids and scars,their pathogenesis,risk factors,and management.Curr Opin Pediatr.2006,18:396-402.
    102.Kischer CW.The microvessels in hypertrophic scars,keloids and related lesions:a review.J Submicrosc Cytol Pathol.1992,24:281-296.
    103.Ueda K,Yasuda Y,Furuya E,et al.Inadequate blood supply persists in keloids.Scand J Plast Reconstr Surg Hand Surg.2004,38:267-271.
    104.Yamagishi S, Yonekura H, Yamamoto Y, et al. Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest. 1999, 79: 501-509.
    105.Reid RR, Mogford JE, Butt R, et al. Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring.Wound Repair Regen. 2006, 14: 138-141.
    106.Blaha J. Physiology and pathology of skin after burns and derangement of gene expression. Acta Chir Plast. 2006, 48: 127-132.
    107.Souza AC, Machado FS, Celes MR, et al. Mitochondrial damage as an early event of monensin-induced cell injury in cultured fibroblasts L929. J Vet Med A Physiol Pathol Clin Med. 2005, 52: 230-237.
    108.Desmouliere A, Badid C, Bochaton-Piallat ML, et al. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol, 1997, 29:19-30.
    109.Akasaka Y, Fujita K, Ishikawa Y, et al. Detection of apoptosis in keloids and a comparative study on apoptosis between keloids, hypertrophic scars, normal healed flat scars, and dermatofibroma. Wound Repair Regen. 2001, 9:501-506.
    1. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004, 1:279-293.
    2. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther. 2005, 2:1-23.
    3. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three—photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn Photodyn Ther. 2005, 2:91-106.
    4. Elmets CA, Bowen KD. Immunological suppression in mice treated with hematoporphyrin derivative photoradiation. Cancer Res. 1986, 46: 1608-1611.
    5. Simkin GO, King DE, Levy JG, et al. Inhibition of contact hypersensitivity with different analogs of benzoporphyrin derivative. Immunopharmacology. 1997, 37:221-230.
    6. Kyagova AA, Zhuravel NN, Malakhov MV, et al. Suppression of delayed-type hypersensitivity and hemolysis induced by previously photooxidized psoralen: effect of fluence rate and psoralen concentration. Photochem Photobiol. 1997, 65: 694-700.
    7. Julie C Reddan, Cathy Young Anderson, Hui Xu, et al. Immunosuppressive effects of silicon phthalocyanine photodynamic therapy. Photochem Photobiol. 1999, 70: 72-77.
    8. Kyagova AA, Mansurova GV, Kozir LA, et al. Systemic suppression of the contact hypersensitivity by the products of protoporphyrin IX photooxidation. Photochem Photobiol. 2005, 81:1380-1385.
    9. Kyagova AA, Kozir LA, Mansurova GV, et al. Modulation of delayed type hypersensitivity in mice treated with photoproducts of various photosensitizers used in photodynamic therapy. Russ J Immunol. 2002, 7: 327-334.
    10. Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999, 137:91-98.
    11. Vree WJ, Essers MC, de Bruijn HS, et al. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res. 1996, 56:2908-2911.
    12. Sun J, Cecic I, Parkins CS, et al. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem Photobiol Sci. 2002, 1:690-695.
    13. Golab J, Wilczynski G, Zagozdzon R, et al. Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF. Br J Cancer. 2000, 82:1485-1491.
    14. Hryhorenko EA, Oseroff AR, Morgan J, et al. Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy. Immunopharmacology. 1998, 40:231-240.
    15. Hunt DW, Jiang H, Granville DJ, et al. Consequences of the photodynamic treatment of resting and activated peripheral T lymphocytes. Immunopharmacology. 1999, 41:31-44.
    16. Gruner S, Meffert H, Volk HD, et al. The influence of haematoporphyrin derivative and visible light on murine skin graft survival, epidermal Langerhans cells and stimulation of the allogeneic mixed leucocyte reaction. Scand J Immunol. 1985, 21:267-273.
    17. King DE, Jiang H, Simkin GO, et al. Photodynamic alteration of the surface receptor expression pattern of murine splenic dendritic cells. Scand J Immunol. 1999,49:184-192.
    18. Krutmann J, Athar M, Mendel DB, et al. Inhibition of the high affinity Fc receptor (Fc gamma RI) on human monocytes by porphyrin photosensitization is highly specific and mediated by the generation of superoxide radicals. J Biol Chem. 1989, 264:11407-11413.
    19. Yamamoto N, Hoober JK, Yamamoto N, et al. Tumoricidal capacities of macrophages photodynamically activated with hematoporphyrin derivative. Photochem Photobiol. 1992, 56:245-250.
    20. Gollnick SO, Liu X, Owczarczak B, et al. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res. 1997, 57:3904-3909.
    21. Simkin GO, Tao JS, Levy JG, et al. IL-10 contributes to the inhibition of contact hypersensitivity in mice treated with photodynamic therapy. J Immunol. 2000, 164:2457-2462.
    22. Gollnick SO, Lee BY, Vaughan L, et al. Activation of the IL-10 gene promoter following photodynamic therapy of murine keratinocytes. Photochem Photobiol. 2001, 73:170-177.
    23. Gollnick SO, Musser DA, Oseroff AR, et al. IL-10 does not play a role in cutaneous Photofrin photodynamic therapy-induced suppression of the contact hypersensitivity response. Photochem Photobiol. 2001,74:811-816.
    24. Trauner KB, Gandour-Edwards R, Bamberg M, et al. Photodynamic synovectomy using benzoporphyrin derivative in an antigen-induced arthritis model for rheumatoid arthritis. Photochem Photobiol. 1998, 67:133-139.
    25. Leong S, Chan AH, Levy JG, et al. Transcutaneous photodynamic therapy alters the development of an adoptively transferred form of murine experimental autoimmune encephalomyelitis. Photochem Photobiol. 1996, 64:751-757.
    26. Radakovic-Fijan S, Blecha-Thalhammer U, Schleyer V, et al. Topical aminolaevulinic acid-based photodynamic therapy as a treatment option for psoriasis? Results of a randomized, observer-blinded study. Br J Dermatol. 2005,152:279-283.
    27. Korbelik M, Sun J, Zeng H. Ischaemia-reperfusion injury in photodynamic therapy-treated mouse tumours. Br J Cancer. 2003, 88:760-766.
    28. Curnow A, Bown SG. The role of reperfusion injury in photodynamic therapy with 5-aminolaevulinic acid—a study on normal rat colon. Br J Cancer. 2002, 86:989-992.
    29. Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev. 2003,196:125-146.
    30. Chang MK, Binder CJ, Miller YI, et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med. 2004, 200:1359-1370.
    31. Hendrzak-Henion JA, Knisely TL, Cincotta L, et al. Role of the immune system in mediating the antitumor effect of benzophenothiazine photodynamic therapy. Photochem Photobiol. 1999,69:575-581.
    32. Korbelik M, Sun J, Cecic I, et al. Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors. Photochem Photobiol Sci. 2004,3:812-816.
    33. Chen WR, Korbelik M, Bartels KE, et al. Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant. Photochem Photobiol. 2005, 81:190-195
    34. Mew D, Wat CK, Towers GH, et al. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983,130:1473-1477.
    35. Vrouenraets MB, Visser GW, Stewart FA, et al. Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Res. 1999,59:1505-1513.
    36. Vrouenraets MB, Visser GW, Stigter M, et al. Targeting of aluminum (III) phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies: improved efficacy in photodynamic therapy. Cancer Res. 2001,61:1970-1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700