藻酸双酯钠的分级制备及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖的生物活性、化学结构以及构效关系的研究已成为多糖领域的前沿阵地,并且取得了很大的进展。其中,关于一些相对分子量在几千以上、强生物活性多糖的研究日益受到重视。
     本文以我国自主知识产权的海洋多糖药物藻酸双酯钠(PSS)作为研究对象,采用超滤及低压柱层析方法对其分级制备,分离得到具有相似骨架、磺化度及不同相对分子量(Mw)的分级产物;通过对各分级产物进行抗凝血活性、免疫调解作用、保护神经元细胞凋亡、抗菌、降糖等生物活性的考察,探讨PSS的链长与活性的关系,为PSS的广泛应用及多糖构效关系的深入研究进行有益的探索。
     研究结果如下:
     1、低压柱层析法以Sephadex G100作为分离介质,对PSS(Mw:17.19 kDa)进行分离,高效凝胶渗透色谱法测定产物重均分子量(Mw),得到Mw分别为51.95,25.62,11.76,5.41 kDa 4个分级产物(Z-PSS:1-4);以截留分子量分别为30,10,5,3,1 kDa的超滤膜分级PSS,得到Mw分别为21.97,20.25,18.27,11.35,4.93,3.33 kDa 6个分级产物(C-PSS:1-6)。氧瓶燃烧法(Oxygen Flask Method)测定所有分级产物磺化度多在1.2-1.3之间;红外光谱(FT-IR)、核磁共振碳谱(13C-NMR)证明分级产物磺化取代发生在糖环的C-2,C-3,酯化取代发生在C-6。
     2、分级产物生物活性比较研究:
     2.1、PSS及柱层析分级产物Z-PSS:1-4抗凝血实验(凝血三项:凝血酶原时间PT,活化部分凝血活酶时间APTT,凝血酶时间TT)显示:PSS及4个分级产物延长TT时间作用最强,其次为APTT,延长PT时间作用最弱,以上结果通过与对照组比较,t-test,显示统计学差异(p<0.05)。4个分级产物抗凝活性比较显示,抗凝血作用与分子量显著相关,不同的凝血指标对分子量的要求显著不同,APTT显著随PSS分级产物分子量的降低而降低。
     2.2、PSS及超滤分级产物C-PSS:1-5抗凝血实验(PT,APTT,TT)进一步证实了柱层析分级产物凝血三项实验结果:样品对TT作用最强,APTT次之,对PT作用较弱,而且活性大小与样品的分子量显著相关。
     2.3、在凝血三项实验的基础上,进一步验证了PSS及柱层析分级产物Z-PSS:1-4对凝血因子FIIa和FXa的作用。结果显示PSS主要通过作用于FIIa因子发挥抗凝血作用,强度与低分子肝素类似;对FXa作用较弱。各分级产物抗凝血因子作用比较显示,作用强度与分子量显著相关,随着分级产物Z-PSS1→4分子量的降低,抗凝血因子作用显著降低,Z-PSS4失去抗FXa作用。
     2.4、抗蜂毒肽(Mastoparan)诱导的大鼠原代神经元细胞凋亡实验结果显示:PSS对Mastoparan诱导的大鼠子鼠原代神经元细胞凋亡有显著的保护作用,其分级产物Z-PSS1-3也表现出对凋亡神经元细胞的保护作用,而Z-PSS4没有这种作用,证明该作用有最低糖链片断要求,但并不会随糖链长度的延长而保护作用增强。采用Fluo-3/AM荧光探针技术标记胞内钙离子,测定胞内钙离子浓度变化,推测PSS保护神经元细胞的凋亡作用机制是抑制胞内钙释放。
     2.5、本课题对PSS及Z-PSS1-4的免疫调节作用进行了细胞水平的研究。主要考察样品对小鼠脾脏细胞、小鼠腹腔巨噬细胞、刀豆蛋白A(Concanavalin A,Con A)诱导的免疫T-Cell、脂多糖(Lipopolysaccharide,LPS)诱导的B-Cell的作用,探讨PSS及分级产物的免疫调节作用。实验结果显示,PSS能增强脾脏细胞的增殖作用,抑制Con A诱导的T-Cell和LPS诱导的B-Cell增殖,同时能够促进巨噬细胞的吞噬功能。对于脾脏细胞的作用,PSS分子量在10-20 kDa之间较显著;对于促进巨噬细胞吞噬功能,显示PSS分子量最大分级产物作用最强。
     2.6、以革兰氏阳性菌-金黄色葡萄球菌、革兰氏阴性菌-大肠杆菌作为目标菌株,检验PSS及其层析产物Z-PSS:1-4,C-PSS1-5的抑菌作用。结果显示:PSS及Z-PSS:1-3,C-PSS1-4对金黄色葡萄球菌有良好的抑制效果,且Z-PSS2-3,C-PSS4效果强于Z-PSS1,C-PSS1-3,证明分子量较小PSS片断具有较强的抑菌作用;同时Z-PSS4及C-PSS5失去抑菌作用,显示PSS抑菌活性与糖链长度的关系。
     2.7、在胰岛细胞筛选PSS超滤分级产物促进胰岛素分泌作用的基础上,进行C-PSS4的降低四氧嘧啶高血糖小鼠血糖作用研究。结果显示:C-PSS4有降低高血糖小鼠血糖的趋势,但未见统计学差异(p>0.05)。鉴于细胞水平研究的结果,整体药效学实验有待于进一步研究。
Polysaccharides and their derivatives have attracted considerable attention in biomedicine and have been used as a variety of biomaterials. Currently, the study of polysaccharides is mainly focused on their structure-activity relationships. And more and more studies have been concentrated on these polysaccharides, which molecular weight (Mw) are several thousand Daltons and have the outstanding bioactivities.
     Sulfated alginate derivatives is a kind of heterogeneous and highly dispersed sulfated polysaccharide, and it had various bioactivities, e.g. anticoagulation, anti-oxidation, anti-HIV, heparanase inhibition, anti-inflammation and preventing calcium phosphate crystals formation in urine tract. However, little is known about the structure-activity relationships of sulfated alginate derivatives.
     Propylene Glycol Alginate Sodium Sulfate (PSS), which has been used as a marine derived drug for lowering blood lipid in China for nearly 20 years, is one of the most important sulfated alginate derivatives, it is necessary to make an intensive study of structure-activity relationships of PSS. In this study, the relationship between molecular mass of PSS and its several activities was investigated. The structural characteristics and activities of PSS and its fractions were studied in detail.
     The main results and conclusions of the research were as follows:
     1、PSS was fractionated by low-pressure gel permeation chromatography and ultrafiltration. Four column fractions (Z-PSS1-4) and five ultrafiltration fractions (C-PSS1-5) with different weight-averaged molecular mass (Z-PSS1-4: 51.95, 25.62, 11.76 and 5.41 kDa, C-PSS1-5: 21.97, 20.25, 18.27, 11.35, 4.93 kDa, respectively) were obtained, and their structural characteristics were determined and compared by Fourier transform infrared and nuclear magnetic resonance spectroscopes. The degrees of sulfate substitutions of most fractions were at 1.2-1.3 analyzed by oxygen flask method. The FT-IR data provided the information of backbone and sulfation of PSS and its fractions. That meant that the backbones of PSS and its fractions was made up ofα-1, 4-guluronic acids andβ-1, 4-mannuronic acids, respectively, and the sulfation was really occurred. The NMR data indicated that the propylene glycol group was linked to the C-6 position of the hexauronic acid residues of alginate and sulfate group was located at C-2 and C-3 positions of PSS and its fractions.
     The results of chemical analysis showed that PSS and PSS1-4 have similar structure characteristics except for the molecular mass.
     2、The comparative study of bioactivities of PSS and its fractions can be summarized as below:
     2.1、The anticoagulant activity of the column fractions was studied by evaluating their influence on the prothrombin time, activated partial thromboplastin time and thrombin time. The results showed that the highest activity of PSS and its column fractions was found in the TT, followed by that in the APTT, the moderate activity was found in the PT. And that the anticoagulant increased with the ascending molecular weight of its fractions. That proved that the anticoagulant of PSS was molecular weight dependence.
     2.2、The results of anticoagulant experiments of the ultrafiltration fractions were same as the results of the column fraction anticoagulant experiments. That showed that PSS and its fractions had the highest activity of TT, followed by that in the APTT, the moderate PT activity. At the same time, the molecular weight dependence effect of anticoagulant of PSS was also observed.
     2.3、Based on the above results of anticoagulant 3 items, their anticoagulant activities were studied by evaluating their influence on anti-thrombin and anti-FXa activities mediated by antithrombin III and heparin cofactor II furthermore. The results demonstrated that Z-PSS1 and Z-PSS2 strongly inhibited the activity of thrombin mediated by heparin cofactor II and antithrombin III, whereas PSS4 only showed very weak anti-thrombin activity. Z-PSS1-3 weakly inhibited the activity of coagulation factor Xa mediated only by antithrombin III while Z-PSS4 lacked the anti-Xa activity.
     2.4、The results of the protection of PSS on mastoparan-induced apoptosis of cultured cerebellar granule neurons showed that PSS can protect the mastoparan- induced apoptosis of cultured cerebral granule neurons. Measurements of intracellular free calcium concentration ([Ca2+]i) with Fluo-3/AM proved that PSS and Z-PSS1-3 debased the elevated [Ca2+]i induced by mastoparan. That clued on the protection of PSS on apoptosis neuron was through the inhibition on elevated [Ca2+]i induced by mastoparan. Z-PSS1-3 also showed the inhibition effect on apoptosis of cerebellar granule neurons, but Z-PSS4 was not. This meant the protection effect had the limit of molecular weight. But the molecular weight dependence was not observed as the effect did not increase with the ascending molecular weight of fractions.
     2.5、The immunoregulation activity of PSS and its fractions was investigated using immunocyte cultivation technique in vitro. The structure-activity relationship was analyzed on the basis of the structure studies of PSS’fractions. The experimental results showed that PSS could improve spleen cell proliferation, increase macrophage phagocytic function and inhibit the proliferation of T-cell induced by Concanavalin A (Con A) and B-cell induced by lipopolysaccharide (LPS). That proved that PSS possesses the significant immunoregulation effect, whilst the immunocompetence comparison of PSS’column fractions proved that the different immunocyte had different requirement for saccharides length. For spleen cell proliferation, the best molecular weight was about 10-20 kDa. For macrophage phagocytic function, the bigger Mw fraction of PSS had the stronger effect.
     2.6、In-vitro antibacterial activities of PSS and all fractions were compared and analyzed in the studies of the inhibition effect on Gram-Negative Bacteria (G+) (S. Aureus) and Gram-Positive Bacteria (G-) (E. Coli). The results showed that PSS, Z-PSS:1-3, C-PSS1-4 possessed the favorable antibacterial activity. Z-PSS2-3 and C-PSS4 showed the stronger effect than that of Z-PSS1 and C-PSS1-3, whilst Z-PSS4 and C-PSS lose the effect. This meant that the smaller molecular weight had the stronger antibacterial activities. To some extent, PSS had the molecular weight dependence of antibacterial activity.
     2.7、Based on the screen assay of PSS’promotion on insulin secretion in vitro, hypoglycemic effect of C-PSS4 was studied. C-PSS4 showed the possibility of decreasing blood glucose, but the statistical significant difference was not displayed (p>0.05). The effect needs the further investigation.
引文
1. Vliegehthart JFG,Abstract of the 12th International Carbohydrate Sympositma. Netherlands: Vonk Publisher. 2002:566.
    2.商业部器脏生化制药情报中心站.动物生化制药学.北京:人民出版社, 1981:21~214.
    3.沈仁权,顾其敏,李詠堂.基础生物化学.上海:上海科学技术出版社, 1982:18~26.
    4.苗本春,耿美玉,李静,李福川,夏威,管华诗.海洋硫酸多糖911免疫增强作用的探讨.中国海洋药物, 2002, 5: 1-4.
    5.邱玉芳,邢东升,邓文,邢国庆,乔现福.灵芝多糖口服液对小鼠免疫功能影响的研究.泰山医学院学报, 2004, 25(6):586-588.
    6.芦殿荣,祝彼得,芦殿香,刘啸,冯雪梅,金沈锐.香菇多糖对正常小鼠以及免疫抑制小鼠免疫功能的影响.甘肃中医学院学报, 2004, 21(4):20-23.
    7.丁一芳,李连闯,赵玺.多糖的研究进展.黑龙江医药. 2006, 19(2): 123-136.
    8. Hirazumi A, Furusawa E, Chou SC, Hokama Y. Immunomodulation contributes to the anticancer activity of Morinda citrifolia (noni) fruit juice. Proc West Pharmacol Soc, 1996, 39: 7-9.
    9.宋义平,刘彩玉,周刚,刘雄伯.牛膝多糖对小鼠细胞免疫功能的影响.中药新药与临床药理, 1998, 9(3): 158-162.
    10.辛娟,王远亮,郭莉霞,牛旭峰.多糖的生物活性及其应用.生物医学工程研究, 2004, 23(3): 179-182.
    11.王长云,管华诗.多糖抗病毒作用研究进展I:多糖抗病毒作用.生物工程进展, 2000, 20(1): 17-20.
    12.王维香,王关林,方宏筠.复合酶法提取裙带菜硫酸多糖的研究.食品科学, 1999, 20(11): 26-29.
    13.詹林盛,张新生,吴晓红,王颖丽,王之贤.海带多糖的免疫调节作用.中国生化药物杂志, 2001, 22(3): 116-118.
    14. Muto S, Nilmura K, Oohara M. Polysaccharides from marine algae and antiviral drugs containing the same as active ingredient [P]. EP 295956, 1988.
    15.李凡,田同春.褐藻糖胶体外抗病毒作用研究.白求恩医科大学学报, 1995, 21(3): 255- 257.
    16. Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK. Antivirus effect of sulfated exopolysaccharide from the maine microalga Gyrodinium impudium strain KG03. Marin Biotechnology, 2004, 6(1): 7-25.
    17. Miao B, Geng M, Li J, Li F, Chen H, Guan H, Ding J. Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochem Pharmacol, 2004, 68(4): 641-649.
    18. Talarico LB, Zibetti RG, Faria PC, Scolaro LA, Duarte ME, Noseda MD, Pujol CA, Damonte EB. Anti-herpes simplex virus activity of sulfated galactans from the red sea-weeds Gymnogongrus grif fithsiae and Cryptonemia crenulata. International Journal of Biological Macromolecules, 2004, 34: 63-71.
    19. Huheihel M, Ishanu V, Tal J, Arad SM. Activity of Porphyridium sp. Polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys, Methods, 2002, 50: 189-200.
    20. Fabregas J, Garcia D, Fernandez-Alonso M, Rocha AI, Gomez-Puertas P, Escribano JM, Otero A, Coll JM. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res, 1999, 44: 67-73.
    21. Carlucci MJ, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB.. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antivir Res, 1999, 43: 93-102.
    22. Amornrut C, Toida T, Imanari T, Woo ER, Park H, Linhardt R, Wu SJ, Kim YS. A new sulfatedβ-galactan from clams with anti-HIV activity. Carbohydr Res, 1999, 321: 121-127.
    23.李宗锴,李电东.牛膝多糖的免疫调节作用.药学学报, 1997, 32 (12) : 881-887.
    24.左绍远.螺旋藻多糖对D-半乳糖所致衰老小鼠的作用.中国生化药物杂志, 1998, 19 (1) : 15-18.
    25.张彦民,李宝才,朱利平,戴伟锋,范家恒.多糖化学及其生物活性研究进展.昆明理工大学学报(理工版), 2003, 28(3):140-146.
    26. Mulloya B.structure/function studies of anticoagulant sulphated polysaccharides using NMR.J Biotech, 2000, 77: 123-135.
    27. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA, 1997, 94: 14683-14688.
    28. Mourao PA, Pereira MS, Pavao MS, Mulloy B, Tollefsen DM, Mowinckel MC, Abildgaard U.. Structure and anticoagulant activity of a fucosylated chondroit in sulfate from echinoderm. J Biol Chem, 1996, 271(39): 23973-23984.
    29.王静凤张学成姜国良葛源吴志强陈先锋.枝管藻多糖的提取及其抗凝血活性的初步研究.青岛海洋大学学报, 2003, 33(1): 75-79.
    30. Pereira MG, Benevides NMB, Melo MRS, Valente AP, Melo FR, Mour?o PAS. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res 2005; 340: 2015-2023.
    31. Farias WRL, Valente AP, Pereira MS, Mour?o PAS. Structure and anticoagulant activity of sulfated galactans. J Biol Chem 2000; 275: 29299- 29307.
    32.吴浩,袁伯俊,焦炳华.鲨鱼软骨制剂的药理及临床研究进展.中国海洋药物, 2001, 20(4): 51-53, 62.
    33.孔庆胜,魏洪伟.多糖类的生物功能.济宁医学院学报, 1998, 21(3):80-82.
    34.王淑如,朱力军.茶叶多糖对卵磷脂胆固醇酰基转移酶活性的影响.中国药科大学学报, 1993, 24(2): 122-124.
    35.付雪艳,薛长湖,宁岩,李兆杰,许加超.岩藻聚糖硫酸酯低聚糖降压作用的初步研究.中国海洋大学学报, 2004, 34 (4) : 560-564.
    36.陈天朝,李中心.含多糖类中药的药理学研究进展.中国中医药信息杂志, 2002, 9(8):79-80.
    37.李德远,徐战,王海滨,张声华.岩藻糖胶对实验性糖尿病小鼠血糖影响的研究.华中农业大学学报, 1999, 18 (2): 191-193.
    38.洪迅,李群,付云,邓永忠.加味人参白虎汤对四氧嘧啶大鼠血糖和血脂的影响.广东药学院学报, 2003, 19(1): 30-32.
    39.李兆兰,郑涛.灵芝菌丝体和发酵液有效成分及含量分析.中草药, 1994, 25(1): 17-20.
    40.王峰,汪年松.香菇多糖对淋巴细胞脱氧核糖核酸蛋白体转录活性的影响.中国基层医药, 2005, 12(10): 1313-1314.
    41.岳微,丛静.银耳多糖对正常肝和受伤肝蛋白质合成及糖原合成的影响.中国药理学报, 1986, 7: 364.
    42.林志彬,黄云志.香菇多糖对实验性肝损伤的保护作用.北京医科大学学报, 1987, 19: 93.
    43.林云富,吴国利.猪苓多糖对中毒性肝炎小鼠肝脏的保护作用.中国药理学报, 1988, 9(4): 345- 348.
    44.张松,徐章荫.多糖类医药生物活性研究进展.中国生化杂志, 1996, 17(6): 272-275.
    45.李泰明,王香琴,吴文俊,王友同.几种多糖对核糖核酸酶的抑制作用.药物生物技术, 1997, 4 (2) : 109.
    46.王学宏.螺旋藻多糖抗氧化作用的实验研究.青岛大学医学院学报, 1999, 4: 291.
    47.方一苇.具有药理活性多糖的研究现况.分析化学, 1994, 22 (9): 955-960.
    48. Babu JS, Kanangat S, Rouse BT. Limitation and modifications of quantitative polymerase chain reaction. Application to measurement of multiple mRNAs present in small amounts of sample RNA. J Immunol Methods. 1993, 165 (2): 207-216.
    49. Czop JK, Austen KF. Properties of glycans that activate the human alternative complement pathway and interact with human monocyteβ-glucan receptor. J Immunol, 1985, 135(1): 3388-3393.
    50. Hirano M. Bioactive polysacchaddes from plants. Phytochemistry, 1989, 28(11): 2877-2883.
    51. Mizumoto K, Sugawara I, Ito W, Kodama T, Hayami M, Mori S..Sulfated homopolysaccharide with immunomodulating activities are more potent anti-HTLV-II agents than sulfated heteropolys. Japan J. Exp. Med. 1988, 58(3):145-151.
    52.黄芳,蒙义文.活性多糖的研究进展.天然产物研究与开发, 1999, 11(5): 90-98.
    53. Mashihi KN, Lange W. Immunotherapectic of Infection Diseases [M]. Berlin: Springer-Verlag, 1990, 9: 23-51.
    54.梁宗岩,张翼伸.斜顶菌水溶性多糖的构象研究.生物化学杂志, 1985, 1 (52 ): 141-147.
    55.伍锟贤,李敏谊.羧甲基多糖的免疫调节作用.化学通报, 1999, (9):54-55.
    56.方唯硕,刘相.具有抗HIV活性的天然产物.国外医学:中医中药分册,1993, 8(2): 65-69.
    57.田庚元.中国专利86104492, 1992.
    58.张松,徐章荫.多糖类医药生物活性研究进展.中国生化药物杂志, 1996, (6):272-275.
    59. Siddhanta AK, Shanmugam M, Mody KH, Goswami AM, Ramavat BK. Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Int J Biol Macromol 1999; 26:151-154.
    60. Pereira MS, Vilela-Silva AES, Valente A, Mour?o PAS. A 2-sulfated, 3-linkedα-L-galactan is an anticoagulant polysaccharide. Carbohydr Res 2002; 337: 2231-2238.
    61. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydr Polym 2006; 66: 184-191.
    62. Pereira MS, Mulloys B, Mour?o PAS. Structure and anticoagulant activity of sulfated fucans. J Biol Chem 1999; 274: 7656-7667.
    63.周鹏,谢明勇,傅博强.多糖的结构研究.南昌大学学报(理科版), 2002, (6): 200-203.
    64.田庚元,冯宇澄.多糖类免疫调节剂的研究和应用.化学进展,1994, (2):111-124.
    65. Zhang P, Zhang L, Cheng S.Effect of urea and sodium hydroxide on the molecular weight and conformation ofβ-(1,3)-D-glucan from letinus edodes in aqueous solution. Carbohydr Res, 2000, 327(2): 431-438.
    66. Young SH, Jacobs RR. Sosium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr Res, 1998, 3l0(1): 9l-99.
    67.聂凌鸿,宁正祥.活性多糖构效关系.林产化学与工业, 2003, 23(4):89-94.
    68. Cao Y, Fukuda A, Katsuraya K. Synthesis of regioselective substituted ourdlan sulfates with medium molecular weights and their specific anti-HIV-1 antivities. Macrom, l997, 30(11):3224-3228.
    69.田庚元.天然多糖的研究和应用(上).上海化工, 2000(10): 29-31.
    70. Linhardt RJ, Desai UR, Liu J, Pervin A, Hoppensteadt D, Fareed J. Low molecular weight dermatan sulfate as an antithrombitic agent structure-activity relationship Studies. Biochem Pharmaco 1994, 47: 1241-1252.
    71. Witvrouw M, Desmyter J, De Clercq. Antiviral portrait series:4.poly-sulfates as inhibitors of HIV and other enveloped viruses. Antivir Chem & Chemotherap,1994,5(6):345-349.
    72. Ehresmann DW, Deig EF ,Hatch MT, et al. Dextran sulfate, a potent anti-HIV agent in vitro having synergism with sidovudine. Lancet, 1987, 1: 1379-1386.
    73.黄芳,蒙义文.活性多糖的研究进展.天然产物研究与开发, 2000,11(5): 90-98.
    74.王振河,霍云凤.褶菌及裂褶菌多糖研究进展.微生物学杂志, 2006, 26(1): 73-76.
    75. Maksimov VI, Denisov VM, Makarov NV. Method of obtaining water-soluble olligosaccharides [P]. SU1571047, 1990.
    76. Jaeques D, Andree G, Christion P. Beta -(1→6) Bonded oligosaccharides, in particular 2-acetamido-2-deoxy-glucoses or -galactoses and their preparation. France. Commissariat energie atomique, FR2640628, 1990.
    77. Rehm BHA. Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol Lett, 1998, 165(1): 175-180.
    78.姬胜利.不同方法制备的肝素寡糖的结构分析及其抗哮喘作用机制的探讨.青岛:中国海洋大学, 2004.
    79. Ragnhild J. Nordtveit, Kjell M. V?rum and Olav Smidsr?d. Degradation of fully water-soluble, partially N-acetylated chitosans with lysozyme. Carbohydr Polym, 1994, 23(4):253-260.
    80.杨钊, Li Jin-ping,张真庆,管华诗.一种新的褐藻胶寡糖制备方法—氧化降解法.海洋科学, 2004, 28(7): 19-22.
    81.严钦,沈月新.壳寡糖的制备及其抑菌性能研究.食品研究与开发, 2003, 24(2):26-29.
    82.张倩,乐以伦,万昌秀.低分子量肝素的制备及纯化.四川联合大学学报(工程科学版). 1999, 3(2):39-47.
    83. Thomas J, James CW. Transforming biomass into hydrocarbon mixtures in near-critical or supercritical water [P]. US 6180845, 2001.
    84. Aiba SI. Preparation of N - acetyl - chitooligosaccharides form lysozymic hydrolysates of partially N-acetylated chitosans. Carbohydr. Res, 1994, 261: 297-306.
    85. Mahoney DJ, Aplin RT, Calabro A, Hascall VC, Day AJ. Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length. Glycobiology. 2001, 11(12): 1025-1033.
    86. Nielson JI. Process of using light absorption to control enzymatic depolymerization of heparin to produce low molecular weight heparin [P]. US 5106734, 1992.
    87. Wong TY, Preston LA, Schiller NL. Alginate lyase: review of major sources and enzyme characteristics, structure - function analysis, biological roles and applications. Annu Rev Microbiol, 2000, 54: 289-340.
    88. Muraki E, Yaku F, Kojima H. Preparation and crystallization of D-glucos-amine oligosaccharides with dp 6-8. Carbohydr Res, 1993, 239: 227-237.
    89. Pantaleone D, Yalpani M, Scollar M. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res, 1992, 237: 325-332 90 :527.
    90. Aiba S. Preparation of N - acetylchitooligosaccharides from lysozymic hydrolysates of partially N - acetylated chitosans. Carbohydr Res, 1994, 261: 297-306.
    91. Kurita K, Kaji Y, Mori T, Nishiyama Y. Enzymatic degradation ofβ-chitin: susceptibility and the influence of deacetylation. Carbohydr Polymer, 2000, 42(1): 19-21.
    92. Zhang H, Du Y, Yu X, Mitsutomi M, Aiba S. Preparation of Chitooligosaccharides from choitosan by a complex enzyme. Carbohydr Res, 1999, 320(4): 257-260.
    93. Callegaro L, Renjer D. Process for preparing a hyaluronic acid fraction having a low polydespersion index [P]. US 6232303, 2001.
    94. Karen K, Sandy L, Sharon A, et al. Low viscosity high molecular weight filters sterilizable hyaluronic acid [P]. US 5093487, 1992.
    95. Somashekar D, Joseph R. Chitosanases-properties and applications: a review. Bioresource Technol. 1996, 55(1): 35-45.
    96.赵晓燕,王长云.海洋多糖分子修饰方法研究概况.海洋科学, 2000, 24(12):20-22.
    97. Takano R, Yoshikawa S, Ueda T, Hayashi K, Hirase S, Hara S. Sulfation of Polysaccharides with Sulfuric Acid Mediated by Dicyclohexylcarbodiimide. J. Carbohydrate Chem., 1996 , 15(4) :449-457.
    98. Miller IJ, Blunt JW. Desulfation of algal galactans. Carbohydrate Research, 1998, 309(1): 39-43.
    99.屠美,邹翰.甲壳类肝素化合物的抗凝血性能.暨南大学学报(自然版), 1999, 20(5): 78-83.
    100.刘希江,戴岗梅.藻酸双酯钠的基础研究与临床应用进展.中国海洋药物, 1993, 3: 26-28.
    101.缪锦来,李光友,王波.硒化壳聚糖理化性质和分子结构的研究.中国海洋药物, 2000, 1: 7-10.
    102.龚小钟.硒化黄芪多糖与硒化葡萄糖的研究.深圳大学学报, 1997, 14(4): 68-75.
    103.吴立根,毛文君.衍生化多糖的生物活性研究进展.海洋科学, 2002, 26(5): 23-25.
    104.梁忠岩,苗春艳,张翼伸.化学修饰对斜顶菌多糖抑瘤活性影响的研究.中国药学杂志, 1996, 30: 613-615.
    105. Uryu T, Ikushima N, Katsuraya K, Shoji T, Takahashi N, Yoshida T, Kanno K, Murakami T, Nakashima H, Yamamoto N. Sulfated alkyl oligoaacharides with potent inhibitory effects on HIV infection. Biochem Pharmacol, 1992, 43: 2385-2392.
    106.李西廷,杨佃甲.藻酸双酯钠的药理作用、用途与不良反应.中国医院药学杂志, 1994, 14(12): 542-544.
    107.徐刚,赵晓娣.藻酸双酯钠治疗对血液流变学指标的影响的研究.中国血液流变学杂志, 2004, 14(2): 233.
    108.兰海,王孝养,叶秀玲,朱世为.肺癌患者血液流变学变化及藻酸双酯钠的影响.中国血液流变学杂志, 1994, 4(4): 40-41.
    109.刘成玉,王秀丽,纪新强.藻酸双酯钠和甘糖酯对急性心肌梗死患者红细胞变形能力保护作用的机制探讨.中国海洋药物, 1997,4: 12-15.
    110.刘成玉,纪新强,刘宗宝,王国英谭润鸾.藻酸双酯钠对银屑病病人白细胞流变特性及细胞黏附分子表达的影响.青岛大学医学院学报, 2000, 36(3): 37-39.
    111.余健,郭仁寿,陈重义.藻酸双酯钠对阿霉素肾病大鼠保护作用的实验研究.肾脏病与透析肾移植杂志, 1996, 5(5): 27-32.
    112.周文华,肖殿模,郑超强.藻酸双酯钠对佛波酯诱导的人红细胞蛋白激酶C激活的影响.中国海洋药物, 1994,3: 11-14.
    113.张春,姜立清,刘克喜.藻酸双酯钠对2型糖尿病血脂异常患者血脂及胰岛素抵抗的影响.中国临床药学杂志. 2003, 12(1): 24-26.
    114.姬汴生,高远,唐琳.藻酸双酯钠对培养神经细胞谷氨酸兴奋毒性的保护作用.中国新药与临床杂志, 2002, 21(7): 410-413.
    115.唐孝礼,邱鹏新,黎明涛.藻酸双酯钠对蜂毒肽诱导的皮质神经元凋亡的保护作用.中国药理学通报, 1999, 15(5): 407-410.
    116.俞英欣,万琪,张瑞国,冀风茹.藻酸双酯钠对类缺血再灌注神经元NF-κB表达的影响.中国药学杂志, 2003, 38(10): 768-770.
    117.宋健,张兴荣,张贤康.藻酸双酯钠对急性乙型肝炎患者血浆内皮素的影响及意义.临床荟萃, 1999, 14(10): 436-437.
    118.吴铿,钱卫民.藻酸双酯钠对冠心病患者心脏功能的影响.中国海洋药物, 1996, 3: 44-46.
    119.徐岩,陈旭华,王腾,等.藻酸双酯钠对豚鼠心室肌细胞动作电位及L-型钙电流的影响.中国药理学通报, 2002, 18(5): 536-538.
    120.张建军,张爱兵,陈书艳.藻酸双酯钠协同酸性成纤维细胞生长因子促血管生成作用的研究.中国心血管杂志, 1997, 2(1): 12-14.
    121.许继平,李玉莲,徐成伟,周庆博王刚刘同科.尿激酶与藻酸双酯钠治疗兔脑梗死模型的实验性对比研究.中风与神经疾病杂志, 2003, 20(1): 47-48.
    122.陈元仲,吕联煌.藻酸双酯钠与细胞因子对巨核细胞生成的调控作用.中国病理生理杂志, 1999, 15(6): 567-570.
    123.余健,郭仁寿,陈重义.藻酸双酯钠对阿霉素肾病大鼠保护作用的实验研究.肾脏病与透析肾移植杂志, 1996, 5(5): 27-32.
    124.陈其瑞,朱秋萍.藻酸双酯钠临床应用.中西医结合杂志, 1996, 9(6): 371.
    125.徐景芝,杨素芝.藻酸双酯钠临床应用进展.吉林医学院学报, 1996, 16(1): 76-77.
    126.姜红.藻酸双脂钠的不良反应探讨.实用医技, 2000,7(2):117.
    127.藻酸双酯钠(PSS)不良反应(文摘).中国药事, 1995,9(3):184.
    128.张惟杰.糖复合物生化研究技术.浙江:浙江大学出版社, 1999: 20-21.
    129.中国药典2005年版.二部附录. 2005: 49-50.
    130. Zhang Z, Yu G, Guan H, Zhao X, Du Y, Jiang X. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr Res, 2004, 399: 1475-1481.
    131. Chandia NP, Matsuhiro B, Vasquez AE. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FR-IR spectroscopy. Carbohydr polym, 2001, 46: 81-87.
    132. Fang B, Jiang T. Study on the preparation of hydroxyl ethyl chitosan sulfate. Chin J Biochem Pharmaceu, 1998, 19: 163-166.
    133. Huang R, Du Y, Yang J, Fan LH. Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfate. Carbohydr Res, 2003, 338: 483-489.
    134. Ikeda A, Takemura A, Ono H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr Polym 2000; 42: 421-425.
    135. Huang R, Du Y, Yang J. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr Polym, 2003, 52: 19-24.
    136. Schurks N, Wingender J, Flemming HC, Mayer C. Monomer composition and sequence of alginates from Pseudomonas aeruginosa. Int J biol macromol, 2002, 30: 105-111.
    137. Kennedy JF, Griffiths AJ, Philp K, Stevenson DL, Kambanis O, Gray CJ. Characteristics and distributions of ester groups in propylene glycol alginates. Carbohydr Polym, 1989, 11:1-22.
    138. Pereira MG, Benevides NMB, Melo MRS, Valente AP, Melo FR, Mour?o PAS. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res, 2005, 340: 2015-2023.
    139. Alban S, Jeske W, Welzel D, Franz G, Farred J. Anticoagulant and antithrombotic actions of a semisyntheticβ-1,3-glucan sulfate. Thromb Res, 1995, 78: 201-10.
    140. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, et al. Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Ches, 2001, 119: 64-94.
    141.王立新,杨朝霞.动物细胞培养及应用.黄牛杂志, 2000, 26(3): 45-48.
    142.张挺,于鸿儒,杨菁,李冬利,梁巍巍. SD乳鼠海马神经细胞原代培养方法的探讨.锦州医学院学报, 2005, 26(5)47-49.
    143.杜怡峰,张晨.新生大鼠海马神经细胞原代培养方法的改良.青岛大学医学院学报, 2002, 38(1):55-56
    144.端礼荣,张志坚,刘锦波.大鼠胚胎脊髓神经细胞的原代培养及其神经营养素受体表达的初步研究.江苏大学学报(医学版), 2003, 13(3): 191-193.
    145.于丽华,赵书平,席先成,崔洪新.不同种类血清对新生大鼠大脑皮层神经细胞培养的影响.实用医药杂志, 2002, 19(3): 190-192.
    146.马忠仁,冯玉萍,李倬,乔自林,侯兰新,李明生,冯若飞.动物血清在细胞培养中的重要性及其质量控制标准.西北民族大学学报(自然科学版), 2003, 24(3): 56-59.
    147.苏万东,吴承远,刘然,刘玉光,王磊.海马神经元体外培养的实验研究.中华神经外科疾病研究杂志,2002, 1(3): 269-270.
    148.孙岩,李武修,唐胜建.琼脂糖凝胶厚度对DNA电泳的影响.潍坊医学院学报, 2005, 27(2): 103-105.
    149. Barrett GL, Bartlett PF. The Pnerve growth factor receptor mediates survival or death depending on the stage of seneory neuron development. Proe Natl Acad Sc USA, 1994, 91: 6501-6505.
    150.郭灵,谢瑶,何宏文,汪华侨,姚志彬.成年大鼠眼睫状体缘色素上皮组织的神经前体细胞的培养和鉴定.解剖学研究, 2002, 24(3): 166-169.
    151.马晓晶,陆晓红,金玉玲,王明礼.小鼠胚胎皮层神经细胞原代培养的形态学观察.基础医学与临床. 2004, 24 (3):354-355.
    152.朱斌,叶铁虎,牛浩.原代培养大鼠海马细胞随培养时间早期凋亡和死亡增加.基础医学与临床,2005, 25(2): 179-180.
    153. Lin SZ, Yan GM, Koch KE, Paul SM, Irwin RP. Mastoparan-induced apoptosis of cultured cerebellar granule neurons is initiated by calcium release from intracellularstores. Brain Res, 1997, 771(2): 184-195.
    154. Lattanzio F A Jr. The effects of pHand temperature on fluorescent calcium indicators as determined with Chelex-100 and EDTA buffer systems. Biochem Biophys Res Commun, 1990, 171: 102~108.
    155.黄琼,李志,杨杏芬,黄俊明,黄建康,蔡玟.应用流式细胞术研究大蒜粉对小鼠巨噬细胞吞噬功能的影响.华南预防医学, 2006, 32(3) :19-23.
    156.张均田.现代药理研究方法[上册].北京:北京医科大学中国协和医科大学联合出版社, 1998: 649.
    157.周庆礼,张智维,王昌禄,武毅,李爽,包全帅.香兰素抑菌作用的研究食品科学. 2005, 26(增刊): 23-25.
    158.时维静,路振香,李立顺.白头翁不同提取物及复方体外抑菌作用的实验研究.中国中医药科技. 2006, 13(3): 166-168.
    159.夏文水,吴炎楠.甲壳低聚糖的功能性质.无锡轻工大学学报. 1996, 15(4):297-302.
    160. Yousook Shin. The antibiotic effect of Chitosan on Bacterteria of Varying Cell Well Composition. Adv in Chitin Sci, 1997, (2):890-896.
    161.刘莺,刘新,牛筛龙.海洋多糖生物活性的研究进展.医药导报, 2006, 25(10): 1044-1046.
    162.李德远,徐战,王海滨,等.岩藻糖胶对实验性糖尿病小鼠血糖影响的研究.华中农业大学学报,1999 ,18 (2) :191-194.
    163.李福川,唐志红,崔博文.三种海带多糖的降糖作用.中国海洋药物, 2000,19(5): 12-15.
    164.薛惟建,杨文,陈琼华.昆布多糖和猴头多糖对实验性高血糖的防治作用.中国药科大学学报, 1989, 20(6): 378-380.
    165.赵学增,王新铭,夏烨.藻酸双酯钠的降血糖作用.中国药理学通报,1993, 9(3): 221-223.
    166. Farias WRL, Valente AP, Pereira MS, Mour?o PAS. Structure and anticoagulant activity of sulfated galactans. J Biol Chem, 2000, 275: 29299-29307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700