用户名: 密码: 验证码:
氧化应激损伤肥胖、糖尿病大鼠肾小球足细胞的机制及药物干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾小球脏层上皮细胞即足细胞(podocyte),是维持肾小球滤过屏障结构和功能正常的主要细胞之一。大量形态学研究证实,许多肾小球疾病可见足细胞结构异常,包括足突增宽、融合、消失以及足细胞减少。足细胞是终末分化细胞,无增殖、再分化能力,基因突变、免疫因素、血流动力学异常、高糖、高脂及氧化应激均能导致足细胞异常、凋亡和数量减少。
     糖尿病肾病(diabetic nephropathy,DN)是糖尿病的严重慢性并发症,是西方国家终末期肾病(end stage renal disease,ESRD)的主要病因。随着饮食结构和生活方式的改变,肥胖的发病率逐年增多,由其导致的肥胖相关性肾病(obesity-relatedglomerulopathy,ORG)也越来越受到研究者的重视。两者早期均以微量白蛋白尿为主要表现,有共同的发病基础。足细胞数量减少、足突形态改变、足突蛋白的丢失被认为是ORG和DN发病早期重要的改变,并且其在蛋白尿的发生、发展中起到了关键性的作用。统一学说和共同土壤学说提出,氧化应激是糖尿病、肥胖等炎症性疾病组织损伤的共同病理生理学机制。氧化应激活化的MAPK家族信号转导通路对肾小球固有细胞增殖、凋亡的调控已成为目前研究的焦点。
     本研究采用多种研究手段针对ORG、DN中足细胞损伤的形式、与蛋白尿的相关性以及氧化应激对足细胞凋亡的调控进行了探讨,并使用通络方剂、a硫辛酸等抗氧化剂对糖尿病肾病进行了干预研究,发现足细胞数量、密度和足突蛋白Nephrin的减少在肥胖、糖尿病肾损害中有重要的意义,氧化应激诱导MAPK家族的JNK/SAPK蛋白磷酸化可进一步激活凋亡相关蛋白caspase-3信号通路的表达改变,使足细胞凋亡、数量减少、足突裂孔膜蛋白表达异常,足突融合、增宽、微绒毛化改变,从而导致肾小球滤过屏障受损,引起蛋白尿的发生。通络方剂对糖尿病肾病足细胞损伤有一定的保护作用。
     研究目的:
     研究足细胞损伤与和肥胖、糖尿病肾病的相关性,探讨氧化应激诱导的足细胞凋亡在肥胖相关性肾病和糖尿病肾病中的意义。
     研究对象及方法:
     以SD大鼠为研究对象。设正常对照组(以下简称CON组)大鼠18只;高热量饮食(40%热量来自脂肪)诱导的食源性肥胖模型(以下简称DIO模型)大鼠22只;高热量饮食基础上腹腔注射35mg/kg链脲佐菌素诱导的非遗传性2型糖尿病模型(以下简称DM模型)大鼠19只。课题分成四个部分进行:
     第一部分:采用免疫组织化学方法对足细胞核蛋白WT-1标记染色,运用体视学体视框/分合法(disector/fractionator)结合Image-ProPlus 6.0图像分析软件计数足细胞数量,测量肾小球体积,计算足细胞密度,Spearman相关性分析足细胞数量和密度与上述两种动物模型蛋白尿的关系。
     第二部分:透射电镜观察第12周时足细胞超微结构的改变;western blot检测三组动物不同时相点肾皮质足突蛋白nephrin的表达变化,研究足细胞形态改变和nephrin表达变化在ORG和DN发病中的意义。
     第三部分:检测三组动物不同时相点肾皮质氧化产物MDA含量和SOD活力,评估两种模型肾脏氧化应激程度;western blot同时间检测p-JNK蛋白和足细胞凋亡相关蛋白cleaved caspase-3在肾皮质中的表达,讨论JNK/SAPK信号通路对ORG和DN足细胞凋亡的调控。
     第四部分:以抗氧化剂a硫辛酸(100mg/kg/d)为对照,观察通络方剂(0.4g/kg/d)对DM模型大鼠足细胞损伤的保护作用。
     结果:
     1.肾小球足细胞计数与肥胖、糖尿病大鼠蛋白尿的相关性分析:①与CON组相比,DIO模型大鼠体重和胰岛素持续升高;4周、8周、12周三个时相点尿白蛋白肌酐比值逐渐升高(p<0.05);随着肾小球体积增大足细胞密度逐渐减小;足细胞密度与尿白蛋白肌酐比值呈负相关(r=-0.825,R~2=0.6811,p<0.05);②与CON组相比,DM模型大鼠血糖持续保持高水平;4周、8周、12周三个时相点24小时尿蛋白定量和尿白蛋白肌酐比值均逐渐升高,肾小球足细胞数量和密度均逐渐减小(p<0.05);足细胞计数与24小时尿蛋白定量呈负相关(r=-0.828,R~2=0.6842,p<0.05)。
     2.足突蛋白Nephrin在肥胖、糖尿病大鼠肾脏的表达及足细胞形态学观察:①与CON组相比,第4周、8周、12周,DIO模型和DM模型大鼠肾皮质nephrin/β-actin蛋白光密度比值逐渐减小,差异有统计学意义(p<0.05);②第12周时透射电镜观察,DIO模型大鼠GBM节段性增厚,足细胞内线粒体肿胀、空泡化,可见脂滴和蛋白小体形成,足突增宽、融合并有微绒毛化改变;DM模型大鼠GBM均匀增厚,系膜区增宽,足突融合、微绒毛化较DIO组更加明显,足细胞胞浆内可见自噬小体前体,足细胞核内可见凋亡小体形成。
     3.氧化应激JNK/SAPK信号通路对肥胖、糖尿病大鼠肾小球足细胞凋亡的调控:①与CON组相比,第4周、8周、12周,DIO模型和DM模型大鼠肾皮质MDA含量逐渐增多,SOD活力逐渐下降,差异有统计学意义(p<0.05);②与CON组相比,第4周、8周、12周DIO模型和DM模型大鼠肾皮质磷酸化JNK蛋白的表达量逐渐增多,cleaved caspase-3蛋白的表达与磷酸化JNK一致,而总JNK蛋白表达在两模型组的各个时相点均无差异。
     4.通络方剂等抗氧化剂对糖尿病大鼠足细胞损伤的保护作用:通络方剂(0.4g/kg/d)与抗氧化剂a-硫辛酸(100mg/kg/d)分别干预DM模型大鼠12周后,两组大鼠24小时尿蛋白定量明显低于未治疗组,足细胞计数明显高于未治疗组,差异有统计学意义;与DM对照组相比,两种药物干预组大鼠肾皮质MDA含量减少,SOD活力升高,磷酸化JNK和cleaved caspase-3蛋白表达均降低(p<0.05)。两干预组之间上述指标相比差异无统计学意义(p>0.05)。
     结论:
     1.高热量饮食可成功诱导食源性肥胖大鼠模型,DIO大鼠具有肥胖、高血脂、高胰岛素血症等特征,模型稳定;高热量饮食+35mg/kg的STZ可成功诱导非遗传性2型糖尿病模型,DM大鼠具有高血糖、高血脂、胰岛素水平不低的特征,模型稳定。
     2.DIO模型大鼠足细胞相对密度减小是足细胞受损的主要形式;DM模型大鼠足细胞绝对数量减少是其足细胞受损的主要形式;足细胞损伤与蛋白尿的发生均密切相关;足突增宽、融合微绒毛化、足细胞凋亡是这两种动物模型中足细胞主要的形态学改变。足突裂孔膜Nephrin蛋白表达下调是判断早期肾小球滤过屏障受损的重要指标,在ORG和DN的发病中有重要意义。
     3.DIO模型和DM模型大鼠肾皮质氧化应激水平明显升高,氧化应激激活JNK/SAPK通路,其下游信号通路活化caspase-3蛋白诱导足细胞凋亡。
     4.通络方剂具有抗氧化作用,对DM模型大鼠肾小球足细胞的损伤有保护作用,这种保护作用可能是通过减轻糖尿病肾皮质氧化应激实现。
Glomerular epithelial cell(podocyte) is major cell in maintaining the structure and function of glomerular filtration barrier.Large morphological study confirmed that podocyte structural abnormalities accompanied many glomerular diseases,including foot protrusion widened,integration,as well as cells reduction.Podocyte differentiation is the end,no proliferation,differentiation capacity,gene mutations,immune factors, hemodynamic abnormalities,high-sugar,high-fat and oxidative stress can lead to abnormal cells,apoptosis and reduce the number.
     Diabetic nephropathy(DN) is a serious chronic diabetic complications,the major cause of end-stage renal disease(ESRD) in western countries.With diet and lifestyle changes,the incidence of obesity increasing year by year,by the result of obesity-related nephropathy has received increasing attention to researchers.Microalbuminuria is early performance in ORG and DN.Decrease in the number of cells,the foot protrusion morphological changes,the loss of foot protrusion protein is considered ORG and the incidence of early DN important change,and proteinuria in the occurrence and development play a crucial role.Unified theory proposed oxidative stress is common pathophysiology mechanism in diabetes,obesity and other inflammatory diseases. Oxidative stress-activated MAPK signal transduction pathway family on the inherent glomerular cell proliferation and apoptosis has become the focus of the present study.This study used a variety of research tools on ORG,DN podocyte injury in the form of proteinuria associated with oxidative stress,as well as the regulation of apoptosis were discussed.And the use of Tong Xin Luo,a lipoic acid and other antioxidants on the intervention of diabetic nephropathy study.We found that the number of cells,density and foot protrusion of nephrin reduction in obesity,diabetes kidney damage in significance. Oxidative stress-induced MAPK family of JNK/SAPK protein phosphorylation could be further activated cells apoptosis-related protein signaling pathway of caspase-3 expression changed so that adequate apoptosis,reduction in the number foot hole sudden abnormal expression of membrane proteins,foot protrusion integration widened,the microvilli of change,resulting in glomerular filtration barrier damage caused proteinuria occurred.Tong Xin Luo have some protection effection on podocytes injury in diabetic nephropathy.
     Methods:
     SD rats have been studied.Control group(CON,n=18);high calorie diet(40% calories from fat) induced obesity model(DIO,n=22);high-calorie diet on the basis of celiac injection of 35mg/kgSTZ-induced non-genetic model of type 2 diabetes mellitus (DM,n=19).research is divided into four parts:
     PartⅠ:By immunohistochemical methods on protein WT-1 marker staining using stereological dissector/fractionator methods in Image-Pro image analysis software counts the number of podocytes,the measurement of glomerular volume,the density of podocytes, and Spearman correlation analysis between PN and proteinuria.
     PartⅡ:TEM observation of the first 12 weeks cells ultrastructural changes;western blot test three groups of animals at the same time do not point renal cortex foot protrusion nephrin expression of protein on cells nephrin expression patterns change and changes in the incidence ORG and DN The significance.
     PartⅢ:Detection of the three groups of renal cortex oxidation products MDA content and SOD,to assess the degree of oxidative stress;at the same time western blot p-foot JNK protein and apoptosis-related protein cleaved caspase-3 in the cortex.Discuss JNK/SAPK signaling on the ORG and DN and the regulation of apoptosis.
     PartⅣ:Observation Tong Xin Luo(0.4g/kg/d) and a-lipoic acid protection in DN and podocytes injury.
     Results:
     1.Podocyte cell count and obesity,proteinuria in diabetic rats Correlation Analysis:①compared with CON group,DIO rats sustained weight and insulin increased 4 weeks,8 weeks,12 weeks,three points urinary albumin creatinine ratio gradually increased (p<0.05);glomerular volume increased with the foot cell density decreases gradually foot cell density and urinary albumin creatinine ratio was negatively correlated(r=-0.825,R~2 =0.6811,p<0.05);②compared with CON group,DM rats sustained high blood sugar 4 weeks,8 weeks,12 weeks three time points 24-hour urine protein and urinary albumin creatinine ratio gradually increased,podocyte the volume and density of cells gradually decreased(p<0.05);podocyte cell count and 24-hour urine protein was negatively correlated(r=-0.828,R~2=0.6842,p<0.05).
     2.Nephrin expression in obese,diabetic rat kidney and morphological observation:①compared with the CON,in DIO model and DM the model of rat renal cortex,nephrin/β-actin protein optical density ratio decreases,the difference was significant(p<0.05);②TEM observation:DIO rats GBM segmental thickening,swelling of mitochondria within cells,vacuoles,and that lipid and protein body formation,foot protrusion widened, integration and microvilli of the change;DM rats GBM uniform thickness,mesangial area widened,foot process integration,microvilli of the more obvious than DIO group,within the cytoplasm of cells that the body macrophage precursors,adequate apoptotic nuclei body formation.
     3.JNK/SAPK signaling pathway on the regulation of apoptosis of obese,diabetic rats podocytes:①compared with the CON,four weeks,eight weeks,12 weeks,DIO model and the model of rat renal cortex DM content of MDA gradually increased,SOD activity has been gradually declining,a statistically significant difference(p<0.05);②compared with the CON,four weeks,eight weeks,12 weeks and DM DIO rat model of renal cortex p-JNK protein was gradually increased,cleaved caspase-3 expression and p-JNK consistent,and T-JNK protein expression in the model group various time points no difference.
     4.Tong Xin Luo and other antioxidants role in the protection of podocyte injury in diabetic rats:Tong Xin Luo(0.4g/kg/d) and a-lipoic acid(100mg/kg/d) respectively intervention DM rats after 12 weeks,the rats were 24-hour urine protein was significantly lower than that of the treatment group enough cell count was significantly higher than that of the treatment group,there were significant differences with DM compared to the control group,two drug intervention group rat renal cortex MDA content less,the higher the activity of SOD,p-JNK and cleaved caspase-3 protein expression were lower(p<0.05). Between these two indicators of drug group compared the difference was not statistically significant(p<0.05).
     Conclusion:
     1.Successful high calorie diet-induced obese rats,DIO rats with obesity, hyperlipidemia,hyperinsulinemia,and other characteristics of model stability;high-calorie diet+35 mg/kg STZ-induced can be successful nongenetic 2 diabetic model,DM rats with high blood sugar,high blood fat,low insulin level is not the characteristics of model stability.
     2.DIO model cells is reduced relative density cells damaged the main form;DM model cells absolute decrease in the number of cells is the main form of damage;two cells the occurrence of injury and proteinuria are closely related;microvilli foot process, apoptosis is adequate model of the two major morphological changes of cells.Nephrin foot protrusion hole membrane protein expression is reduced glomerular filtration barrier early judgement an important indicator of damage in the DN ORG and in the pathogenesis of important significance.
     3.DIO model and the model DM rat kidney serious degree of oxidative stress and oxidative stress signaling pathway may lead through JNK/SAPK/caspase-3 cell apoptosis.
     4.Tong Xin Luo antioxidant role of the DM model cells injury protection,such protection may be by reducing oxidative stress in diabetic kidney cortex to achieve.
引文
1 Thorner PS,Ho M,Eremina V,et al.Podocytes contribute to the formation of glomerular crescents.J Am Soc Nephrol,2008,19:495-502.
    2 Petermann AT,Pippin J,Krofft R,et al.Viable podocytes detach in experimental diabetic nephropathy:potential mechanism underlying glomerulosclerosis.Nephron Exp Nephrol,2004,98:e114-23.
    3 Hayden MR,Whaley-Connell A,Sowers JR.Renal redox stress and remodeling in metabolic syndrome,type 2 diabetes mellitus,and diabetic nephropathy:paying homage to the podocyte.Am J Nephrol,2005,25:553-69.
    4 丁洁.基因检测在遗传性肾脏疾病诊治和研究中的作用.中华肾脏病杂志-2005:21(11)-638-640.
    5 陈洪宇 吴文斌 王永钧.肾脏病足细胞损伤及其防治研究进展.医学研究杂志-2007:36(11)-11-14.
    6 Reddy GR,Kotlyarevska K,Ransom RF,et al.The podocyte and diabetes mellitus:is the podocyte the key to the origins of diabetic nephropathy?.Curr Opin Nephrol Hypertens,2008,17:32-6.
    7 张敬京 杨霁云.足细胞与蛋白尿.中华儿科杂志-2004:42(10)-753-755.
    8 Whaley-Connell A,DeMarco VG,Lastra G,et al.Insulin resistance,oxidative stress,and podocyte injury:role of rosuvastatin modulation of filtration barrier injury.Am J Nephrol,2008,28:67-75.
    9 Shankland SJ.The podocyte's response to injury:role in proteinuria and glomerulosclerosis.Kidney Int,2006,69:2131-47.
    10 Davis B,Dei Cas A,Long DA,et al.Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia.J Am Soc Nephrol,2007,18:2320-9.
    1 Rutkowski P, Klassen A, Sebekova K, et al. Renal disease in obesity: the need for greater attention. J Ren Nutr, 2006,16:216-23.
    2 Eknoyan G. Obesity, diabetes, and chronic kidney disease. Curr Diab Rep, 2007,7:449-53.
    3 Wolf G, Ziyadeh FN. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol, 2007,106:p26-31.
    4 Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol, 2005,16:2941-52.
    5 Dalla Vestra M, Masiero A, Roiter AM, et al. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes, 2003,52:1031-5.
    6 Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol, 1997,273:R725-30.
    7 Danda RS, Habiba NM, Rincon-Choles H, et al. Kidney involvement in a nongenetic rat model of type 2 diabetes. Kidney Int, 2005,68:2562-71.
    8 White KE, Bilous RW. Estimation of podocyte number: a comparison of methods. Kidney Int, 2004,66:663-7.
    9 Mundlos S, Pelletier J, Darveau A, et al. Nuclear localization of the protein encoded by the Wilms' tumor gene WT1 in embryonic and adult tissues. Development, 1993,119:1329-41.
    10 Barisoni L, Kriz W, Mundel P, et al. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol, 1999,10:51-61.
    11 Bariety J, Nochy D, Mandet C, et al. Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int, 1998,53:918-25.
    12 Sanden SK, Wiggins JE, Goyal M, et al. Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms' tumor-1 protein used as a podocyte nuclear marker. J Am Soc Nephrol, 2003,14:2484-93.
    13 WEIBEL ER, GOMEZ DM. A principle for counting tissue structures on random sections. J Appl Physiol, 1962,17:343-8.
    14 Sterio DC. The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc, 1984,134:127-36.
    15 Gundersen HJ. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc, 1986,143:3-45.
    16 向红丁,肥胖与代谢综合征--中国之现状.《现代康复》,2001,5:12-14.
    17 Elger M, Kriz W. Podocytes and the development of segmental glomerulosclerosis. Nephrol Dial Transplant, 1998,13:1368-73.
    18 Takeda T, McQuistan T, Orlando RA, et al. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest, 2001,108:289-301.
    19 Kerjaschki D. Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest, 2001,108:1583-7.
    20 Sebekova K, Klassen A, Bahner U, et al. Overweight and obesity-risk factors in the development and progression of renal disease. Vnitr Lek, 2004,50:544-9.
    21 Durvasula RV, Petermann AT, Hiromura K, et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int, 2004,65:30-9.
    22 van den Berg JG, van den Bergh Weerman MA, Assmann KJ, et al. Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. Kidney Int, 2004,66:1901-6.
    23 Petermann AT, Hiromura K, Blonski M, et al. Mechanical stress reduces podocyte proliferation in vitro. Kidney Int, 2002,61:40-50.
    24 White KE, Bilous RW, Marshall SM, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes, 2002,51:3083-9.
    25 Steffes MW, Schmidt D, McCrery R, et al. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int, 2001,59:2104-13.
    26 Joles JA, Kunter U, Janssen U, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol, 2000,11:669-83.
    1 Pavenstadt H,Kriz W,Kretzler M.Cell biology of the glomerular podocyte.Physiol Rev,2003,83:253-307.
    2 Marshall SM.The podocyte:a potential therapeutic target in diabetic nephropathy?.Curr Pharm Des,2007,13:2713-20.
    3 Li JJ,Kwak SJ,Jung DS,et al.Podocyte biology in diabetic nephropathy.Kidney Int Suppl,2007:S36-42.
    4 陈瑜 刘超 足细胞损伤与糖尿病肾病.中国实用内科杂志-2007:27(23)-1876-1879.
    5 Khoshnoodi J,Tryggvason K.Unraveling the molecular make-up of the glomerular podocyte slit diaphragm.Exp Nephrol,2001,9:355-9.
    6 陈立平 周巧玲 彭卫生 吴晓英 足细胞超微结构及其相关分子表达变化在糖尿病肾病发病中的作用.中南大学学报:医学版-2007:32(4)-620-625.
    7 Hayden MR,Whaley-Connell A,Sowers JR.Renal redox stress and remodeling in metabolic syndrome,type 2 diabetes mellitus,and diabetic nephropathy:paying homage to the podocyte.Am J Nephrol,2005,25:553-69.
    8 Schlondorff J.Nephrin AKTs on actin:The slit diaphragm-actin cytoskeleton signaling network expands.Kidney Int,2008,73:524-6.
    9 Holzman LB,St John PL,Kovari IA,et al.Nephrin localizes to the slit pore of the glomerular epithelial cell.Kidney Int,1999,56:1481-91.
    10 Kawachi H,Koike H,Kurihara H,et al.Cloning of rat nephrin:expression in developing glomeruli and in proteinuric states.Kidney Int,2000,57:1949-61.
    11 Orikasa M,Matsui K,Oite T,et al.Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody.J Immunol,1988,141:807-14.
    12 Topham PS,Kawachi H,Haydar SA,et al.Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin.J Clin Invest,1999,104:1559-66.
    13 Wang SX,Ahola H,Palmen T,et al.Recurrence of nephrotic syndrome after transplantation in CNF is due to autoantibodies to nephrin.Exp Nephrol,2001,9:327-31.
    14 Toyoda M, Suzuki D, Umezono T, et al. Expression of human nephrin mRNA in diabetic nephropathy. Nephrol Dial Transplant, 2004,19:380-5.
    15 Kim JJ, Li JJ, Jung DS, et al. Differential expression of nephrin according to glomerular size in early diabetic kidney disease. J Am Soc Nephrol, 2007,18:2303-10.
    16 Wolf G, Ziyadeh FN. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol, 2007,106:p26-31.
    17 Kim NH. Podocyte hypertrophy in diabetic nephropathy. Nephrology (Carlton), 2005,10 Suppl:S14-6.
    1 Griffin SV,Olivier JP,Pippin JW,et al.Cyclin I protects podocytes from apoptosis.J Biol Chem,2006,281:28048-57.
    2 Marshall CB,Shankland SJ.Cell cycle and glomerular disease:a minireview.Nephron Exp Nephrol,2006,102:e39-48.
    3 高建新 周玉琴等.Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用.生理学报,2005,57:755-760.
    4 Shibata S,Nagase M,Yoshida S,et al.Podocyte as the target for aldosterone:roles of oxidative stress and Sgk1.Hypertension,2007,49:355-64.
    5 Whaley-Connell A,DeMarco VG,Lastra G,et al.Insulin resistance,oxidative stress,and podocyte injury:role of rosuvastatin modulation of filtration barrier injury.Am J Nephrol,2008,28:67-75.
    6 Hayden MR,Whaley-Connell A,Sowers JR.Renal redox stress and remodeling in metabolic syndrome,type 2 diabetes mellitus,and diabetic nephropathy:paying homage to the podocyte.Am J Nephrol,2005,25:553-69.
    7 Whaley-Connell AT,Chowdhury NA,Hayden MR,et al.Oxidative stress and glomerular filtration barrier injury:role of the renin-angiotensin system in the Ren2 transgenic rat.Am J Physiol Renal Physiol,2006,291:F1308-14.
    8 Yamagata K,Hagiwara M.[Pathological roles of mitochondrial dysfunction in podocyte injury].Nippon Jinzo Gakkai Shi,2007,49:82-7.
    9 Reddy GR,Kotlyarevska K,Ransom RF,et al.The podocyte and diabetes mellitus:is the podocyte the key to the origins of diabetic nephropathy?.Curr Opin Nephrol Hypertens,2008,17:32-6.
    10 Susztak K,Raft AC,Schiffer M,et al.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.Diabetes,2006,55:225-33.
    11 Schlondorff J.Nephrin AKTs on actin:The slit diaphragm-actin cytoskeleton signaling network expands.Kidney Int,2008,73:524-6.
    12 Toyoda M,Suzuki D,Umezono T,et al.Expression of human nephrin mRNA in diabetic nephropathy.Nephrol Dial Transplant,2004,19:380-5.
    13 LeHir M,Kriz W.New insights into structural patterns encountered in glomerulosclerosis.Curr Opin Nephrol Hypertens,2007,16:184-91.
    14 Benn SC,Woolf CJ.Adult neuron survival strategies—slamming on the brakes.Nat Rev Neurosci,2004,5:686-700.
    15 Park DS,Morris EJ,Stefanis L,et al.Multiple pathways of neuronal death induced by DNA-damaging agents,NGF deprivation,and oxidative stress.J Neurosci,1998,18:830-40.
    16 李小明 孙志贤.细胞凋亡中的关键蛋白酶——caspase-3.国外医学:分子生物学分册,1999,21:6-9.
    1 李文桐 邹俊杰等.通络方剂对糖尿病大鼠血管内皮细胞的保护作用.第二军医大学学报,2007,28:807-808.
    2 张德刚 赵瑛 夏培金 黄宵群 刘志民 周晖.通络方剂改善糖尿病大鼠周围神经病变作用机制的探讨.中西医结合学报,2004,4:601-605.
    3 Whaley-Connell A,Habibi J,Nistala R,et al.Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment.Hypertension,2008,51:474-80.
    4 Bhatti F,Mankhey RW,Asico L,et al.Mechanisms of antioxidant and pro-oxidant effects of alpha-lipoic acid in the diabetic and nondiabetic kidney.Kidney Int,2005,67:1371-80.
    5 周宜灿 陈晓春 朱元贵 方芳 陈丽敏.人参皂甙Rg1对帕金森病小鼠黑质JNK细胞凋亡通路的影响.解剖学报-2003:34(5)-477-481.
    6 Meyers MR,Gokce N.Endothelial dysfunction in obesity:etiological role in atherosclerosis.Curr Opin Endocrinol Diabetes Obes,2007,14:365-9.
    7 Kocic R,Pavlovic D,Kocic G,et al.Susceptibility to oxidative stress,insulin resistance,and insulin secretory response in the development of diabetes from obesity.Vojnosanit Pregl,2007,64:391-7.
    8 王仁忠 张能 余华荣.Caspase与糖尿.国际内分泌代谢杂志-2006:26(4)-267-268.
    9 Petermann AT,Pippin J,Krofft R,et al.Viable podocytes detach in experimental diabetic nephropathy:potential mechanism underlying glomerulosclerosis.Nephron Exp Nephrol,2004,98:e114-23.
    10 肖沽文 叶建锋 高宁.氨基末端激酶信号通路在细跑凋亡中的作用.中国公共卫生-2005:21(1)-13-14.
    11 Chen CA,Tsai JC,Su PW,et al.Signaling and regulatory mechanisms of integrinalpha3betal on the apoptosis of cultured rat podocytes.J Lab Clin Med,2006,147:274-80.
    12 Eichler T,Ma Q,Kelly C,et al.Single and combination toxic metal exposures induce apoptosis in cultured murine podocytes exclusively via the extrinsic caspase 8 pathway.Toxicol Sci,2006,90:392-9.
    13 Wada T,Pippin JW,Terada Y,et al.The cyclin-dependent kinase inhibitor p21 is required for TGF-betal-induced podocyte apoptosis.Kidney Int,2005,68:1618-29.
    1 Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999,48:1-9.
    2 Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl, 2000,77:S3-12.
    3 King GL, Kunisaki M, Nishio Y, et al. Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 1996,45 Suppl 3:S105-8.
    4 Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H Oxidase in cultured vascular cells. Diabetes, 2000,49:1939-45.
    5 Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000,404:787-90.
    6 Kanji MI, Toews ML, Carper WR. A kinetic study of glucose-6-phosphate dehydrogenase. J Biol Chem, 1976,251:2258-62.
    7 Kashiwagi A, Asahina T, Nishio Y, et al. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes, 1996,45 Suppl 3:S84-6.
    8 Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 2003,108:1912-6.
    9 Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes, 2002,51:2005-11.
    10 Nemoto S, Takeda K, Yu ZX, et al. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol, 2000,20:7311-8.
    11 Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995,270:296-9.
    12 Rutter J, Reick M, Wu LC, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science, 2001,293:510-4.
    13 Zheng L, Roeder RG, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 2003,114:255-66.
    14 Savitsky PA, Finkel T. Redox regulation of Cdc25C. J Biol Chem, 2002,277:20535-40.
    15 Kunisaki M, Bursell SE, Clermont AC, et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol, 1995,269:E239-46.
    16 Sharpe PC, Liu WH, Yue KK, et al. Glucose-induced oxidative stress in vascular contractile cells: comparison of aortic smooth muscle cells and retinal pericytes. Diabetes, 1998,47:801-9.
    17 Hounsom L, Corder R, Patel J, et al. Oxidative stress participates in the breakdown of neuronal phenotype in experimental diabetic neuropathy. Diabetologia, 2001,44:424-8.
    18 Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest, 2003,112:1049-57.
    19 Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans, 2001,29:345-50.
    20 Garcia-Ruiz C, Colell A, Morales A, et al. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol, 1995,48:825-34.
    21 Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol, 2002,64:765-70.
    22 Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J, 2000,14:1889-900.
    23 Chang TI, Horal M, Jain SK, et al. Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia, 2003,46:538-45.
    24 Sugimoto H, Shikata K, Makino H, et al. Increased gene expression of insulin-like growth factor-i receptor in experimental diabetic rat glomeruli. Nephron, 1996,72:648-53.
    25 Natarajan R, Bai W, Lanting L, et al. Effects of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells. Am J Physiol, 1997,273:H2224-31.
    26 Hagay ZJ, Weiss Y, Zusman I, et al. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol, 1995,173:1036-41.
    27 Forsberg H, Borg LA, Cagliero E, et al. Altered levels of scavenging enzymes in embryos subjected to a diabetic environment. Free Radic Res, 1996,24:451-9.
    28 Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes, 1997,46:1189-97.
    29 Sivan E, Reece EA, Wu YK, et al. Dietary vitamin E prophylaxis and diabetic embryopathy: morphologic and biochemical analysis. Am J Obstet Gynecol, 1996,175:793-9.
    30 Greene EL, Nelson BA, Robinson KA, et al. alpha-Lipoic acid prevents the development of glucose-induced insulin resistance in 3T3-L1 adipocytes and accelerates the decline in immunoreactive insulin during cell incubation. Metabolism, 2001,50:1063-9.
    31 Beckman JA, Goldfine AB, Gordon MB, et al. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation, 2001,103:1618-23.
    32 Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care, 1999,22:1245-51.
    33 Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet, 1996,347:781-6.
    34 Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care, 2002,25:1919-27.
    35 Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science, 1996,272:728-31.
    36 Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med, 2003,9:294-9.
    1 Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol, 1936,12:82-97.
    2 Mauer SM, Steffes MW, Ellis EN, et al. Structural-functional relationships in diabetic nephropathy. J Clin Invest, 1984,74:1143-55.
    3 Osterby R, Gall MA, Schmitz A, et al. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1993,36:1064-70.
    4 White KE, Bilous RW. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol, 2000,11:1667-73.
    5 Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med, 1998,339:1448-56.
    6 Ziyadeh FN, Goldfarb S. The renal tubulointerstitium in diabetes mellitus. Kidney Int, 1991,39:464-75.
    7 Zatz R, Meyer TW, Rennke HG, et al. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A, 1985,82:5963-7.
    8 Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, et al. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia, 1989,32:219-26.
    9 Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol, 2001,281:F579-96.
    10 Deen WM. What determines glomerular capillary permeability?. J Clin Invest, 2004,114:1412-4.
    11 Kefalides NA. Basement membrane research in diabetes mellitus. Coll Relat Res, 1981,1:295-9.
    12 Isogai S, Mogami K, Shiina N, et al. Initial ultrastructural changes in pore size and anionic sites of the glomerular basement membrane in streptozotocin-induced diabetic rats and their prevention by insulin treatment. Nephron, 1999,83:53-8.
    13 Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes, 2004,53:2101-9.
    14 Vernier RL, Steffes MW, Sisson-Ross S, et al. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int, 1992,41:1070-80.
    15 Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev, 2003,83:253-307.
    16 Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol, 2003,200:537-46.
    17 Kretzler M. Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc Res Tech, 2002,57:247-53.
    18 Kojima K, Kerjaschki D. Is podocyte shape controlled by the dystroglycan complex?. Nephrol Dial Transplant, 2002,17 Suppl 9:23-4.
    19 Tryggvason K. Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol, 1999,10:2440-5.
    20 Wartiovaara J, Ofverstedt LG, Khoshnoodi J, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest, 2004,114:1475-83.
    21 Tryggvason K, Ruotsalainen V, Wartiovaara J. Discovery of the congenital nephrotic syndrome gene discloses the structure of the mysterious molecular sieve of the kidney. Int J Dev Biol, 1999,43:445-51.
    22 Khoshnoodi J, Sigmundsson K, Ofverstedt LG, et al. Nephrin promotes cell-cell adhesion through homophilic interactions. Am J Pathol, 2003,163:2337-46.
    23 Saleem MA, Ni L, Witherden I, et al. Co-localization of nephrin, podocin, and the actin cytoskeleton: evidence for a role in podocyte foot process formation. Am J Pathol, 2002,161:1459-66.
    24 Huber TB, Hartleben B, Kim J, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol, 2003,23:4917-28.
    25 Foster RR, Saleem MA, Mathieson PW, et al. Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. Am J Physiol Renal Physiol, 2005,288:F48-57.
    26 Griffin SV, Petermann AT, Durvasula RV, et al. Podocyte proliferation and differentiation in glomerular disease: role of cell-cycle regulatory proteins. Nephrol Dial Transplant, 2003,18 Suppl 6:vi8-13.
    27 Weinstein T, Cameron R, Katz A, et al. Rat glomerular epithelial cells in culture express characteristics of parietal, not visceral, epithelium. J Am Soc Nephrol, 1992,3:1279-87.
    28 Mundel P, Reiser J, Zuniga Mejia Borja A, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res, 1997,236:248-58.
    29 Jat PS, Sharp PA. Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol Cell Biol, 1989,9:1672-81.
    30 Steffes MW, Leffert JD, Basgen JM, et al. Epithelia cell foot process width in intact and uninephrectomized diabetic and nondiabetic rats. Lab Invest, 1980,43:225-30.
    31 Ellis EN, Steffes MW, Chavers B, et al. Observations of glomerular epithelial cell structure in patients with type I diabetes mellitus. Kidney Int, 1987,32:736-41.
    32 Berg UB, Torbjornsdotter TB, Jaremko G, et al. Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia, 1998,41:1047-56.
    33 Steffes MW, Schmidt D, McCrery R, et al. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int, 2001,59:2104-13.
    34 Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest, 1997,99:342-8.
    35 White KE, Bilous RW, Marshall SM, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes, 2002,51:3083-9.
    36 Dalla Vestra M, Masiero A, Roiter AM, et al. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes, 2003,52:1031-5.
    37 Nelson RG, Meyer TW, Myers BD, et al. Clinical and pathological course of renal disease in non-insulin-dependent diabetes mellitus: the Pima Indian experience. Semin Nephrol, 1997,17:124-31.
    38 Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia, 1999,42:1341-4.
    39 White KE, Bilous RW. Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant, 2004,19:1437-40.
    40 Nakamura T, Ushiyama C, Suzuki S, et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant, 2000,15:1379-83.
    41 Smithies O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci U S A, 2003,100:4108-13.
    42 Patari A, Forsblom C, Havana M, et al. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes, 2003,52:2969-74.
    43 Doublier S, Salvidio G, Lupia E, et al. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes, 2003,52:1023-30.
    44 Koop K, Eikmans M, Baelde HJ, et al. Expression of podocyte-associated molecules in acquired human kidney diseases. J Am Soc Nephrol, 2003,14:2063-71.
    45 Benigni A, Gagliardini E, Tomasoni S, et al. Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int, 2004,65:2193-200.
    46 Langham RG, Kelly DJ, Cox AJ, et al. Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia, 2002,45:1572-6.
    47 Gassier N, Elger M, Kranzlin B, et al. Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Kidney Int, 2001,60:106-16.
    48 Coimbra TM, Janssen U, Grone HJ, et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int, 2000,57:167-82.
    49 Mifsud SA, Allen TJ, Bertram JF, et al. Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade. Diabetologia, 2001,44:878-82.
    50 Kelly DJ, Aaltonen P, Cox AJ, et al. Expression of the slit-diaphragm protein, nephrin, in experimental diabetic nephropathy: differing effects of anti-proteinuric therapies. Nephrol Dial Transplant, 2002,17:1327-32.
    51 Ortiz A, Ziyadeh FN, Neilson EG. Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J Investig Med, 1997,45:50-6.
    52 Murata I, Takemura G, Asano K, et al. Apoptotic cell loss following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes. Am J Nephrol, 2002,22:587-95.
    53 Kumar D, Zimpelmann J, Robertson S, et al. Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney. Nephron Exp Nephrol, 2004,96:e77-88.
    54 Kumar D, Robertson S, Burns KD. Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem, 2004,259:67-70.
    55 Ding G, Reddy K, Kapasi AA, et al. Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal Physiol, 2002,283:F173-80.
    56 Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest, 2001,108:807-16.
    57 Yoo J, Ghiassi M, Jirmanova L, et al. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem, 2003,278:43001-7.
    58 Schiffer M, Mundel P, Shaw AS, et al. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem, 2004,279:37004-12.
    59 Vogelmann SU, Nelson WJ, Myers BD, et al. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol, 2003,285:F40-8.
    60 Korhonen M, Ylanne J, Laitinen L, et al. Distribution of beta 1 and beta 3 integrins in human fetal and adult kidney. Lab Invest, 1990,62:616-25.
    61 Adler S. Characterization of glomerular epithelial cell matrix receptors. Am J Pathol, 1992,141:571-8.
    62 Chen HC, Chen CA, Guh JY, et al. Altering expression of alpha3betal integrin on podocytes of human and rats with diabetes. Life Sci, 2000,67:2345-53.
    63 Regoli M, Bendayan M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia, 1997,40:15-22.
    64 Kitsiou PV, Tzinia AK, Stetler-Stevenson WG, et al. Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am J Physiol Renal Physiol, 2003,284:F671-9.
    65 Kagami S, Border WA, Ruoslahti E, et al. Coordinated expression of beta 1 integrins and transforming growth factor-beta-induced matrix proteins in glomerulonephritis. Lab Invest, 1993,69:68-76.
    66 Kumar NM, Sigurdson SL, Sheppard D, et al. Differentia] modulation of integrin receptors and extracellular matrix laminin by transforming growth factor-beta 1 in rat alveolar epithelial cells. Exp Cell Res, 1995,221:385-94.
    67 Gross ML, El-Shakmak A, Szabo A, et al. ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia, 2003,46:856-68.
    68 Bonnet F, Cooper ME, Kawachi H, et al. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia, 2001,44:874-7.
    69 Davis BJ, Cao Z, de Gasparo M, et al. Disparate effects of angiotensin II antagonists and calcium channel blockers on albuminuria in experimental diabetes and hypertension: potential role of nephrin. J Hypertens, 2003,21:209-16.
    70 Toblli JE, DeRosa G, Cao G, et al. ACE inhibitor and angiotensin type I receptor antagonist in combination reduce renal damage in obese Zucker rats. Kidney Int, 2004,65:2343-59.
    71 Gloy J, Henger A, Fischer KG, et al. Angiotensin II depolarizes podocytes in the intact glomerulus of the Rat. J Clin Invest, 1997,99:2772-81.
    72 Hoffmann S, Podlich D, Hahnel B, et al. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol, 2004,15:1475-87.
    73 Abbate M, Zoja C, Morigi M, et al. Transforming growth factor-betal is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am J Pathol, 2002,161:2179-93.
    74 Durvasula RV, Petermann AT, Hiromura K, et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int, 2004,65:30-9.
    75 Huang XR, Chen WY, Truong LD, et al. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol, 2003,14:1738-47.
    76 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001,414:813-20.
    77 Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev, 2002,23:599-622.
    78 Vega-Warner V, Ransom RF, Vincent AM, et al. Induction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside. Kidney Int, 2004,66:1881-9.
    79 Kojima K, Matsui K, Nagase M. Protection of alpha(3) integrin-mediated podocyte shape by superoxide dismutase in the puromycin aminonucleoside nephrosis rat. Am J Kidney Dis, 2000,35:1175-85.
    80 Adler S. Structure-function relationships associated with extracellular matrix alterations in diabetic glomerulopathy. J Am Soc Nephrol, 1994,5:1165-72.
    81 Kanwar YS, Liu ZZ, Kashihara N, et al. Current status of the structural and functional basis of glomerular filtration and proteinuria. Semin Nephrol, 1991,11:390-413.
    82 Kashihara N, Watanabe Y, Makino H, et al. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species. Proc Natl Acad Sci U S A, 1992,89:6309-13.
    83 Brinkkoetter PT, Holtgrefe S, van der Woude FJ, et al. Angiotensin II type 1-receptor mediated changes in heparan sulfate proteoglycans in human SV40 transformed podocytes. J Am Soc Nephrol, 2004,15:33-40.
    84 Yard BA, Kahlert S, Engelleiter R, et al. Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol, 2001,9:214-22.
    85 Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J, 1999,13:9-22.
    86 de Vriese AS, Tilton RG, Elger M, et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol, 2001,12:993-1000.
    87 Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, et al. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes, 2002,51:3090-4.
    88 Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int, 2004,65:2003-17.
    89 Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes, 1999,48:2229-39.
    90 Wendt TM, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol, 2003,162:1123-37.
    91 Iglesias-de la Cruz MC, Ziyadeh FN, Isono M, et al. Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int, 2002,62:901-13.
    92 Chen S, Kasama Y, Lee JS, et al. Podocyte-derived vascular endothelial growth factor mediates the stimulation of alpha3(IV) collagen production by transforming growth factor-beta1 in mouse podocytes. Diabetes, 2004,53:2939-49.
    93 Rizkalla B, Forbes JM, Cooper ME, et al. Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol, 2003,14:3061-71.
    94 Kakizawa H, Itoh Y, Imamura S, et al. Possible role of VEGF in the progression of kidney disease in streptozotocin (STZ)-induced diabetic rats: effects of an ACE inhibitor and an angiotensin II receptor antagonist. Horm Metab Res, 2004,36:458-64.
    95 Freeburg PB, Robert B, St John PL, et al. Podocyte expression of hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J Am Soc Nephrol, 2003,14:927-38.
    96 Wolf G, Schroeder R, Stahl RA. Angiotensin II induces hypoxia-inducible factor-1 alpha in PC 12 cells through a posttranscriptional mechanism: role of AT2 receptors. Am J Nephrol, 2004,24:415-21.
    97 Cohen MP, Sharma K, Jin Y, et al. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest, 1995,95:2338-45.
    98 Cohen MP, Ziyadeh FN. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol, 1996,7:183-90.
    99 Foster RR, Hole R, Anderson K, et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. Am J Physiol Renal Physiol, 2003,284:F1263-73.
    100 Sung SH, Ziyadeh FN, Wang A, et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol, 2006,17:3093-104.
    101 Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol, 2003,23:532-43.
    102 Ziyadeh FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol, 2004,15 Suppl 1:S55-7.
    103 Wang SN, Hirschberg R. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Am J Physiol Renal Physiol, 2000,278:F554-60.
    104 Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int, 2000,57:1002-14.
    105 Hong SW, Isono M, Chen S, et al. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol, 2001,158:1653-63.
    106 Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A, 2000,97:8015-20.
    107 Kopp JB, Factor VM, Mozes M, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest, 1996,74:991-1003.
    108 Sharma R, Khanna A, Sharma M, et al. Transforming growth factor-betal increases albumin permeability of isolated rat glomeruli via hydroxyl radicals. Kidney Int, 2000,58:131-6.
    109 Benigni A, Zoja C, Corna D, et al. Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol, 2003,14:1816-24.
    110 Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun, 2003,305:1002-7.
    111 Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998,67:753-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700