多孔生物陶瓷支架载药控释体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,临床上棘手于对由创伤、感染和肿瘤切除后所造成的大节段骨缺损进行修复。自体骨虽因其具有优良的骨传导性、骨诱导性、成骨潜能和无免疫原性而被视为骨移植材料的金标准,但自体骨来源数量有限,且取骨手术存在至少10%的并发症,植入体内后,需要较长时间的爬行替代过程。而异体骨和异种骨具有抗原性,尤其在移植较大骨时,常因剧烈的免疫排斥反应导致移植失败,并且还有病原传播危险。近年来,人们开始用组织工程的原理和技术,将具有成骨潜能的细胞诱导分化、增殖并种植于支架材料上,形成工程化人工骨,促进大节段骨缺损的修复。
     然而,在体外构建大尺寸组织工程骨会因体外培养的细胞在植入体内后存活率较低、血管化问题和临床时限等问题而受到诸多限制。同时,临床上为更好地促进骨的愈合,还会给患者施以药物治疗。但由于骨组织在生物学上的如密度大、血流量低、渗透性差等特殊性,传统给药方式使药物很难按理想状态到达病变部位,从而疗效低。
     羟基磷灰石(HA)的组成和结构与自然骨的极为相似,有良好的生物相容性、骨传导性和骨诱导性,被广泛应用为骨的替代材料。HA能吸附化学药物小分子和蛋白质等生物大分子,所以将其作为药物载体被广为研究。但其作为药物载体存在有如表面易吸附杂质、载药率低和突释问题。
     我课题组前期创新地研究并制备了由多孔生物陶瓷球粒堆积的孔隙100%互通、孔隙大小、孔隙率可控且可与生物活性物质均匀混合的大尺寸(Φ1~1.5×3-4cm)多孔支架,以期修复超临界尺寸的骨缺损。本实验旨在在此支架上,负载可促骨生长、促血管化的生物活性物质,使其成为缓释体系,期在修复骨缺损中持续有效地释放活性物质,促进骨生长及愈合。
     本实验用溶胶-凝胶法和W/O乳化成球技术制备了HA多孔球形颗粒,并对球粒的孔隙结构进行了表征;考察了丹酚酸B (Sal B)对成骨细胞增殖和分化的影响;将HA球粒作为药物载体,利用其吸附性将Sal B负载其上,同时考察分别用几种不同浓度的PLA和几种不同浓度的壳聚糖对载药球粒进行包裹后药物的释放情况,选择出较佳的包裹物质及其浓度,成功制得壳聚糖包裹的Sal B缓释HA球粒,考察该缓释体系对成骨细胞活性的影响。本实验获得的结论如下:
     1.采用溶胶/凝胶法和W/O乳化成球技术制备的HA球粒具有组织生长需要的微观孔结构。
     2. Sal B能有效地促进成骨细胞增殖、分化及细胞外基质矿化,提高成骨细胞的总代谢活性和碱性磷酸酶的表达从而促进成骨。当Sal B的质量浓度≤160μg/mL时对成骨细胞的增殖和分化有明显的促进作用,且质量浓度越高效果越明显;但当Sal B的质量浓度高于160μg/mL时,便对成骨细胞产生毒性,导致其凋亡。由此得出,Sal B可作为促骨生长和愈合的生物活性物质应用于骨缺损的修复,且最佳药效浓度为160μg/mL。
     3.由于PLA的疏水性,其所形成的膜不能很好的附着在HA球粒表面,易脱落,所以几种不同浓度的PLA对载药球粒的包裹效果都不好。而壳聚糖亲水性和成膜性好,且具有良好的细胞相容性,最终选用2%的壳聚糖溶液包裹制得载Sal B的缓释HA球粒。
     4.壳聚糖包裹Sal B缓释HA球粒可在体外长时间内释放具有生物活性的Sal B,维持有效促进成骨细胞增殖的浓度并保持成骨细胞的生物学活性,较长时间内促进成骨细胞分裂和增殖,能满足骨创伤治疗中所需要的持续性促进骨形成的能力,为修复大截段骨缺损提供了新的途径。
In clinic,it has been difficult to repair the large critical size defects arising from trauma,infection,tumor resection.Autologous bone is still the gold standard in bone reconstructive surgery because of its osteoconductivity, osteoinductivity,osteogenic potential and lack of immunogenicity as well.However,this standard auto graft has its own share of problems like inadequate amount,at least10%morbidity and potential complications in bone surgery.And it will take a long time to creep substitution. The bone allograft and xenograft has antigenicity, especially in large bone graft, often fail in the graft due to severe immune rejection, and has danger in the spread of pathogens as well. Therefore, in recent years with the emergence of tissue engineering, people began to use the principles and techniques of tissue engineering to plant the cells which have the osteogenic potential in the scaffold after differentiation, proliferation. And at last the engineered artificial bone has been made and can promote a large segmental bone defect repair. In cultivating tissue engineered bone in vitro, specially in large tissue engineered bone, the currently used bone substitutes still face many unsolved problems including incomplete formation of new bone tissue, failure of neovascularization, and slow growth of the capillary network. Meanwhile, drug is ofen used for better bone healing in clinical.However, due to bone tissue, such as in the biological density, low blood flow, permeability and poor specificity, the traditional methods of drug administration is difficult to arrive at the ideal site of the lesion, and thus its efficacy is low.
     Hydroxyapatite (HA) has very similar composition and structure to natural bone and with good biocompatibility, bone osteoconductivity and osteoinductivity.It has been widely used as bone substitute materials. HA can absorb chemical molecules and biological macromolecules such as proteins, so as a drug carrier has been widely studied. But it has problems with adsorption of impurities, low drug loading and burst release.
     A novel scaffold with large size and controlled porous structure has been designed and prepared for the aim of massive tissue engineered bone in previous experiment of our group. It was composed of HA spherules and porous HA tube.HA spherules can easily compound with biological active substance before being filled into the HA tubes. This study was designed to load the biological active substances promoting bone growth, neovasculariztion on the scaffold and get a new drug delivery system.This system can release the biological active substances in a sustained and effective manner in order to promote bone growth and healing in the repair of bone defects.
     HA spherules were prepared by the method of sol-gel and water/oil emulsification technology and the porous structures were characterized. Sal B,the major water-soluble components of the traditional Chinese medicine radix salviae miltiorrhizae, was investigated on osteoblast proliferation and differentiation and was loaded on the HA spherules.Then the drug-loaded spherules were wrapped with several different concentrations of PLA and several different concentrations of chitosan. The case of drug release and the best package substance with the right concentration were investigated. Finally,the influence of Sal B-loaded HA sustained-release spherules on the activity of osteoblasts cultured in vitro was studied.The main conclusions were obtained as follows:
     1. The HA spherules,prepared by the method of sol-gel and water/oil emulsification technology,possessed the porous structures can meet the organization growth.
     2. Sal B has been proven to be effective in promoting osteoblast proliferation and differentiation. SalB has the potential toameliorate bone healing by stimulating both the total metabolic activity and ALP activity of osteoblastic cells. It was suggested that Sal B at a mass concentration=160μg/mL significantly contributed to osteoblast proliferation. Moreover, the higher mass concentration indicated more obvious proliferation. However, Sal B at a mass concentration>160μg/mL had toxic effect on ostaoblasts. It showed that Sal B can promote bone growth and healing as the biological active substances used in the repair of bone defects, and the best effective concentration was160μg/mL.
     3. The results showed that PLA can form film but can not be attached to surface of HA sperules due to its hydrophobicity.So it was easy to come off and wrappd poor.However,it were explored that chitosan has good hydrophilicity,good film-formed and good cell compatibility,which was used to wrap on the surface of the HA spherules to get the Sal B-loaded HA sustained release spherules and2%concentration percentage was choosen in this study.
     4.The chitosan-coated Sal B-loaded HA sustained-release spherules prepared in this study can release Sal-B in vitro for a long period, effectively promoted osteoblast proliferation, maintained biological activity of osteoblasts, contributed to osteoblast differentiation and proliferation, increased utilization rate of drug in local region, decreased adverse reaction, and persistently contributed to bone formation. It is helpful for construction and repair of bioceramic scaffolds and is of high clinical value in treatment of large segmental bone defects.
引文
[1]Ackerman LV, Spjut HJ, Abell MR. Bones and Joints (Monographs in Pathology). Baltimore: Williams and Wilkins; 1976.
    [2]Weiner S, Wagner HD. Lamellar Bone: Structure-Function Relations. Journal of Structural Biology, 1999,126 (3):241-255.
    [3]Bauer TW, Muschler, George F. Bone Graft Materials:An Overview of the Basic Science. Clinical Orthopaedics & Related Research.2000,371(1):10-27.
    [4]Sehmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulo facial non unions.Clin Orthop Relat Res, 1986,(205):299-308.
    [5]Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med, 2008,19 (6):2367-2376.
    [6]黄晖,杨志,骨形态发生蛋白在骨组织工程中的临床应用.中国组织工程研究与临床康复,2007,11(2):340-343.
    [7]Nair MB, Suresh BS, Varma HK, et al. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater,2008,4(1):173-181.
    [8]Healy KE, Guldberg RE. Bone tissue engineering. J Mus Neur Int,2007,7(4):328-330.
    [9]Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering.Trends in Biotechnology,1998,16 (5):224-230.
    [10]Tsuang YH, Lin FH. In vitro cell behavior of osteoblasts on pyrost bone substitute. Anat Rec,1997,247(2):164-169.
    [11]Chen R, Hunt JA. Biomimetic materials processing for tissue engineering processes. Mater Chem, 2007,17(7):3974-3979.
    [12]Hao W, Hu YY, Wei YY, et al. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Cells Tissues Organs, 2008,187 (2):89-102.
    [13]Di Cesare PE, Frenkel SR, Carlson CS, et al. Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. J Orthop Res, 2006, 24(5):1118-1127.
    [14]Mizuno M, Shindo M. Kobayashi D. et al. Osteogenesis by bone marrow stromal cells aintained on type I colllgen matrix gels in vivo. Bone,1997, (2):101-107.
    [15]Shi DH, Cai DZ, Zhou CR, et al. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering. Chin Med J,2005,118(17):1436-1443.
    [16]程文俊,金丹,裴国献等.壳聚糖-β-磷酸三钙作为可注射组织工程骨支架材料的可行性研究。解放军医学杂志,2007,32(2):141-143.
    [17]杨志明主编.组织工程基础与临床.四川科学技术出版社,2000,18.
    [18]张聪.骨诱导磷酸钙陶瓷和体内骨组织工程研究.四川大学博士论文,2001:7-19.
    [19]del Real RP, Ooms E, Wolke JG, et al. In vivo bone response to porous calcium phosphate cement. J biomed Mater Res A,2003,65(1):30-36.
    [20]孙文晓,张海港,韦卓等.骨修复材料的研究应用现状与展望[J].生物骨科材料与临床研究,2009,6(3):35-40.
    [21]Yu G, Fan Y. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. J Biomater Sci Polym Ed,2008,19(1):87-98.
    [22]陈鹏,毛天球,刘冰等.纳米羟基磷灰石复合胶原材料负载骨髓基质干细胞修复颅骨极限缺损的实验研究.临床口腔医学杂志,2005,21(12):730-732.
    [23]Kesenci K, Fambri L, Migliaresi C, Piskin E, et al.Preparation and properties of poly(L-lactide)/ hydroxyapatite compositesJ.Journal of Biomaterials Science-Polymer Edition,2000,11 (6):317-632.
    [24]Agrawal C,Achanasion KA.Technique to control PH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res,1997,38(2):105-114.
    [25]李静,曹谊林,崔磊.骨组织工程学研究进展及展望.国外医学·骨科学分册.2001,22(1):5-9.
    [26]Zhu S J,Choi B H,Hu J Y,et al.A Comparative quantitative histological analysis of tissue-engineered bone using bone marrow,messenchmal stem cells,alveolar bone cells and periosteal cells.Oral Surg Oral Med Oral radiol Endod,2006,101:164-169.
    [27]Koshihara Y,Ho rano M,Kaw amura M,et al.Mineralization ability of cultured human osteoblast-like periosteal cells does not decline with aging.J Geronto,1991,46:201-214.
    [28]Baker AS,Greenham LW.Release of gentamicin from aerylic bone cement elution and diffusion stud-ier.J Bone Joint Surg Am,1988,70 (10):1551-1557.
    [29]Deramond H,Wrig ht NT,Belkoff SM.Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone,1999,25 (2 Suppl):17-21.
    [30]Matsumoto A,Ito YSaito A,et al.(Jpn)Weekly Dentistry,1994,36(1):149-150.
    [31]Angele J,Abke J,Kujat R,et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials,2004,25(14):2831-2841.
    [32]Murata M,Huang BZ,Shibata T,et al.Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone.Int J Oral Maxillofac Surg,1999,28(3):232-237.
    [33]Isobe M,Yamaziki Y, Mori M,et al.J Oral Maxillofac Surg, 1999, 57(6):695-699.
    [34]Meinel L,Zoidis E,Zapf J,et al.Bone,2003,33(4):660-672.
    [35]Niemela T.Effect of β-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-l,d-lactide[J].Polymer Degradation and Stability,2005,11:235-242.
    [36]伍卫刚,郑启新.骨内植入式药物缓释系统载体材料研究现状及发展.国际生物医学工程杂志,2007,30(6):372-375.
    [37]Buranapanitkit B, Srinilta V,Ingviga N,et al. The efficacy of a hydroxyapatite composite as a biode-gradable antibiotic delivery system.Clin Orthop Relat Res,2004, (424):244-252.
    [38]Kim HW, Knowles JC,Li LH, et al. Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite. J Biomed Mater Res A, 2005, 72(3):258-268.
    [39]Evis Z,Sato M,Webster TJ,et al.Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites[J].J Biomed Mater Res A, 2006, 78(3):500-507.
    [40]Ohura K,Hamanishi C, Tanaka S,et al.J Biomed Mater Res,1999,44(2):168-175.
    [41]Kamegai A,Shimamura N,Naitou K,et al.Bone formation under the influence of bone morpho-genetic protein-seffsetting apatite cement composite as a delivery system.Biomed Mater Eng, 1994,4(4):291-307.
    [42]Qu SX, Lu X, Leng Y. TEM Study of Bone and Scaffold Materials. Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, 2007,73-392.
    [43]Furukawa T, Matsusue Y, Yasunaga T. et al. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide)composite rods for internal fixation of bone fracturesJ..Biomaterials, 2000,21(9):889-898.
    [44]Yeong WY,Chua CK,Leong KF,et al.Rapid prototyping in tissue engineering:Challenges and poten-tial.Trends in Biotechnology, 2004, 22(12):643-650.
    [45]Seitz H,Rieder W,Irsen S,et al.Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.J Biomed Mater Res B Appl Biomater, 2005,74(2):782-788.
    [46]Carano RA, Filvaroff EH, Angiogenesis and bone repair, Drug Discov.Today,2003,8:980-989.
    [47]El-Ghannam A.Bone reconstruction:from bioceramics to tissue engineering, Expert Rev. Med. Devices,2005,2(1):87-101.
    [48]Hsiong SX, Mooney DJ. Regeneration of vascularized bone, Periodontol,2000,41 (1) 109-122.
    [49]Schmidmaier G, Lucke M, Schwabe P, Raschke M, Haas NP, Wildemann B, Collective review: bioactive implants coated with poly(D,L-lactide) and growth factors IGF-I, TGF-betal, or BMP-2 for stimulation of fracture healing J. Long-Term Eff. Med. Implants,2006,16:61-69.
    [50]Street J, Bao M, deGuzman L, Bunting S, Peale Jr FV, et al.Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Nati. Acad. Sci.,2002,99(15): 9656-9661.
    [51]Urist MR. Bone:formation by autoinduction, Science,1965,150:893-899.
    [52]Wozney JM, Rosen V, Celeste A.J, Mitsock LM, Whitters MJ, et al.Novel regulators of bone formation:molecular clones and activities, Science,1988,242:1528-1534.
    [53]Ehrhart NP, Hong L, Morgan A.L, Eurell JA, Jamison RD, Effect of transforming growth factor-betal on bone regeneration in critical-sized bone defects after irradiation of host tissues. Am. J. Vet. Res.,2005,66:1039-1045.
    [54]Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2.Adv. Drug Deliv. Rev.,2003,55:613-1629.
    [55]Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins.Adv. Drug Deliv. Rev.,2000,43:65-92.
    [56]Chen D, Zhao M, Mundy GR.Bone morphogenetic proteins.Growth Factors,2004,22:233-241.
    [57]Jones A.L BR, Bosse MJ, Mirza SK, Lyon TR, et al.BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group, Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects.A randomized, controlled trial. J. Bone Joint Surg,2006,88:1431-1441.
    [58]Chen FM, Zhao YM, Wu H, Deng ZH, Wang QT, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres.J. Control Release,2006,114:209-222.
    [59]Matsuda N, Lin WL, Kumar NM, Cho MI, Genco RJ. Mitogenic, chemotactic, and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. J. Periodontol,1992,63:515-525.
    [60]Werner H, Katz J. The emerging role of the insulin-like growth factors in oral biology. J. Dent. Res.,2004,83:832-836.
    [61]Kato T, Kawaguchi H, Hanada K, Aoyama I, Hiyama Y, Nakamura T, Kuzutani K, Tamura M, Kurokawa T, Nakamura K, Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res.,1998,16:654-659.
    [62]Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE, Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone,2002,30:472-477.
    [63]Orlandini M, Spreafico A., Bardelli M, Rocchigiani M, Salameh A, Nucciotti S, Capperucci C, Frediani B, Oliviero S.Vascular endothelial growth factor-D activates VEGFR-3 expressed in osteoblasts inducing their differentiation. J. Biol. Chem., 2006, 281:17961-17967.
    [64]陈旭,杨志明,解慧琪,等.WO-1对成骨细胞的生物学效应研究.中国修复重建外科杂志,2005,19(10):822—825.
    [65]卢新政,张晓友等.人参皂苷Rg1对培养猪骨髓基质细胞增殖的影响.中国药理学通报,2003,19(3):353
    [66]王和鸣,王力等.巴戟天对骨髓基质细胞向成骨细胞方向分化影响的实验研究.福建中医学院院报,14(3):16
    [67]徐展望.中药调控种子细胞复合生物材料修复骨缺损的实验研究.湖北中医学院博士论文,2009,28-31.
    [68]范焕琼,崔燎.丹酚酸B对体外培养新生大鼠颅骨成骨细胞的影响[J].中国药理学通报,2008,24(7):978-979.
    [69]Liu YR, Qu SX, Maitz MF, et al. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. J Ethnopharmacology, 2007, 111(3):573-583.
    [70]Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med, 2008, 19(6):2367-2376.
    [71]Yamasaki H.Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs.Jpan J Oral Biol 1990;32:190-92 X.Zhang,J.Zhou,W.Chen,C.Wu,P.Zhou J,A calciuphosphate bioceramics with osteoinduction.Trans Fourth World Biomaterials Congress,April 4-28,1992,Berlin, Germany
    [72]Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials, 2007,8:116-123.
    [73]Le Huec JC, Schaeverbeke T, Clement D, Faber J. A. Le Rebeller,lnfluence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress.Biomaterials,1995,16: 113-118.
    [74]Hulbert SF, Morisson SJ, Klawitter JJ. Tissue reaction to three ceramics of porous and non-Porous structures.Journal of Biomedical Materials Research,1972,6:347-374.
    [75]Chan g BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, W.Park K. Osteoconduction at porous hydroxyapatite with various pore configurations.Biomaterials, 2000, 21:1291-1298.
    [76]Flatley TJ, Lynch KL, Benson M.Tissue response to implants of calcium phosphate ceramics in the rabbit spine.Clinical Orthopedic,1983,179:246-252.
    [77]Hench LL, Wilson J. An Introduction to Bioceramics. World Scientific Publishing,1993.
    [78]Sepulveda P, Binner JG, Rogero SO, Higa OZ, Bressiani JC.Production of porous hydroxyl-apatite by gel-casting of foams and cytotoxic evaluation, Journal of BiomedicalMaterials Research, 2000,50:27-34.
    [79]Rodri guez-Lorenzo LM, Vallet-Regi M, Ferreira JMF. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method:starch consolidation. Journal of Biomedical Materials Research, 2002,60:232-240.
    [80]Carutenuto G, Spagnuolo G, Ambrosio L, Nicolais L. Macroporous hydroxyapatite as alloplastic material for dental applications, Journal of Materials Science:Materials in Medicine,1999,10 (10/11):671-676.
    [81]Rusnah M, Andanastuti M, Idris B. The influence of sintering temperature on the porosity and strength of porous hydroxyapatite ceramics, The Medical Journal of Malaysia, 2004, 59 (Suppl. B):158-159.
    [82]Fang Y, Agarwal DK, Roy DM, Roy R. Fabrication of porous hydroxyapatite ceramics by microwave processing, Journal of Materials Research,1991,7:490.
    [83]Rodri guez-Lorenzo LM, Ferreira JMF. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems,.Materials Research Bulletin,2004,39:83-91.
    [84]Ma J, Wang C, Peng KW. Electrophoretic deposition of porous hydroxyapatite scaffold, Biomate-Rials,2003,24: 3505-3510.
    [85]Tian J, Tian J. Preparation of porous hydroxyapatite.Joumal of Materials Science,2001,36: 3061-3066.
    [86]Sopyan I, Kaur J, Singh R. Hydroxyapatite porous bodies via polymeric sponge method using commercial powder.Proceedings of Conference on Advanced Materials,2005,505-513.
    [87]Palazzo B, Sidoti MC, Roveri N. Tampieri A., Sandri M, Bertolazzi L.Controlled drug delivery from porous hydroxyapatite grafts:an experimental and theoretical approach.Materials Science and Engineering C,2005,25:207-2,13.
    [88]Fabbri M, Celotti GC. A. Ravaglioli,Hydroxyapatite-based porous aggregates:physico-chemical nature, structure, texture and architecture.Biomaterials,1995,16:225-228.
    [80]Tampieri A., Celotti G, Sprio S, Mingazzini C. Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability.Materials Chemistry and Physics,2000,64:54-61.
    [90]黄晶.生物材料表面生物功能化及可控微结构陶瓷支架的研究.西南交通大学硕士论文,2011:25-26.
    [91]张珏,陈晓禾,李莉,等.盐酸四环素缓释微球对大鼠成骨细胞活性的影响.华西药学杂志,2010,25(1):1-3.
    [92]蓝琳,智伟,黄晶,等.丹酚酸B缓释羟基磷灰石颗粒与成骨细胞的活性.中国组织工程研究与临床康复,2010,14(51):9501-9506。
    [93]郭来阳.孔隙结构互补的磷灰石多孔支架的研究.西南交通大学硕士论文,2010:28.
    [94]Wang FM,Chen JH,Li L,et al.Shizhen Guoyi Guoyao,2005,16(6):476-478.
    [95]Tang MK, Ren DC, Zhang JT, et al. Effect of salvianolic acids from Radix Salviae miltiorrhizae on regional cerebral blood flow and platelet aggregation in rats. Phytomedicine,2002,9 (5):405-409.
    [96]Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin, 2000, 21(5):463-466.
    [97]Lay IS, Chiu JH, Shiao MS, et al. Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line. Planta Med,2003,69(1):26-32.
    [98]Zhao JF, Liu CH, Hu YY, et al. Effect of salvianolic acid B on Smad3 expression in hepatic stellate cells.Hepatobiliary Pancreat Dis Int, 2004, 3(1):102-105.
    [99]Guo GQ,Li B,Wang YY,et al.Zhongguo Kexue Cji:Shengming Kexue, 2009, 39(8):793-802.
    [100]范焕琼,崔燎.丹酚酸B对体外培养新生大鼠颅骨成骨细胞的影响.中国药理学通报,2008,24(7):978-979.
    [101]Kirker-Heas CA.Potential applications and delivery strategies for bone morphogenetic proteins[J].Adv Drug Deliv,2000,43(1):65-92.
    [102]Di Silvio L,Bonfield W. Biodegradable drug delivery system for the treatment ofbone infection and repair. J Mater Sci:Mater Med,1999,10:653-8.
    [103]Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K. Calcium hydroxyapatite ceramic used as a deli-very system for antibiotics.J Bone Jt Surg,1992,74-B:600-4.
    [104]Gittens SA, Uludag H. Growthfactor delivery for bone tissue engineering.J Drug Target,2001,9: 407-29.
    [105]Tabata Y. Necessity of drug delivery systems to tissue engineering. Biomaterials and drug delivery toward the new millendium,2000, 531-534.
    [106]Saltzman MW,Baldwin SP. Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev,1998,33:71-86.
    [107]Sohier J, Haan RE, de Groot K,Bezemer JM.A novel method to obtain protem release from porous polymer scaffolds:emulsion coating. J Control Rel,2003,87:57-68.
    [108]Benoit MA, Baras B, Gillard J. Preparation and characterization of protein-loaded poly(e-caprolac-tone)microparticles for oral vaccine delivery. Int J Pharm, 1999,184:73-84.
    [109]sivakumarM,Rao KP. Preparation,characterization and in vitro release of gentamicin from coral-line hydroxyapatite-gelatin composite microspheres. Biomaterials, 2002,23:3175-3181.
    [110]Komlev VS, Barinov SM, Koplik EV. A method to fabricate porous spherical hydroxyapatite granu-les intended for time-controlled drug release. Biomaterials,2002,23:3449-54.
    [111]Krajewski A, Ravaglioli A, Roncari E, Pinsco P, Montanari L.Porous ceramic bodies for drug deliv-ery. J Mater Sci: Mater Med,2000, 11:763-72.
    [112]Bajpai PK, Benghuzzi HA. Ceramic systems for long-term delivery of chemical and biologicals. J Biomed Mater Res, 1988, 22:1245-51.
    [113]HenchLL,Wilson J. Surface-active biomaterials. Science,1984,226:630-636.
    [114]Kim HW, Jonathan C. Knowles, Kim H E. Hydroxyapatite/poly(e-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.Biomaterials, 2004, 25(7):1279-1287
    [115]Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics.Clin Orthop,1981,157:259-78.
    [116]Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone-graft substitute in tibial plateau fractures. Clin Orthop, 1989,240:53-62
    [117]Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion,proliferation, and matrix deposition. Tissue Eng,2001,7:557-572.
    [118]Bhaskar SN, Brady JM, Getter L, Grower MF, Driskell T.Biodegradable ceramic implant in bone. Oral Surg,1971,32:336-346.
    [119]Kim HW, Lee SY, Bae CJ, NohYJ, Kim HE, Kim HM, Ko JS.Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials,2003,24:3277-3284.
    [120]Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD,Stelling FH. Potential of ceramic material as permanently implantable skeletal prostheses. J Biomed Mater Res,1970, 4:433-456.
    [121]Holmes R, Bucholz R, Mooney V. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects, a histometric study. J Bone Jt Surg,1986, 68A:904.
    [122]de Groot K, de Putter C, Smitt P, Driessen A. Mechanical failure of artificial teethmade of dense calciumhydroxyapatite. SciCeram,1981,11:433-437.
    [123]Kim HW, NohYJ, KohYH, Kim HE, Kim HM. Effect of CaF2on densification and properties of hydroxyapatite-zirconia composites for biomedical applications. Biomaterials,2002,23:4113-21.
    [124]Shinto Y, Uchida A, Korkusuz F,et al. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Jt Surg Br, 1992, 74(4):600-604.
    [125]Gittens SA, Uludag H.Growth factor delivery for bone tissue engineering. J. Drug Target, 2001, 9(6):407-429.
    [126]Tabata Y. Necessity of drug delivery systems to tissue engineering. In:Park KD,editor. Biomaterials and drug delivery toward the new millennium. Seoul:Han Rim Won Publisher,2000,531-534.
    [127]Keishiro T, Hidehiko A, Takatomo N, et al. Hydroxyapatite particles as drug carriers for proteins. Colloids and Surfaces B Biointerfaces,2010,76(1):226-235.
    [128]Alborzi A, Mac K, Glackin CA, et al. Endochondral and intramembranous fetal bone development: osteoblastic cell proliferation and expression of alkaline phosphatasc, intwist, and histone H4.J Craniofac Gent Dev Biol,1996,6(2):94-106.
    [129]段智霞,郑启新,郭晓东,等.骨形成蛋白2活性多肽体外定向诱导骨髓间充质干细胞向成骨方向分化的剂量依赖性研究[J].中国修复重建外科杂志,2007,21(10):1118-1121.
    [130]中华人民共和国科学技术部.关于善待实验动物的指导性意见.2006-09-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700