腺病毒介导的骨形态蛋白-9基因转染脂肪干细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.通过对兔脂肪干细胞的分离、培养及鉴定,获得纯化的兔脂肪干细胞(ADSCs);建立一种稳定、高效的兔ADSCs的培养方法。
     2.寻求一种BMP-9基因转染靶细胞ADSCs的稳定的实验方法;证实BMP-9基因转染后的ADSCs可向成骨细胞分化,以获得可用于骨组织工程的基因修饰的种子细胞。
     方法:
     1.ADSCs的分离、培养及鉴定:采用I型胶原酶消化法获取原代ADSCs。扩增和纯化ADSCs后,显微镜下观察兔ADSCs形态,MTT、细胞计数分析ADSCs的体外增殖情况,免疫组化检测ADSCs表面抗原CD29、CD44的表达。
     2.BMP-9转染ADSCs的实验:载BMP-9的腺病毒直接感染P3代的ADSCs。荧光显微镜观察转染效果,流式细胞仪测定转染率,RT-PCR检测转染后ADSCs内BMP-9 mRNA的表达。碱性磷酸酶活性、碱性磷酸酶和茜素红钙结节染色检测转染后ADSCs的成骨活性。
     结果:
     1.ADSCs的分离、培养及鉴定:(1)分离、培养的原代ADSCs细胞形态呈梭形或多角状,类似成纤维细胞,团簇状生长,在10 d左右达到90%融合。(2)经过传代、纯化的ADSCs呈成纤维细胞样,分布均匀、大小一致、细胞紧密排列,漩涡状生长,5 d左右达90%融合,显示出活跃的增殖能力。(3)生长曲线显示:1~3 d为传代培养的滞留期,4~6 d为对数增殖期,7~9 d为生长抑制期,此时细胞生长速度变慢。(4)累计倍增曲线显示:群体倍增时间大约为55 h,P3代细胞增殖速度最快,P8代以后的细胞增殖速度减慢,细胞出现衰老征象。(5)免疫组化染色显示:ADSCs细胞内表面抗原CD29、CD44均阳性表达。
     2.BMP-9转染ADSCs的实验:(1)BMP-9基因腺病毒载体可成功转染ADSCs。(2)腺病毒介导的BMP-9基因转染ADSCs后24 h即有荧光表达,并随时间延长荧光强度逐渐增强,转染3d转染效率达到80%以上。(3)转染后ADSCs停滞期略延长,数量轻度下降,倍增时间稍延长,但不影响细胞增殖。(4) RT-PCR检测结果显示,各转染组细胞内hBMP-9的mRNA持续阳性表达,未转染组未见阳性条带。(5)ADSCs转染后,ALP染色及茜素红钙结节染色为阳性,细胞内ALP活性呈增长趋势,转染组显著高于未转染组。
     结论:
     1.从兔脂肪组织中分离、培养、纯化的ADSCs具有明显的干细胞特征,体外生长旺盛,扩增迅速,长期传代仍能保持稳定的增殖能力,为BMP-9转染ADSCs诱导成骨的实验奠定了基础。
     2.腺病毒介导的BMP-9基因可以安全、有效地转染ADSCs,其转染的BMP-9基因可获得较高水平的表达,且具有明显的诱导ADSCs向成骨细胞转化的作用;而携带人全长BMP-9基因的腺病毒转染ADSCs可作为研究BMP-9诱导ADSCs成骨作用实验的可靠方法。
Objective:
     1.To obtain purification ADSCs and set up a ADSCs cultural method stably and high efficiently.
     2.To explore an empirical method about ADSCs transfected with BMP-9, confirm ADSCs with BMP-9 can differentiate to the osteoblast and gain gene-modified seed cells which can be used for bone tissue engineering.
     Methods:
     1.Separation、cultivation and identification of ADSCs: Obtained primary ADSCs was with the I-collagenase digestion. Following amplification and purification of ADSCs, morphology was observed by microscope, proliferation in vitro was detected by MTT and cell count, and expression of surface antigen CD29 and CD44 was detected by immunohistochemistry.
     2.Transfection into ADSCs with BMP-9: adenovirus containing BMP-9 infected ADSCs in P3 period, effect of infection was observed by fluorescence microscope and infection efficiency was determined by flow cytometry. Expression of BMP-9 mRNA in ADSCs infected was detected by RT-PCR. Osteoblastic activity of ADSCs infected was detected by semi-quantity kit of alkaline phosphatase, alkaline phosphatase and alizarin red staining of calcium nodules.
     Results:
     1.Separation、cultivation and identification of ADSCs(:1)Morphology of primary ADSCs were spindle-shaped or angular, similar to fibroblasts, cluster-like growth. At the time of 10 days 90% cells were fusions.(2)ADSCs with passage and purification were fibroblast-like, distribution、size, consistent with cells close and swirl-like growth. At the time of 5 days 90% cells were fusions, which showing activity proliferation.(3)Growth curve showed: day 1 to 3 was lag phase of serial subcultivation, day 4 to 6 was logarithmic growth phase, and day 7 to 9 was growth inhibiting phase, in which cells growth slowed down.(4)Cumulative multiplication curve showed: population doubling time was about 55 hours, proliferation rate of cells in P3 period was fastest of all, and after P8 period, proliferation rate of cells slowed down and cells showed aging sign.(5)Immunohistochemistry showed: surface antigen CD29 and CD44 of ADSCs were both positive.
     2.Transfection into ADSCs with BMP-9:(1)Adenovirus containing BMP-9 could infect ADSCs successfully.(2)Fluorescent was observed at the time of 24h and the fluorescence intensity over time gradually after ADSCs infected by adenovirus containing BMP-9. After 3 days, infect rate could reach to more than 80%(.3)Lag phase of ADSCs with adenovirus was slightly extended, quantity reduced slightly and doubling time was slightly extended, which didn’t affect cell proliferation.(4)BMP-9 mRNA in cells with adenovirus was positive and the expression was sustained. There was no expression in cells without adenovirus.(5)Alkaline phosphatase and alizarin red staining of calcium nodules were positive in ADSCs infected. The activity of alkaline phosphatase was growing trend and infected group was significantly higher than non-infected.
     Conclusions:
     1.ADSCs, which were separated from adipose tissue of rabbit, cultivated and purified, had obvious characteristics of stem cells. The characteristics were high growth in vitro, amplified rapidly and maintained stable reproductive activity after passage of long-term. It will offer basis for ADSCs infected with BMP-9 osteoinduction further.
     2.Adenovirus containing BMP-9 could be infected ADSCs safely and efficiently. BMP-9 gene infected had higher expression and a significant role in osteogenesis. Therefore, ADSCs infected with adenovirus containing the length of human BMP-9 could be a reliable method to research on BMP-9 inducting ADSCs osteogenesis.
引文
[1] Helneken FG,Skalka R.Tisues Engneiering.A Brief Ovevriew[J].Journal of Biomechnaical Engineering. 1991,11(3):7-11.
    [2] Dragoo JL, Carlson G, McCormick F. Healing full-thickness cartilage defects usingadipose-derived stem cells.Tissue Eng. 2007 Jul; 13(7):1615-21.
    [3] Patrick Bolt, Neil Clerk, Hue H, et al. BMP14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury. Journal of Bone and Joint Surgery. 2007,89(3):1315-1320.
    [4] Quan Kang, Michael H. Sun, Hongwei Cheng,et al.Characterization of the distinct orthotopic bone forming activity of 14 BMPs using recombinant adenovirus- mediated gene delivery.Gene Therapy.2004,11:1312-1320.
    [5] Crane GM, Lshaug SL, Mikos AG, et al. Bone Tiss Engineening. Nature Medicine.1995, 1(12):1322-1326.
    [6] Blun JS, Barry MA, Mikos AG. Bone regeneration through transplantation of genetically modified cells [J]. Clin Plast Surg.2003, 30(4):611-20.
    [7] Pittenger MF, Mackay AM, Beck SC, et al. Muhilinage po tential of adult human mesenchymal stem cells[J]. Science.1999, 284:143-147.
    [8] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implication for cell-based therapies[J]. Tissue Engeering.2001, 7:211-228.
    [9] Wickham MQ,Erickson GR,Gimble JM,et a1.Multipotent stromal cells derived from the infrapatellar fat pad ofthe knee[J].Clin Orthop Relat Res. 2003, 412:196-212.
    [10] Rangappa S,Fen C,Lee EH,et a1.Transformation of adult mesenchymal stem ce-lls isolated from the fatty tissue into cardiomyocytes[J].Ann Thorac Surg. 2003, 75:775-779.
    [11] Saffbrd KM,Safford SD,Gimble JM,et a1.Characterization of neuronal/glial diffe-rrentiation of murine adipose-derived adult stromal cells[J].Exp Neurol.2004,187(2): 319-328.
    [12] Cui L,Yin S,Yang P,et al.Human adipose derived stem cells suppress lymphocyte proliferation induced by cellular or nonspecific mitogenic stimulin[J].Zhonghua YiXue Za Zhi. 2005, 85(27):1890-1894.
    [13] Yoon E, Dhar S, Chun DE. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model[J]. Tissue Eng,.2007 Mar;13(3):619-27.
    [14] Erickson GR,Gimble JM,Franklin DM,et al.Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo.J Bone Joint Surg Br. 2003, 85(5):740-747.
    [15] Stefan Lendeckel, Andreas Jodicke, Petros Christophis, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects:case report.J Cranio-Maxillofac Surg. 2004, 32(6):370-373.
    [16] Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells [J]. Journalof Cellular Physiology. 2001,189:54-63.
    [17]王燕,陈光辉,邵建华,等。大鼠脂肪组织源性间充质干细胞的分离及向心肌细胞的诱导分化.山东大学学报(医学版). 2005, 43(7):578-581.
    [18] Lennon DP, Edmison JM, Caplan A. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on Vitro and in vivo osteochondrogenesis. J Cell Physio. 2001, 87(3):345-355.
    [19]薛庆善主编.体外培养的原理与技术.北京.科学出版社, 2001:690-691.
    [20] Kaibara M, Kawamoto Y. Rheological measurement of blood congulation invascular vessel model tube consisting of endothelical cells monolayer [J]. Biorheology. 1991, 28(3-4):263-274.
    [21] Mie M, Ohgushi H, Yanagida Y, et al. Osteogenesis coordinated in C3H1071/2 cells by adipogenesis-dependent BMP-2 expression system [J]. Tissue Eng, 2000,69(100):9-18.
    [22] Saford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells[J]. Bioehem Biophys Res Commun. 2002, 294(2):371-379.
    [23] De Ugarte DA, Alfonso Z, Zuk PA,et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow[J]. Immunology Letter. 2003, 89:267-270.
    [24] Zuk PA, Zhu M, Ashiian P, el al.Human adipose in a source of multiponent stemcells [J]. Molecular biology of the cell, 2002, 13:4279-4295.
    [25] Lin X. Construction of new retroviral producer cells from adenoviral and retroviral vectors [J]. Gene Ther.1998, 5:1251–1258.
    [26] Miller N, Vile R. Targeted vectors for gene therapy [J]. FA SEBJ. 1995, 9(2):190- 199.
    [27] Gorden EM, Anderson WE. Gene therapy using retroviral vectors [J]. Curr Opin Biotechnol. 1995, 6:611-616.
    [28] Grimm D and Kleinschmidt JA. Progress in adenoassociated virus type 2 vector production: promised and prospects for clinical use [J]. Hum Gene Ther, 1999, 10(15):2445-2450.
    [29] Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochodral bone formation[J].Nat Med.1999, 5:623-628.
    [30] Lieberman JR, Daluiski A, S tevensonS, et al. The effect of regional gene therapy with bone morphogenetic protein-2 producing bone marrow cells of repair segmental femoral defect in rats [J]. J Bone and Joint Surg. 1999, 81(A):905-917.
    [31] Shen J, Taylor N, Duncan L et al. Exvivo adenovirusm ediated gene transfection of human conjunctiveal epithelium [J]. Br J Ophthalmol. 2001, Jul 85(7):Ohara 861-867.
    [32] Rainer Loew, Nathalie Selevsek, Boris Fehse. Simplified gene ration of high-Titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of alox-P-flanked marker gene [J]. Molecular Therapy, 2004, 9(5):738- 746.
    [33] Xiaoling Yuan, Yuwen Cong, Jing Hao. Regulation of LIP level and ROS formation through interaction of H-Ferritin with G–CSF Receptor [J]. Journal of Molecular Biology, 2004, 23(2):352-356.
    [34] Smith AE. Viral vectors in gene therapy [J]. Ann Rev Microbiol. 1995, 49:807–838.
    [35] Matthews DA, Cummings D, Evelegh C, et al. Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein[J]. J-Gen-Virol. 1999 Feb;80(pt2):345-353.
    [36] Langer SJ, Schaack J. 293 cell lines that inducibly express high levels of adenoviruses type 5 precursor terminal protein [J]. 1996 Jul 1; 221(1):172-179.
    [37] Brough DE, Lizonova A, Hsu C, et al. A gene transfer vector-cell line system forcomplete functional complementation of adenovirus regions E1 and E4 [J]. J-Virol. 1996 Sep;70(9):6497-6501.
    [38] Urist MR, Jurist JM, Dubuc FL, et al. Quantitation of new bone formation in intramuscular implants of bone matrix in rabbits[J]. Clin Orthop.1970,68:279.
    [39] Urist MR, Strates BS. Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop. 1970,71:271-278.
    [40] Urist MR, Strates BS. Bone morphgenetic protein. J Dent Res.1971, 50(Suppl.6):1392.
    [41] Bessho K, Tagawa T, Murata M. Comparison of bone matrix-derived bone morphogenetic proteins from various animals. J Oral Maxillofac Surg.1992:50(5):496-501.
    [42] Wu ZY, Hu XB. Separation and purification of porcine bone morphogenetic protein. Clin Orthop,1998, 5(230):220-236.
    [43] Ploemacher RE et a1.Bone morphogenetic protein 9 is a potent s ynergistic factor for murine hemopoietie progenitor cell generation and colony formation in serum-free cmltures [J].Leukemia.1999,13:428-437.
    [44] Lopez-CoviellaI et a1.Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9[J]. Science. 2000; 289:313-316
    [45] Musgrave DS,Fu FH,Huard J.Gene therapy and tissue engineering in orthopaedic surgery [J]. J Am Acad Orthop surg. 2002, 10(1):6-15.
    [46]王栋梁,刘丹平.腺病毒载体介导BMP-2基因修复骨缺损的研究进展[J].国际免疫学杂志,2007,30(5):330-333.
    [47]段智霞,郑启新,郭晓东.BMP-2活性多肽体外定向诱导大鼠BMSCs向成骨方向分化的实验研究[J].中国矫形外科杂志,2007,15(21):1647-1650.
    [48] Duan ZX,Zheng QX,Guo XD,et al.Experimental research on ectopic osteogenesis of BMP-2 derived peptide P24 combined with PLGA copolymers[J].J Wuhan Univer Techhol Mater Sci Ed,2007,27(2):179-182.
    [49]胡静,戚孟春,韩立赤,等.BMP- 7基因促进大鼠下颌牵张成骨的研究[J].实用口腔医学杂志,2006,22(5):635-638.
    [50]康焱,廖威明,盛蹼义.hBMP7瞬时转染对兔骨髓问充质干细胞生物学行为的影响[J].中山大学学报(医学科学版),2006,27(35):3-6.
    [51]谭祖建,李起鸿. BMP及其诱导成骨的分子生物学基础[J].中华骨科杂志, 1996,16(9):587-589.
    [52] Riley EH, Lane JM, Urist MR. et al. Bone morphogenetic protein-2:biology and application. Clin Orthop Relat Res, 1996,324:39-46.
    [53] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization. Arch Physiol BIOCHEM, 1997, 105(2):158-169.
    [1] Harvold E. Cleft palate, an experiment[J]. Acta Odontal Scand,1950, Mar, 9(1):84-87
    [2]石冰,邓典智,王翰章,等.腭裂植骨对上颌骨生长发育的影响[J].中华口腔医学杂志,1998,33(3):175-177
    [3]佘小明,田锟,钱宁,等.贵州小型猪腭裂动物实验模型的建立[J].遵义医学院学报,2007,30(1):23-24
    [4]陈刚.应用牵张成骨法矫治腭裂的动物实验研究.华西医科大学博士论文2000,(10630)
    [5]徐海艇,王健,徐晓斐,等.组织工程方法修复羊腭裂骨缺损的初步研究[J].中国美容整形外科志,2008,19(3):221-223
    [6] EL-Boklr D, Smith SJ,Germane N, et al. New technique for creating permanent experimental alveolar clefts in a rabbit model[J]. Cleft Palate CraniofacJ,1993,30(6):542-547
    [7] Nazarli A, Puthucode R, Leung V, et al. Temporal and spatial expression of Hoxa-2 during murine palatogenesis[J]. Cell Mol Neurobiol, 2000,20(3):269-190
    [8] Moore ge, Molecular genetic approaches to the study of human craniofacial dysmorphologies[J]. International Rev Cytol, 1995,158:215-177
    [9] Antoniades K, Economou L, Sioga A, et al. Pathogenesis of bromodeoxyuridine-induced cleft palate in mice[J]. J Cranio Maxillo-facial Surg, 1995,23(4):252-255
    [10] Jurand A, Martin LHV. Cleft palate and open eyelids inducing activity of lorazepam and the effect of flumazenil, the benzodiazepine antagonist[J]. Pharmacol Toxicol,1994,74(4-5):228-235
    [11] Bienengr?ber V, Malek F, Fanghoumel J, et al. Disturbances of palatogenesis and their prophylaxis in animal experiments[J]. Anat Anz, 1999,181(1):111-115
    [12] Richtsmeier JT, Sack GH JR, Grausz HM, et al. Cleft palate with autosomal recessive transmission in Brittany spaniels[J]. Cleft Palate Craniofac J,1994,31(5):364-371
    [13] Warzee CC, Bellah JR, Richards D. Congenital unilateral cleft of the soft palate in six dogs[J]. J Small Anim Pract, 2001,42(7):338-340
    [14] Headrick JF, Mcanulty JF. Reconstruction of a bilateral hypoplastic soft palate in a cat[J]. J Am Anim Hosp Assoc, 2004,40(1):86-90
    [15] Wei X,Senders C, Owiti GO, et al. The origin and development of the upper lateral incisor and premaxilla in normal and cleft lip/palate monkeys induced with cyclophosphamide[J]. Cleft Palate Craniofac J, 2000,37(6):571-583
    [16] Keeler RF, Crowe MW, Lambert EA. Teratogenicity in swine of the tobacco alkaloid anabasine isolated from Nicotiana glauca[J].Teratology,1 984,30(1):61-69
    [17] Weinzweig J, Panter KE, Pantaloni M, et al. The fetal cleft palate: II. Scarless healing after in utero repair of a congenital model[J]. Plast Reconstr Surg,1999,103(2):419-404
    [18] Panter KE, WeinzweigJ, Gardner DR, et al. Comparison of cleft palate induction byNicotiana glauca in goats and sheep[J]. Teratology, 2000,61(3):203-210.
    [19] Houzelstein D, Cohen A, Buckingham ME, et al. Insertional mutation of the mouse Msx1 homeobox gene by an nlacZ reporter gene[J]. Mech dev,1997,65(1-2):123- 133
    [20] Koo SH, Cunningham MC, Arabshahi B, et al. The transforming growth factor-beta 3 knock-out mouse: an animal model for cleft palate[J]. Plast Reconstr Surg,2001,108(4):938-948
    [21] Schmitz JP, Holdinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions.[J]. Clin Orthop, 1986, Apr,205:299-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700