棉纤维发育相关EST-SSR的特征、功能及其定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了增加微卫星标记用于构建饱和的棉花分子遗传图谱,以及将功能基因组学用于棉纤维发育机理的解析和棉花遗传育种,本研究从大量的亚洲棉和陆地棉纤维发育相关EST中开发SSR引物,并且分析了SSR的特征、功能、海陆间的多态性以及在四倍体棉种At和Dt亚组的分布特征。
     从来源于亚洲棉开花后7~10天纤维cDNA文库的1187条EST,设计了763对EST-SSR引物,其中包含简单SSR 605条,复合SSR 158条。605条EST中,六核苷酸和三核苷酸比例最高,分别占到36%和31.3%,二核苷酸重复占20.4%,五核苷酸重复占7.9%,四核苷酸重复占4.6%。在包含简单SSR的605条EST的核苷酸重复基元中,二核苷酸重复中比例最高的是AT/TA,占12.6%。763对EST-SSR引物中687(90%)对可以在异源四倍体陆地棉TM-1和海岛棉海7124中得到扩增产物。其中有120对引物可以在这两个材料间产生多态带型,用于遗传作图。120对EST-SSR引物总共得到143个多态位点,通过作图软件,将其中的135个整合到了已有的包含511个SSR位点的遗传图谱中。从这些135个位点的分布情况来看,并不是随机的,因为有84个分布在染色体At亚组,51个在Dt亚组。
     利用构建的7235 5~25天的纤维和徐州142开花后0~5天的胚珠以及3~22天后纤维的cDNA文库,随机测序得到13505条EST,去掉冗余之后为5811条。其中966条包含一个以上微卫星(SSR)。根据EST-SSR引物设计的标准,共得到489对EST-SSR引物。在这部分EST中,三核苷酸重复最多,占59.1%;然后是二核苷酸重复,占30%;四核苷酸重复占6.4%;六核苷酸重复占2.7%;最少的是五核苷酸重复,占1.8%。在所有的重复基元中,AT/TA占的比例最高,约为18.4%,其余的依次为CTT/GAA(5.3%),AG/TC(5.1%),AGA/TCT(4.9%),AGT/TCA(4.5%),AAG/TTC(4.5%)等。489对引物在作图亲本TM-1和海7124间存在多态的共114对,产生130个多态位点。其中129个位点整合到现有的遗传图谱上,有66个分布在染色体At亚组,63个在Dt亚组。
     在从Genbank dbEST数据库下载来源于陆地棉遗传标准系TM-1的-3~3dpa胚珠的32190条EST中,去冗余之后为12463条,利用SSRIT和Primer3设计得到454对EST-SSR引物。这些EST重复基元中,六核苷酸重复和三核苷酸重复最多,分别占47.3%和38.8%,二、四、五核苷酸重复分别占7.5%、3.2%、3.2%。所有的核苷酸重复基元中,三核苷酸AGA/TCT所占比例最高,约占4.3%;二核苷酸重复中,比例最高的是AG/TC,占2.6%:四核苷酸重复中,AAAC/TTTG比例最多,占约1.5%;五核苷酸和六核苷酸重复中,CCCAA和CCACCT/GGTGGA所占比例最高,分别是0.4%和1.1%。454对引物扩增海陆BC_1作图群体亲本TM-1和海7124,总共84对产生多态条带,可以进行定位研究。84对引物扩增共存在90个多态位点。其中84个位点(包括8个偏分离位点)能够整合到该作图群体的遗传框架图上。84个位点分布在26条染色体上,有40个分布在染色体At亚组,44个分布在染色体Dt亚组。
     616对MUSS/MUCS EST-SSR引物扩增共有22对产生多态条带。产生23个多态位点。其中有22个位点(包括3个偏分离位点)可以整合遗传框架图上。四倍体棉花基因组的At和Dt亚组各分布11个多态位点。
     从亚洲棉和陆地棉的87154条EST序列中,利用blastclust软件得到非冗余序列39507条,总长度为28005.9kb,其中二~六核苷酸重复大于等于18bp的SSR共有2146个,平均每13.05kb出现一个SSR。所有的重复类型中,六核苷酸重复最多,占36.8%;AT/TA比例最高,占7.4%。
     在本研究得到的386个标记位点中,有24对EST-SSR引物扩增得到的重复位点分布在相应的部分同源染色体上。有16对EST-SSR引物产生的重复位点分布在非部分同源染色体或同一染色体。整合后的图谱包含1052个位点,图距总计6321cM,平均两个位点间的距离为6.0cM。其中A3、A11、D1和D11染色体各包括两个连锁群。每条染色体上的标记数目从22-58不等,图距从144.5-383.5 cM。整合到遗传图谱上的43个偏分离EST-SSR标记中,偏向亲本TM-1的有22个,偏向海7124的有21个。
     利用Blast2go软件,将已知功能的EST按照细胞组分、分子功能和生物进程分为三大类。在细胞组分一类中,大多数被归为细胞(cell,41%)和细胞器(organelle,36%)两类;分子功能的分类中,催化活性(catalytic activity)和结合(binding)各约占22%和24%;在第三分类生物进程中,大部分归为生理进程(physiological process,38%)或细胞进程(cellular process,36%)。
     本研究将部分糖代谢相关基因、转录因子和信号转导类基因定位到染色体,如蔗糖合酶定位到了A6染色体上,E6定位到A5和D5染色体,MYB60定位到A13染色体等。另外,A8染色体上定位了一个耐盐蛋白基因NAU920。
     针对棉花遗传图谱的研究已经开发了多种分子标记,但是根据棉花已克隆的基因开发的SNP标记相对较少。利用PCR技术扩增出陆地棉TM-1和海岛棉海7124中基因FbL2A的序列,分析了材料间存在的单核苷酸多态性(SNPs)。根据TM-1和海7124两个材料中FbL2A基因的测序结果,采用NEBcutter软件分析,选择BstUI内切酶酶解扩增产物,利用Mapmaker v3.0作图软件将FbL2A基因定位到D2染色体。
     FIF1基因是棉纤维优势表达的一个基因,研究证明它可能在棉纤维的发育过程中起着很重要的调控作用。根据已发表的亚洲棉FIF1基因,设计特异引物,克隆了陆地棉TM-1和海岛棉海7124中FIF1基因。根据两个四倍体棉花FIF1基因的SNP变异,采用SNAP和CAPs方法将该基因定位到A8染色体。研究表明棉花SNP标记的开发是可行的,也是有效的。
     EST-SSR和SNP标记的开发将能够更方便的将EST或基因应用到棉花的图谱构建,QTLs定位及克隆,以及棉花二倍体和四倍体的进化与比较基因组研究。
To increase the numbers of microsatellites available for use in constructing a genetic map,and facilitate the use of functional genomics to elucidate fiber development and breeding incotton, we sampled microsatellite sequences from expressed sequence tags (ESTs)transcribed during fiber development in the A-genome species Gossypium arboreum andAD-genome Gossypium hirsutum to evaluate their characterization, putative function, levelof polylnorphism and distribution in the At and Dt subgenomes of tetraploid cotton.
     From ESTs derived from G. arboreum fibers at 7~10 days post anthesis (dpa) fibercDNA library, 1,187 ESTs were found 605 containing simple sequence repeats (SSRs) and158 containing complex sequence repeats (CSRs); 763 EST-SSR primer pairs weredeveloped, and 687 (90%) amplified PCR products from allotetraploid cotton (G. hirsutumcv. TM-1 and G. barbadense cv. Hai7124). Among the 605 SSR-ESTs, hexanucleotides(36%) are the most abundant motif, followed by trinuleotides (31.3%), dinucleotides(20.4%), pentanucleotides (7.9%) and tetranucleotides(4.6%). AT/TA (12.6%) is the mostfrequent repeat in all the motif type. However, only 120 (17.4%) of 687 were found to bepolymorphic and segregating in our interspecific BC_1 mapping population[(TM-1×Hai7124)×TM-1]. One hundred and thirty-five of 143 loci detected with these 120EST-SSRs were integrated into our backbone map including 511 SSR loci. The distributionof the EST-SSRs appeared to be non-random, since 84 loci were anchored to the At and 51to the Dt subgenome of aUotetraploid cotton based on linkage tests.
     From 13,505 ESTs developed from 7235 5~25 dpa fiber and Xuzhou142 0~5 dpa ovuleand 3~22 dpa fiber cDNA libraries, 5,811 were non-redundant ESTs and 966 contained oneor more SSRs. From them, 489 EST-SSR primer pairs were developed. Among theEST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides(6.4%), hexanucleotides (2.7%), and pentanucleotides (1.8%). AT/TA (18.4%) is the mostfrequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci wereproduced from 114 informative EST-SSR primer pairs, which generated polymorphismbetween our two mapping parents. Of these, 129 were integrated on our allotetraploidcotton genetic map, including 66 on At subgenome and 63 on Dt subgenome.
     From 32,190 ESTs generated from -3~3dpa ovule of G. hirsutum cv. TM-1downloaded from Genbank dbEST, 12,463 non-redundant ESTs were developed by the softblastclust. And 454 EST-SSR primer paris were developed through the software SSRIT andPrimer3. Hexanucleotides and trinucleotides were observed at the highest frequencies,47.8% and 38.8%, respectively. And then di-, tetra-, pentanuleotides, is 7.5%, 3.2%, 3.2%,respectively. AGA/TCT (4.3%) is the most frequent repeat. AG/TC (2.6%) is the mostmotif in dinucleotides, AAAC/TTTG (1.5%) in tetranucleotides, CCCAA (0.4%) inpentanucleotides and CCACCT/GGTGGA (1.1%) in hexanucleotides. Eighty-four primerswere polymorphic between the parent TM-1 and Hai7124, and produced 90 loci.Eighty-four loci, including 8 distorted loci, were intergrated into the cotton genetic map,and 40 were distributed on At subgenome, 44 on Dt subgenome.
     There are 22 primer pairs produced polymorphic bands between TM-1 and Hai7124 from616 MUSS/MUSS EST-SSR primers. Twenty-two loci, including 3 distorted loci, wereintergrated into the genetic map, 11 and 11 loci distributed on the At and Dt subgenome,respectively.
     From a total 87,514 ESTs developed from G. arboreura and G. hirsutum, we obtained39,507 non-rududent ESTs, and 2,146 SSRs were found by the soft SSRIT with a SSR per13.05 kb. Hexanucleotides were the most abundant motif(36.8%) and AT/TA is found atthe highest frequency, 7.4%.
     Among these 386 loci in this study, there are 24 EST-SSRs producing duplicated locidistributed on the corresponding homoelogous chromosomes, and 16 EST-SSRs producingduplicated loci on the non-homoelogous chromosomes. The last genetic map contained1052 loci, and composed of 26 chromosomes with a genetic distance of 6321 cM (averageof 6.0 cM between loci). The chromosome A3, A11, D1 and D11 contain two linkagegroups, respectively. The number of loci on every chromosome is from 22 to 58, with agenetic distance from 144.5 to 383.5 cM. There are 43 distorted EST-SSR loci, including22 to TM-1 and 21 to Hai7124.
     All ESTs were categorized to 3 main classes, namely Molecular Function, BiologyProcess and Cell Component through the soft Blast2go online. Among the Cell Component class, 41% were classficated to cell, and 36% to organelle. Catalytic Activity and Bindingcontain 22% and 24%, respectively, in the Molecular Function. As to Biology Process, 38%were belonged to Physiological Process and 36% to Cellular Process.
     Some genes of carbohydrate metabolism, transcript factor and signal transduction weremapped. For instance, sucrose synthase were mapped on A6, E6 on A5 and D5, MYB60 onA3. And a gene coded salt tolerance protein was mapped on A8.
     Many kinds of molecular markers are being used in cotton genetic mapping, but there islittle report on SNP markers development of cotton genes. With the PCR-based method,FbL2A genes were isolated from TM-1 and Hai7124. Based on Single nucleotidepolymorphisms (SNPs) of the FbL2A gene sequences in TM-1 and Hai7124, the amplifiedproducts were digested by BstUI selected through NEBcutter software online. And the genewas mapped on D2 by Mapmaker v3.0 mapping software.
     FIF1 is predominantly expressed early in developing cotton fibers and identified be a keyregulator of cotton fiber development. In this paper, FIF1 genes from G. hirsuturn cv. TM-1and G. barbadense cv. Hai7124 were cloned on the basis of its published sequence in G.arboreum L. Based on the SNPs between FIF1 genes from two tetraploid cotton, SNAPand CAPs markers were developed, and the gene was mapped on A8. This result indicatesthat SNP marker development is feasible and effective in Gossypium.
     These EST-SSR and SNP markers can be used in genetic mapping, identification ofquantitative trait loci (QTLs), and comparative genomics studies of diploid and tetraploidcotton.
引文
1. Alba R, Fei Z, Payton P, et al. ESTs, cDNA microarrays, and gene expression profiling: Tools for dissecting plant physiology and development[J]. Plant J, 2004, 39: 697-714
    2. Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species[J]. Plant Mol Rep, 1991,9:208-218
    3. Arpat A, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Mol Biol, 2004,54: 911-929
    4. Ayers N M, McClung A M, Larkin P D, et al. Microsatellite and single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm[J]. Theor Appl Genet, 1997, 94:773-781
    5. Benson G Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic Acids Res, 1999, 27,573-580
    6. Benton D. Bio informatics-principles and potential of a new multidisciplinary tool[J]. TIBTECH , 1996,14 (8) : 261-272
    7. Blenda A, Scheffler J, Scheffler B, et al. CMD: A cotton microsatellite database resource for Gossypium genomics[J]. BMC Genomics, 2006,7:132-150
    8. Botstein D, White R L, Skolnick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32:314-331
    9. Bhattramakki D, Dolan M, Hanafey M, et al. Insertion2deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers[J]. Plant Mol Biol, 2002,48:537-547.
    10. Brondani C, Rangel P H N, Borba T C O, et al. Transferability of microsatellite and sequence tagged site markers in Oryza species[J], Hereditas, 2003,138: 187-192
    11. Brookes A J. The essence of SNPs[J]. Gene, 1999, 234:177-186.
    12. Brubaker C L, Bourland F M, Wendel J F. The origin and domestication of cotton[A]. In Cotton[C]. Edited by Smith C W and Cothren J T. J. Wiley & Sons, New York, 1992, pp.3-31.
    13. Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors[J]. Genome, 1999,42:184-203.
    14. Brubaker C L and Wendel J F. Reevaluating the origin of domesticated cotton (Gossypium hirsutum: Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs) [J]. American J Botany, 1994, 81: 1309-1326
    15. Cedroni M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton[J]. Plant Mol Biol, 2003, 51(3):313-325.
    16. Chee P, Rong J K, Williams-Coplin D, et al. EST derived PCR-based markers homologues in cotton[J]. Genome, 2004,47:449-462
    17. Close T J, Wanamaker S I, Caldo R A, et al. A new resource for cereal genomics: 22K barley GeneChip comes of age[J]. Plant Physiol, 2004,134: 960-968
    18. Coen E S, Meyeromitz E M. The war of the whorl: genetic interaction controlling flower development[J]. Nature, 1991,353:31237
    19. Connell J P, Pammi S, Iqbal M J, et al. A high throughput procedure for capturing microsatellites from complex plant genomes[J]. Plant Mol Biol Rep, 1998, 16: 341-349
    20. Cordeiro G M, Effort F, Mclntyre C L, et al. Characterisatien of single nucleotide polymorphisms in sugarcane ESTs[J]. Theor Appl Genet, 2006, 113(2): 331-343
    21. Crane C F, Price H J, SteUy D M, et al. Identification of a homeologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum) [J]. Genome, 1994, 36: 1015-1022
    22. Cronn R, Cedroni M, Haselkorn T, et al. PCR-mediated recombination in amplification products derived from polyploidy cotton[J]. Theor Appl Genet, 2002, 104: 482-489
    23. Decroocq V, Fave M G, Hagen L, et al. Development and transferability of apricot and grape EST microsatelfite markers across taxa[J]. Theor Appl Genet, 2003, 106: 912-922
    24. Delseny, M. Genomics: methods and early results[J]. Ol. Corps Gras Lipides, 1999, 6(2): 136-143
    25. Dowd C, Wilson I W, McFadden H. Gone expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum[J]. Mol Plant Microbe Interact. 2004, 17(6): 654~667.
    26. Draye X, Chee P, Jiang C X, et al. Molecualr dissection of inter specific variation between Gossypium hirsutum and G. barbadense by a backcross-self approach: Ⅱ. Fiber fineness[J]. Theor Appl Goner, 2005, 111: 764~771
    27. Drenkard E, Richter B G, Rozen S, et al. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis[J]. Plant Physiol, 2000, 124: 1483~1492
    28. Endrizzi J E, Turcotte E L, Kohel R J. Quantitative genetics, cytology and cytogenetics[A]. In: Kohel R J, Lewis DF (eds) Agronomy[C], vol 24. Cotton. American Society of Agronomy, Madison, Wis., 1984, 59~80
    29. Endrizzi J E, Turcotte E L, Kohel R J. Genetics, cytology, and evolution of Gossypium[J]. Adv Genet, 1985, 23: 271~375
    30. Eujayl I, Sledge M K, Wang L, et al. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp[J]. Theor Appl Goner, 2004, 108: 414~422
    31. Eujayl I, Sorrells ME, Wolters P, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet, 2002, 104: 399~407
    32. Ewing R M, Kahla A B, Poirot O, et al. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gone expression[J]. Genome Res. 1999, 9: 950~959.
    33. Feng J X, Ji S J, Shi Y H, et al. Analysis of five differentially expressed gone families in fast elongating cotton fiber[J]. Acta Biochim Biophys Sin (Shanghai). 2004, 36(1): 51~56
    34. Ferriol M, Pico B, Nuez E Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor Appl Genet, 2003, 107: 271~282.
    35. Fraser L G, Harvey C F, Crowhurst R N, et al. EST-derived microsatellites from Actinidia species and their potential for mapping[J]. Theor Appl Genet, 2004, 108: 1010~1016
    36. Frelichowski J E Jr, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends[J]. Mol Gen Genomics, 2006, 275(5): 479~491
    37. Fryxell P A. The natural history of the cotton tribe[M]. Texas A&M University Press, College Station, TX, 1979.
    38. Fulton T M, Van der Hoeven R, Eannetta N T, et al. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants[J]. Plant Cell, 2002, 14: 1457-1467
    39. Gao L F, Jing R L, Huo N X, et al. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat[J]. Theor Appl Genet, 2004,108:1392-1400
    40. Gaut B S, Clegg M T. Nucleotide polymorphism in the Ash1 locus of pearl millet (Pennisetum glaucum) (Poaceae) [J]. Genetics, 1993,135:1091-1097.
    41. Graves D A, Steward J M. Analysis of the protein constituency of development of cotton fibers[J]. J Exp Bot, 1988,39:59-69
    42. Guo W Z, Zhang T Z, Shen X L, et al. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton[J]. Crop Sci. 2003, 43:2252-2256.
    43. Gupta P K, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J]. Mol Gen Genomics, 2003, 270:315-323
    44. Gupta P K, Roy J K, Prasad M. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants[J]. Curr Sci, 2001, 80:524-535
    45. Gut I G. Automation in genotyping of single nucleotide polymorphisms[J]. Hum Mutat, 2001, 17:475-492
    46. Hatey F, Tosser-Klopp G, Clouscard-martinato C, et al. Expressed sequenced tags for genes : a review[J]. Genet Sel Evol, 1998, 30 (5) : 521-541
    47. He D H, Lin Z X, Zhang X L, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica, 2005,144:141-149
    48. Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus[J]. Theor Appl Genet, 2004,108:1212-1220
    49. Holton T A, Christopher J T, McClure L, et al. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Mol Breeding, 2002, 9:63-71
    50. Hughes A and Friedman R. Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana[J]. J. Mol. Evol. 2004,60: 247-256
    51. Huntley D, Baldo A, Johri S, et al. Sergot M. SEAN: SNP prediction and display program utilizing EST sequence clusters[J]. Bioinformatics, 2006, 22(4):495-496
    52. Isaksson A, Landegren U, Syvanen A C, et al. Discovery, scoring and utilization of human single nucleotide polymorphism: a multidisciplinary problem[J]. Eur J Hum Genet, 2000, 8:154-156.
    53. Ito M. Factors controlling cyclin B expression[J]. Plant Mol Biol, 2000,43: 677-690
    54. Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array[J]. Nucleic Acids Res. 2003, 31 (10): 2534-2543.
    55. Jiang C, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci USA, 1998,95: 4419-4424.
    56. Jiang C, Wright R J, Woo S S, et al. QTL analysis of leaf morphology in tetraploid Gossypium (cotton) [J]. Theor Appl Genet, 2000,100:409-418
    57. John E M, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs[J]. Proc Natl Acad Sci USA, 1992, 89: 5769-5773
    58. Jordan R H, Turley R B, DeFauw S L, et al. Characterization of a cDNA encoding metallothionein 3 from cotton (Gossypiwn hirsutum L.) [J]. DNA Seq, 2005, 16: 96~102
    59. Kalendar R. FastPCR: a PCR primer design and repeat sequence searching software with additional tools for the manipulation and analysis of DNA and protein (http://www.biocenter.helsinki.fi/bi/programs/fastpcr.htm), 2005
    60. Kantety R V, Rota M L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat[J]. Plant Mol Biol, 2002, 48: 501~510
    61. Karaca M, Saha S, Jenkins J N, et al. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (LiI) mutant in cotton[J]. J Hered, 2002, 93: 221~224
    62. Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell, 2001, 13: 889~906
    63. Kim M Y, Ha B K, Jun T H et al. Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean[J]. Euphytica, 2004, 135: 169~177
    64. Kim M Y, Van K, Lestari P, et al. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean[J]. Theor Appl Genet, 2005, 110: 1003~1010
    65. Kim H J, Triplett B A. Cotton fiber germin-like protein. Ⅰ. Molecular cloning and gene expression[J]. Planta, 2004, 218(4): 516~524.
    66. Kohel R J, Yu J, Park Y H. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica, 2001, 121: 163~172
    67. Kosambi D D. The estimation of map distances from recombination values[J]. Ann Eugen, 1944, 12: 172~175
    68. Kosmas S A, Argyrokastritis A, Loukas M G, et al. Isolation and characterization of drought-related trehalose 6-phosphate-synthasegene from cultivated cotton (Gossypium hirsutum L) [J]. Planta, 2006, 223: 329-339
    69. Kumpatla S P, Home E C, Shah M R, et al. Development of SSR markers: towards genetic mapping in cotton (Gossypium hirsutum L.) [J]. Abstract communication at the 3rd international cotton genome initiative workshop, Nanjing, China. Cotton Sci, 2002, 14 [Suppl]: 28
    70. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross population[J]. Crop Sci, 2005, 45: 123~140
    71. Lacape J M, Nguyen T B, Thibivilliers S, et al. combined RFLP-SSR-AFLP map of trtraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population[J]. Genome, 2003, 46: 612~626.
    72. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generation[J]. Crop Sci, 2005, 45: 123~140
    73. Lan T H, Cook C G, Paterson A H. Identification of a RAPD marker linked to a male fertility restoration gene in cotton (Gossypium hirsutum L.) [EB/OL]. http://www.ncgr.org/ag/jag/papers99/paper299/1999-p2.html
    74. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185~189
    75. Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987,1:174-181
    76. Landegren U, Nilsson M, and Kwok P Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis[J]. Genome Res. 1998,8:769-776.
    77. Lee J J, Hassan O S S, Gao W X et al. Developmental and gene expression analyses of a cotton naked seed mutant[J]. Planta, 2006,223:418-432
    78. Li C H, Zhu Y Q, Meng Y L, et al. Isolation of genes preferentially expressed in cotton fibers by cDNAfilter arrays and RT-PCR[J]. Plant Sci, 2002,163:1113-1120
    79. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theor Appl Genet, 2003,107:168-180
    80. Li L, Liu J Y. A Novel Cotton Gene Encoding a New Class of Chitinase[J].Journal of intergrative plant biology, 2003, 45:1489-1496
    81. Li G and Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2003,107(1): 168-180.
    82. Liu S, Cantrell R G, McCarty J C et al. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions[J]. Crop Sci, 2000,40:1459-1469
    83. Liu S, Saha S, Stelly D, et al. Cantrell. Chromosomal assignment of microsatellite loci in cotton[J]. J Heredity, 2000,91: 326-332
    84. Lin W, Yang H H, Lee M P. Allelic variation in gene expression identified through computational analysis of the dbEST database[J]. Genomics, 2005, 86 (5):518-527
    85. Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD[J], Plant Breeding, 2005,124:180-187
    86. Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation[J]. Plant Cell, 2005,17(3):859-875
    87. Li Y L, Sun J, Xia G X. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development[J]. Mol Gen Genomics, 2005, 273: 217-224
    88. Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol Gen Genet, 1999, 261:660-671
    89. Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor Appl Genet, 2004,108:280-291
    90. Michalek W, Weschke W, Pleissner K P, et al. EST analysis in barley defines a unigene set comprising 4,000 genes[J]. Theor Appl Genet, 2002,104: 97-103
    91. Morgante M, Olivieri A M. PCR-amplified microsatellites as markers in plant genetics[J]. Plant J, 1993, 3:175-182
    92. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet, 2004,109:167-175
    93. Nicot N, Chiquet V, Gandon B, et al. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs) [J]. Theor Appl Genet, 2004,109: 800-805
    94. Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population [J]. Mol Gen Genomics, 2005, 274: 428~441
    95. Paterson A H, Brubaker C, and Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Mol Biol Rep, 1993, 11: 122~127.
    96. Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype environment interaction affecting cotton fiber quality[J]. Theor Appl Genet, 2003, 106: 384~396.
    97. Percival A E, Wendel J F, Stewart J McD. Taxonomy and germplasm resources[A]. In Cotton. Edited[C] by C. W. Smith and J. T. Cothren. J. Wiley & Sons, New York, N. Y. 1999, pp. 33~63
    98. Qian S Y, Huang J Q, Peng Y T, et al. Studies on the hybrid of G hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding [J]. Sci Agric Sinica, 1992, 25: 44~51
    99. Qureshi S N, Saha S, Kantety R V, et al. EST-SSR: A new class of genetic markers in cotton. [J]. J Cotton Sci, 2004, 8: 112~123
    100. Qu Z L, Wang H Y, Xia G X. GhHb1: A nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae[J]. Biochimica et Biophysica Acta, 2005: 103~113
    101. Rafalski J A. Application of single nucleotide polymorphisms in crop genetics[J]. Current Opinions in Plant Biology, 20028, 5: 94~100.
    102. Rafalski J A. Novel genetic mapping tools in plants: SNP and LD-based approaches[J]. Plant Science, 2002b, 162: 329~333.
    103. Reddy O U K, Pepper A E, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research[J]. J Cotton Sci, 2001, 5: 103~113
    104. Reinisch A, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hirsutum×Gossypium barbadense; chromosome organization and evolution in a disomic polyploid genome[J]. Genetics, 1994, 138: 829~847
    105. Ren L H, Guo W Z, Zhang T Z. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line[J]. Acta Botanica Sinica, 2002, 44(7): 815~820.
    106. Rinehart J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A[J]. Plant Physiology, 1996, 112: 1131~1141
    107. Rong J K, Abbey C, Bowers J E, et al. A 3347-1ocus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics, 2004, 166: 389~417
    108. Ronning C M, Stegalkina S S, Ascenzi R A, et al. Comparative analyses of potato expressed sequence tag libraries[J]. Plant Physiol, 2003, 131: 419~429
    109. Rounsley S, Linx K K. Large scale sequencing of plant genome[J]. Curt Opin Plant Biol, 1998, 1(2): 136~141
    110. Ruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K~+ transporters and expansin[J]. Plant Cell, 2001, 13: 47~60
    111. Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development[J]. Plant Cell, 2003, 15: 952~964
    112. Rungis D. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags[J]. Theor Appl Genet, 2004, 109: 1283~1294
    113. Saha S, Karaca M, Jenkins J N, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton[J]. Euphytica, 2003, 130: 355~364
    114. Schlueter J A, Dixon P, Granger C, et al. Mining EST databases to resolve evolutionary events in major crop species[J]. Genome, 2004, 47: 868~876
    115. Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs[J]. Theor Appl Genet, 2000, 100: 723~726
    116. Sasaki T, Song J Y, Kogaban Y, et al. Toward cataloguing all rice genes: Large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library[J]. Plant J, 1994, 6: 615~624.
    117. Senchina D S, Richard I A, Cronn C, et al. Rate variation among nuclear genes and the age of polyploidy in Gossypium[J]. Molecular Biology and Evolution, 2003, 20: 633~643.
    118. Shappley Z W, Jenkins J N, Meredith W R, et al. An RFLP linkage map of Upland cotton, Gossypium hirsutum L[J]. Theor Appl Genet, 1998, 97: 756~761
    119. Shen X L, Guo W Z, Zhu X F, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers[J]. Molecular Breeding, 2005, 15: 169~181
    120. Shi M M. Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies[J]. Clin Chem, 2001, 47: 164~172
    121. Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J]. Plant Cell, 2006, 18: 651~664
    122. Silva Jr A G. Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs) [J]. Gen Mol Bio, 2001, 24: 155~159
    123. Song J, Chai Y, Pang Y, et al. Isolation and characterization of an IAA-responsive gene from Gossypium barbadense L[J]. DNA Seq. 2004, 15(1): 71~76.
    124. Song X L, Wang K, Guo W Z, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L.×G. barbadense L[J]. Genome, 2005, 48: 378~390
    125. Stare P. Construction of integrated genetic linkage maps by means of new computer package: Joinmap[J]. Plant J, 1993, 5: 739~744
    126. Stelly D M. Interfacing cytogenetics with the cotton genome mapping effort[A]. In Proceedings of the Betwide Cotton Conference, New Orleans, La., 10-14 January 1993. National Cotton Council, Memphis, Tenn. 1993, p. 1545~1550
    127. Sun Y, Allen R D. Functional analysis of the BIN2 genes of cotton[J]. Mol Gen Genomics, 2005, 274: 51~59
    128. Sun Y, Fokar M, Asami T, et al. Characterization of the brassinosteroid insensitive 1 genes of cotton[J]. Plant Mol Biol, 2004; 54(2): 221~232.
    129. Suo J, Liang X, Pu L, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.) [J]. Biochim Biophys Acta, 2003, 1630(1): 25~34.
    130. Suo J, Pu L, Liang X E, et al. Identification of an Endothelium-specific Gene GhlAA16 in Cotton (Gossypium hirsutum) [J]. Journal of Intergrative Plant Biology, 2004, 46: 472~479
    131. Syvanen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms[J]. Nature Rev Genet, 2001, 2: 930~942
    132. Taliercio E, Ulloa M. The DNA sequence of a gypsy element from Gossypium hirsutum L. and characterization of gypsy elements in three Gossypium species[J]. DNA Seq, 2003, 14(4): 319~325.
    133. Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgate L.) [J]. Theor Appl Genet, 2003.106: 411~422
    134. Udall J A, Swanson J M, Hailer K, et al. A global assembly of cotton ESTs[J]. Genome Res. published online Feb 14, 2006
    135. Ulloa M, Meredith, Jr W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in intraspecific population[J]. J. Cotton Sci, 2000, 4: 161~170.
    136. Ulloa M, Meredith W R Jr, Shappley Z W, et al. RFLP genetic linkage maps from four F_(2:3) populations and a joinmap of Gossypium hirsutum L[J]. Theor Appl Genet, 2002, 104: 2000~2008
    137. Vincze T, Posfai J, Roberts R J. NEBcutter: a program to cleave DNA with restriction enzymes[J]. Nucleic Acids Res, 2003, 31: 3688-3691
    138. Voorrips, R E. MapChart: Software for the graphical presentation of linkage maps and QTLs[J]. J. Heredity, 2002, 93 (1): 77~78
    139. Wang B H, Wu Y T, Huang N T, et al. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers[J]. Acta Genetica Sinica, 2006, 33(2): 161-170
    140. Wang H Y, YU Y, Chen Z L, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells[J]. Planta, 2005, 222: 594~603
    141. Wang K, Song X L, Han Z G, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping[J]. Theor Appl Genet, 2006, 113: 73~80
    142. Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB Gene[J]. Plant Cell, 2004, 16: 2323~2334
    143. Wang X, Bowen B. A progress report on corn genome projects at pioneer hi-bred. In: Plant and Animal genome Ⅵ Conference, SanDiego, California, 1998
    144. Weber J L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms[J]. Genomics, 1990, 7(4)524~530.
    145. Wendel J F. New World tetraploid cottons contain Old World cytoplasm[J]. Pro Nail Acad Sci USA, 1989, 86: 4132~4136
    146. Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton[J]. Adv Agron, 2003, 78: 139~186.
    147. Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following aUopolyploid speciation in cotton (Gossypium) [J]. Proc Natl Acad Sci USA, 1995a, 92: 280-284.
    148. Wendel J F, Schnabel A, Seleman T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression[J]. Mol Phylogenet Evol, 1995b, 4: 298~313
    149. Wisman E and Ohlrogge J. Arabidopsis microarray service facilities[J]. Plant Physiol, 2000, 124: 1468~1471
    150. Wright R J, Thaxton P M, El-Zik K M., et al. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution[J]. Genetics, 1998, 149: 1987~1996
    151. Wu C A, Yang G D, Meng Q W, et al. The cotton GhNHX1 gene encoding a novel putative tonoplast Na~+/H~+ antiporter plays an important role in salt stress[J]. Plant Cell Physiol, 2004, 45(5):600-607
    152. Wu Y R, Machado A C, White R G, et al. Expression Profiling Identifies Genes Expressed Early During Lint Fibre Initiation in Cotton[J]. Plant and Cell Physiology, 2006,47(1):107-127
    153. Wu Y R, Rozenfeld S, Defferrard A et al. Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling[J]. Mol Gen Genomics, 2005, 274: 477-493
    154. Wu Y T, Liu J Y. Molecular cloning and characterization of a cotton glucuronosyltranferase gene[J]. J Plant Physiol, 2005,162(5):573-582.
    155. Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A[J]. Plant Physiol, 2004, 135(1):507-515.
    156. Yamamoto K, Sasaki T. Large scale EST sequencing in rice[J]. Plant Mol Biol, 1997,35 (1):135-144
    157. Yang L T, Chen J X, Huang C, et al. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons[J]. Plant Cell Rep, 2005,24:237-245
    158. Yu J, Kohel R J, Dong J M, et al. Toward positional cloning of a major glandless gene in cotton[A]. In Proc of the Beltwide Cotton Conference, National Cotton Council, Memphis, TN, 2000, I:516-517
    159. Zabean M and Vos P. Selective restriction fragment amplication: a generation method for DNA fingerprinting. European Patent. Publication No.Ep0534858Al
    160. Zhang J, Guo W, Zhang T. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet, 2002, 105:1166-1174.
    161. Zhang J, Wu Y T, Guo W Z, et al. Fast screening of miscrosatellite markers in cotton with PAGE/silver staining[J]. Cotton Sci Sin, 2000,12: 267-269.
    162. Zheng S Y, Guo Y L, Xiao Y H, et al. Cloning of a MADS Box Protein Gene (GhMADS1) from Cotton (Gossypium hirsutum L.) [J]. Acta Genetica Sinica, 2004,31 (10) : 1136-1141
    163. Zhang T Z, Pan J J. Genetic analysis of fuzzless-lintless mutant in Upland cotton[J]. J Jiang Agric Sci, 1991, 7(3):13-16
    164. Zhang T Z, Yuan Y L, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection[J]. Theor Appl Genet, 2003,106:262-268
    165. Zhang X D, Jenkins J N, Callahan F E, et al. Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium) [J]. Biochim Biophys Acta, 2003,1625(3):269-279.
    166. Zhang Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica, 2005,144:91-99
    167. Zhao J, Zuo K, Wang J, et al. cDNA cloning and characterization of a cotton peptide methionine sulfoxide reductase (cMsrA) [J]. DNA Seq, 2003,14(4):303-310.
    168. Zhao X, Si Y, Hason R E, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton[J]. Genome Res, 1998,8: 479-492
    169. Zhu Y L, Song Q J, Hyten S M, et al. Single-nucleotide polymorphism in soybean[J]. Genetics, 2003, 163: 1123~1134
    170. Zhu Y Q, Xu K X, Luo B, et al. An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers[J]. Plant Physiol, 2003, 133(2): 580~588.
    171. Zuo K, Wang J, Wu W, et al. Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtracfive hybridization[J]. Mol Biol (Mosk), 2005, 39(2): 214~223. (Written by Russian with English abstract)
    172. Zuo K, Zhao J, Wang J, et al. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum[J]. DNA Seq, 2004, 15(1): 58~65.
    173.陈树林,王沛政,胡保民.陆地棉EST-SSRs在向日葵中的通用性研究[J].西北植物学报,2006,26(3):502~506
    174.楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析[[)].南京农业大学硕士学位论文.2004
    175.高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位[J].棉花学报,2003,15(2):73~78
    176.郭惠明.陆地棉纤维发育相关基因Ghkob的克隆及功能分析[D].中国农业科学院硕士学位论文.2005
    177.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48:410~417
    178.郭旺珍,王凯,张天真.利用SSR标记技术研究棉属A、D染色体组的进化[J].遗传学报,2003,30(2):183~188
    179.郭旺珍,张天真,潘家驹,等.我国棉花主栽品种的RAPD指纹图谱研究[J].农业生物技术学报,1996,4:(2)129~134
    180.郭旺珍,张天真,潘家驹.棉花胞质雄性不育育性恢复基因的RAPD-PCR标记筛选[J].科学通报,1997,24:2645~2647
    181.郭嫫,郭旺珍,张天真.一个新的棉纤维表达蛋白cDNA的克隆、表达及功能初步分析[J].棉花学报,2006,18(2):67~73
    182.贾士荣,郭三堆,安道昌.转基因棉花[M],科学出版社,2001
    183.蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征[J].植物生理与分子生物学学报,2004,30:216~220
    184.蒋建雄,张天真.一个陆地棉羧基末端蛋白酶cDNA的克隆及其表达分析[J].遗传学报,2004,31:171~176
    185.李德谋,肖月华,罗明,等.棉花PTS2受体基因(GhPex7)的克隆及表达分析[J].遗传学报,2003,30(9):823~829
    186.李华盛,范术丽,沈法富.从棉花ESTs数据库中筛选微卫星标记的初步研究[J].棉花学报,2005,17(4):211~216
    187.李惠英,张献龙.陆地棉体细胞胚胎发生过程中的mRNA差异显示分析[J].棉花学报,2003,15(5):264~268
    188.李继刚,郭三堆.棉花高质量RNA的提取及MADS2 box基因保守区段的克隆[J].棉花学报,2004,16(1):3~7
    189.李娟,薛庆中.拟南芥及水稻转录因子MADS密码子的偏好性比较[J].浙江大学学报(农业与生命科学版),2005,31(5):513~517
    190.李先碧,肖月华,罗明,等.两个棉花Rac蛋白基因的克隆与表达分析[J].遗传学报.2005,32(1):72~78
    191.李学宝,黄耿青,许文亮,等.棉花细胞壁蛋白基因分离鉴定与表达分析[J].华中师范大学学报(自然科学版),2005,39:509~513
    192.林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676~1679
    193.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因[J].分子植物育种,2003,1(1):48~52
    194.罗明,肖月华,侯磊,等.棉花LIM结构域基因(GhLIM1)的克隆和表达分析[J].遗传学报,2003,30(2):175~182
    195.秦捷,王武,左开井,等.AP2基因家族的起源和棉花AP2转录因子在抗病中的作用[J].棉花学报,2005,17(6):366~370
    196.秦治翔,杨佑明,张春华,等.棉纤维次生壁增厚相关基因的cDNA克隆与分析[J].作物学报,2003,29:860~866
    197.任智茂,陈家全,李丽,等.一个棉花生殖器官优势表达基因的启动子功能分析[J].中国科学C辑,2005,35:22~28
    198.沈法富,喻树迅,韩秀兰,等.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析[J].科学通报,2004,49:2318~2323
    199.宋宪亮.异源四倍体棉花栽培种分子连锁图谱的构建及部分性状QTL标记定位[D],山东农业大学博士学位论文,2005
    200.孙杰,李艳军,等.棉花纤维特异表达基因GhF1的分离及鉴定[J].棉花学报,2005,17:259~263
    201.王长彪,郭旺珍,蔡彩平,等.雷蒙德氏棉EST-SSRs分布特征及开发与利用[J].科学通报,2006,51(3):316~320
    202.王红梅,张献龙,贺道华,等.陆地棉对黄萎病抗性的分子标记研究[J].植物病理学报,2005,35(4):333~339
    203.王心宇,郭旺珍,张天真,等.我国短季棉品种的RAPD指纹图谱分析[J].作物学报,1997,23 (6):669~675
    204.吴茂清,张献龙,聂以春,等.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443~452
    205.徐瑜,施永辉,冯建勋,等.cDNA芯片检测棉花纤维发育相关基因的表达[J].分子植物育种,2004,2(3):348~353
    206.徐云碧和朱立煌.分子数量遗传学[M].北京:中国农业出版社.1994
    207.殷剑美,武耀廷,张军,等.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学报,2002,18(2):162~166
    208.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状OTIs的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151~1161
    209.郑尚永,郭余龙,肖月华,等.棉花MADS框蛋白基因(GhMADS1)的克隆[J].遗传学报,2004,31(10):1136~1141
    210.张天真,袁有禄,郭旺珍,等.棉花高强纤维QTLs的微卫星标记筛选[J].中国农业科学,2001,34(4):363~366
    211.左开井,孙济中,张献龙,等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英)[J].华中农业大学学报,2000,19:190~193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700