乙烯利调控甘蔗基因的差异表达及甘蔗乙烯受体基因Sc-ERS的克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯是一种结构简单的气体植物激素,它对植物的代谢调节可贯穿其整个生活周期。前人的大量研究结果已证实,在甘蔗生长发育的前期,叶面喷施低浓度的乙烯利能有效促进甘蔗早期的萌芽、分蘖和生长,增强光合作用,提高抗旱性等。为进一步了解乙烯利调控甘蔗生长的分子作用机理,以便更好地利用乙烯利进行甘蔗化学调控,本文对用乙烯利处理的甘蔗前期基因差异表达进行了分析,并对甘蔗乙烯受体Sc-ERS基因进行了克隆、序列分析等方面研究。主要研究结果如下:
     1.建立和优化了一套研究乙烯利调控甘蔗基因差异表达的cDNA-AFLP分析体系和银染体系。结果表明:模板质量的高低是cDNA-AFLP分析能否成功的关键。在甘蔗RNA提取中及时去除甘蔗组织可以降低多糖物质的残留;在RT-PCR反应及cDNA第二链合成的操作中,适当延长合成的时间有利于获得更长、更完整的ds cDNA;在cDNA-AFLP分析中,确定初级模板预扩增反应循环数20循环、反应产物20倍稀释液作为二级模板时选择性扩增效果较好;在银染检测过程中,使用高纯度的Na_2CO_3,并控制好凝胶漂洗和显色时间可以获得理想的检测效果。利用cDNA-AFLP技术对乙烯利处理的甘蔗进行基因差异表达研究,每个样品的扩增条带数均在35-80之间,其中大多数在50-70范围内,处理和对照之间条带多态性明显。
     2.对部分差异转录片段进行了回收、克隆、反向Northern杂交验证、序列分析和功能分析等方面研究。研究结果表明:在反向Northern杂交实验中,24个测试样品中有11个表现没有差异,假阳性率高达46%;在乙烯作用下,甘蔗的CHI、GST、ARP、LHC、核结合蛋白基因以及一批未知基因差异表达;其中CHI、GST、LHC和核结合蛋白是与促进植物的抗病抗逆、提高光合作用等密切相关的因子。
     3.根据已知乙烯受体基因的序列信息,设计了一对简并引物和一对特异引物,对甘蔗叶片基因组DNA进行PCR扩增,获得了一个甘蔗乙烯受体基因(Sc-ERS)的片段。序列分析表明,该片段大小为4310bp,包含一个由5个外显子和4个内含子组成的4219bp大小的完整编码区。Sc-ERS编码区与玉米乙烯受体ERS1基因(AY359578)、水稻乙烯受体ERS1基因(AY043031)的编码区同源率分别为91.4%和61.6%,推导Sc-ERS编码的蛋白包含636个氨基酸残基,与玉米乙烯受体基因、水稻乙烯受体基因所编码蛋白的氨基酸同源率分别为94.1%和89.4%。对推导蛋白的结构进行分析的结果显示Sc-ERS编码的蛋白和玉米、水稻ERS1所编码的蛋白一样,在N段保守区含有3个跨膜结构,并由3个跨膜结构、GAF结构、HisKA和HATPase_c组成功能域。通过核苷酸序列分析和蛋白质结构分析表明Sc-ERS基因属于ERS1基因。
The gaseous plant hormone ethylene induces diverse effects in plants throughouttheir life cycle. Many previous studies have showed that sugarcane growth could beregulated by foliar spraying of ethphon. The ethephon treatments induced variousphysiological changes at the early growth stage of sugarcane, such as earlier and fastersprouting, improved tillering, faster elongation, promoted photosynthesis and enhancedability resisce to diseases and adversity, and so on. To explore the molecular mechanismsof ethephon in regulating sugarcane growth, the differences in gene expressions betweenethephon treatment and control at early growth stage of sugarcane were investigated byusing cDNA-AFLP technique, and the ethylene receptor gene Sc-ERS in sugarcane wascloned and sequenced in the present study. The main results were summarized asfollows.
     1. The optimized cDNA-AFLP protocol and an efficient silver stain system weredeveloped, and the gene differential expressions in sugarcane regulated with ethephonwere analysed. The results indicated that the quality of template DNA was important incDNA-AFLP analysis. It is effective to reduce polysaccharides in the total RNA byremovinging the tissue residue of sugarcane from the extractive mixture timely. In thecDNA-AFLP protocol, 20 cycles for pre-amplification of primary template wasdetermined, followed by a 20-fold dilution of the secondary template before selectiveamplification. In the silver staining, better results could be realised by using ultra-pureNa_2CO_3 and limiting the time of rinsing and developing under controlled condition. ThecDNA-AFLP analysis results showed that the polymorphisms between the treatment andthe control were abundant, and 35 to 80 bands were obtained in each amplification.
     2. Some transcript derived fragments (TDFs) were isolated, and then cloned,detected with reverse Northern blot and sequenced. The results showed that there were11 samples of 24 TDFs which displayed no difference in expression, and the ratio ofhypocrite positive TDFs was about 46%. The CHI, GST, ARP, LHC, nuclear bindingprotein gene and a set of unknown genes were differentially expressed by the treatmentwith ethephon. CHI and GST were important factors for resistance to diseases, andLHC and nuclear binding protein were related to light binding and CO_2 primary fixingin photosynthesis, respectively.
     3. A pair of degenerate primers and a pair of specific primers were designed basedon the conserved sequences of plant ethylene receptor genes, and a 4310 bp fragment ofSc-ERS was cloned and amplified with these primer pairs. The sequencing resultsshowed that Sc-ERS, consisted of five extrons and four introns, contained an entirecoding region of a gene. The coding region of Sc-ERS showed 91.4% and 61.6%homology with those of maize ERS1 and rice ERS1, respectively. The deduced protein ofSc-ERS encoded 636 amino acids, and shared 94.1% and 89.4 % similarity with those ofmaize ERS1 and rice ERS1, respectively. The architecture of protein analysis indicatedthat the Sc-ERS contained three transmembrane structures in the conserved N end asthe maize ERS1 and rice ERS1 did. The functional region of the deduced protein ofSc-ERS, maize ERS1 and rice ERS1 consisted of three transmembrane structures, i.e.GAF, HisKA domain and HATPase_c domain. These results indicated that the Sc-ERSin sugarcane was similar to the ERS1 in other plants.
引文
1.王忠.植物生理学.北京:中国农业出版社,2000,41
    2. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in high plants. Ann Rev Plant Physiol, 1984, 35:155-189
    3.潘延云,郭毅,赵军峰,孙大业.乙烯在植物中的信号转导.浙江大学学报(农业与生命科学版),2003,29(4):453-460.
    4. Yung KH, Yang SF, Schlenk F. Methionine synthesis from 5-methylthioribose in apple tissue. Biochem Biophys Res Commun, 1982, 104:771-777.
    5. Sato T, Theologis A. Cloning of the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA, 1989, 86:6621-6625.
    6. Spanu P, Reinhardt D, Boner T. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J, 1991, 10:2007-2013.
    7.王爱勤,杨丽涛,王自章,韦宇拓,何龙飞,李杨瑞.甘蔗乙烯合成酶基因家族三个成员的克隆与序列分析.热带亚热带植物学报,2005,13(6):485-492
    8.王爱勤,杨丽涛,王自章,韦宇拓,何龙飞,李杨瑞.甘蔗ACC氧化酶全长cDNA的克隆及序列分析.广西植物,2006,26(2):194-199
    9.金志强,李瑞珍,徐碧玉,郑学勤.香蕉果实特异性ACC合成酶基因的克隆及反义载体的构建.农业生物技术学报,2002,10(3):305-306
    10. Hamilton AJ, Bouzayen NI, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Prc Natl Acad Sci USA, 1991, 88:7434-7437
    11.谭辉.外源乙烯通过调节乙烯受体和信号转导元件基因表达影响月季切花开放.中国农业大学博士学位论文,2005
    12. Chang C, Shocker JA. The ethylene-response pathway: signal perception to gene regulation. Current Opinion in Plant Biology, 1999, 2: 352-358.
    13. Anne EH, Jennifer L. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physio, 2000, 123:1449-1457
    14. Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thalina. Cell, 1998, 94:261-271
    15. Sakai H, Hua J. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95:5812-5817
    16. Wang N, Shaulsky G, Escalante R, Loomis WF. A 2-component histidine kinase gene that functions in Dictyostellum development. EMBO J, 1996, 15:3890-3898
    17. Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 1995, 270:1809-1811
    18. Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidposis ERS gene.Science, 1995, 269:1712-1714
    19. Chang C, Kwok SF, Bleecker AS, Meyerowitz EM, Arabidopsis ethylene-response gene ETR1 similarity of product to two-component regulators. Science, 1993, 262:539-544
    20. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB.A copper co-factor for the ethylene receptor RTR1 from Arabidopsis. Science, 1999, 283: 996-998
    21. Schaller GE, Ladd NN, Lanahan MB, Spanbauer JM, Bleeker AB. The ethylene response mediator ETRI from Arabidopsis forms a disulfide-linked dimes. J Biol Chem, 1995, 270: 12526-12530
    22. Force T, Bonventre JV, Heidecker G, Rapp U, Avruch J, Kyriakis JM. Enzymatic characteristics of the Raf-1 protein kinase. Proc Natl Acad Sci USA, 1994, 91: 1270-1274
    23. Jonak C, Heberle-Bors E, Hirt H. MAP kinase: universal multipurposesignaling tools. Plant Mol Biol, 1994, 24:407-416
    24. Zhou D, Mattoo AK, Tucker ML. Molecular cloning of a tomato cDNA encoding an ethylene receptor. Plant Physiol, 1996, 110; 1435-1436
    25. Payton S, Fray RG, Brown S, Grierson D. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol Biol, 1996, 31:1227-1231
    26. Lashbrook CC, Tieman DM, Klee HJ. Differential regulation of the tomato ETR gene family throughout plant development. Plant J, 1998, 15:243-252
    27. Tieman DM, Klee HJ. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol, 1999, 120:165-172
    28. Klee H, Tieman DM. The tomato ethylene receptor gene family; Form and function. Physiol Plant, 2002, 115:336-341
    29. Zhou DB, Kalaitzis P, Mattoo AK, Tucker ML. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol Biol, 1996, 30:1331-1338
    30. Lanahan MB, Yen HC, Giovannoni J, Klee HJ. The never ripe mutation blocks ethylene perception in tomato. Plant Cell, 1994, 6:521-530
    31. Klee H. Ethylene signal transduction moving beyond Arabidopsis. Plant Physiol, 2004, 135:660-667
    32. Zhang JS, Xie C, Chen SY. A novel tobacco gene coding for a product similar to bacterial two-component regulators. Chi Sci Bull, 1999, 44:1025-10391
    33. Terajima Y, Nukuil H, Kobayashil A, Fujimoto S, Hase S, Yoshiokal T, Hashibal T, Satoh S. Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1 of tobacco. Plant and Cell Physiol, 2001, 42:308-313
    34.韩继成.植物乙烯受体及转基因育种研究进展.分子植物育种,2004,2(2):157-163
    35. Solano R, Ecker J. Ethylene gas: perception, signaling and response. Curr Opin Plant Bio, 1998, 1:393-398
    36. Maeda T, Wurgler-Murphy S, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369:242-245
    37. Gamble RL, Coonfleld ML, Schaller GE:Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acid Sci, 1998, 95:7825-7829
    38. Cock JM, Swarup R. Dumas C. Natural antisense transcript of the S loci receptor kinase gene and related sequence in Brassica oleracea. Mol Gen Genet, 1997, 255:514-524.
    39. Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC. Ethylene and fruit ripening. Physiol. Plant, 1997, 101:727-739
    40. Gao Z, Chen YF, Randlett MID, Zhao XC, Findell JL, Kieber JJ, Schaller GE. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem, 2003, 278: 34725-34732.
    41. Huang YF, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. The Plant J, 2003, 33: 221-233
    42. Alonson JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. E1N2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Sci, 1999, 284:2146-2152.
    43. Guo H, Ecker JR. The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 2004, 7:40-49
    44.方炳初,沈岳清,盛敏智,曹惠芳.乙烯利对后季稻秧苗的生理效应.植物学报,1983, 25(4):344-351
    45. Dolan L. The role of ethylene in the development of plant form. J of Exp Bot, 1997, 307 (48):201-210
    46. Aharoni N, Richmond A. Relationship between leaf water status and endogenous ethylene in detached leaves. Plant Physiol, 1978, 61:658-662
    47. Chen KM, Gong HJ, Chen GC, Zhang CL. ACC and MACC biosynthesis and ethylene production in water-stressed spring wheat. Acta Bot Sin, 2002, 44 (7): 775-781
    48.郭丽红,王定康,杨晓虹,陈善娜.外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响.云南大学学报(自然科学版),2004,6(4):352~356
    49.叶燕萍,李杨瑞,罗霆,庞国雁,杨丽涛.乙烯利浸种对甘蔗抗旱性的影响.中国农学通报,2005,21(6):387-389
    50.李振国,倪君蒂.乙烯消减盐抑制苜蓿种子萌发的机理研究.应用与环境生物学报,2001,7(1):24-2R
    51. Gomez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M. Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plantarum, 1998,103:475-484
    52. Morgan PW, He CJ, Greef JAD, De Proft ME Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol, 1990, 94:1616-1624
    53.许长成,邹琦.干旱对大豆叶片脂氧合酶活性及乙烯、乙烷释放的影响.植物学报,1993,35(增刊):31-37
    54.董建国,余叔文.小麦受渍后MACC的形成和ACC含量及乙烯产生的关系.植物生理学报,1983,9:103-104
    55.张骁,高俊风,王玲,宋纯鹏,李锦辉.喷施乙烯利提高玉米幼苗抗旱机理研究.灌溉排水,1999,18(1):39-47
    56.柯德森,王爱国,罗广华.活性氧在外源乙烯诱导内源乙烯产生过程中的作用.植物生理学报,1997,23(1):67-72
    57.王高鸿,王辉,黄久常.乙烯利诱导玉米根皮层通气组织的形成与程序化细胞死亡的关系.华中师范大学学报(自然科学版),2000,34(4):463-467
    58.王维荣,裴真明,欧阳光察.几种因子对黄瓜幼苗几丁质酶的诱导作用.植物生理学通讯,1994,30(4):263-266
    59. Pennincpx I. Pathogen-induced systemic activation of a plant defense in Arabidopsis follows a salicylic acid independent pathway. Plant Cell, 1996, 8:2309-2323
    60. Aloni R, Wolf A, Feigenbaum R Avni A, Klee HJ. The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls in tomato stems. Plant Physiol, 1998, 117:841-849
    61. Chen N, Goodwin PH, Hsiang T. The role of ethylene during the infection of Nicotianatabacum by Colletotrichum destructivum. Journal of Experimental Botany, 2003, 54 (392): 2449-2456
    62. Dong HP, Peng JL, Bag ZL, Meng XD, Bonasera JM, Chen GY, Beer SV, Dong HS. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol, 2004, 136:3628-3638
    63. Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol, 2005, 138: 1018-1026
    64.朱美君,王学臣,陈珈.植物的编程性细胞死亡.植物生理学通讯,1999,35(8):353-358
    65. Lund ST, Stall RE, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 1998, 10:371-382
    66.刘亚光,李海英,杨庆凯.乙烯利对大豆抗性生化物质的诱导作用.哈尔滨工业大学学报,2004,36(8):1014-1016
    67.姜国勇,杨仁崔.番茄Tm-2~2基因是一个受外源乙烯调节的抗病基因.病毒学报,2004,20(4):359-363
    68. Pieterse CMJ, Van Wees SCM, Hoffland. E, Van Pelt JA, Van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 1996, 8:1225-1237
    69. Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol, 2001, 125:652-661
    70. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol, 2004, 134:1017-1026
    71. O'Donnell PJ, Calvert C, Atzorn R, Wastemack C, leyser HMO, Bowles DJ. Ethylene as a signal mediating the wound response of tomato plants. Science, 1996, 274:1914-1917
    72. Hoffman T, Schmidt JS, Zheng XY, Bent AF. Isolatidn of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol, 1999, 119: 935-949
    73. Thomma BPHJ. Requirement of functional ethylene- insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol, 1999, 121:1093-1101
    74. Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM. Ethylene insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA, 1998, 95: 1933-1937
    75.田世平,罗云波,宫钦钦,刘红.病菌侵染对番茄果实乙烯生成,ACC合成酶和脂氧合酶活性的影响.植物病理学报,2002,32(2):159-164
    76. Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogensis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol, 1998, 39:500-507
    77. Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defense gene in Arabidopsis. Plant Cell, 1998, 10 (12): 2103-2113
    78. Marcos JF, Luis lez-Candelas G, Zacarias L. Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. Journal of Experimental Botany, 2005, 56 (418): 2183-2193
    79.陈峰,余军平,方晓红,张贵友.鉴定水稻中一个新的专一结合GCC元件的AP2/EREBP族转录因子.生物化学与生物物理进展,2006,33(7):627-634
    80.王少峡,王振英,彭永康.DREB转录因子及其在植物抗逆中的作用.植物生理学通讯,2004,40(1):7-13
    81.秦捷,王武,左开井,唐克轩.AP2基因家族的起源和棉花AP2转录因子在抗病中的作用.棉花学报,2005,17(6):366-370
    82. Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H. Functional, analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to bax and abiotic stress-induced plant cell death. Plant Physiol, 2005, 138: 1436-1445
    83. Wu KQ, Tian L, Hollingworth J, Brown DCW, Miki B. Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol, 2002, 128:30-37
    84. Lanfermeijer FC, Dijkhuis J, Sturre MJC. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2~2 frome Lycopersicon esculentum. Plant Mol Biol, 2003, 52: 1037-1049
    85.姜国勇,杨仁崔.番茄花叶病毒移动蛋白和番茄抗病基因Tm-2~2的互作诱导烟草转化体程序性细胞死亡.微生物学报,2005,45(2):301-304
    86.林炎坤,李杨瑞,叶燕萍.三种生长调节剂对甘蔗生长和蔗糖分积累的影响.广西农学院学报.1999,9(4):35-43
    87.谢特立,莫家让.乙烯利对甘蔗生化特性和品质的效应研究.广西农学院学报,1991,10(2):23-29
    88.文颖,吴文涌,刘世燕.不同浓度乙烯利浸种对砂培甘蔗萌芽及芽鞘和根系生长的影响.甘蔗糖业,1989,(1):25-87
    89.叶燕萍,李杨瑞,罗霆,庞国雁,杨丽涛.杨丽涛乙烯利浸种对甘蔗抗旱性的影响.中国农学通报,2005,21(6):387-389
    90.姚瑞亮,李杨瑞,杨丽涛,张桂荣.甘蔗伸长盛期乙烯利处理对节间ATP酶和转化酶活性的影响.热带作物学报,2002,23(2):66-71
    91.农友业,李杨瑞,张逢友,陈锦朝.甘蔗生长后期喷施乙烯利的效应.广西农业大学学报,1998,17(3):222-226
    92.廖维正,李杨瑞,林炎坤,农友业,刘宇,杨丽涛.甘蔗生长后期不同时间乙烯利催熟增糖的效应.西南农业学报,2003,16(4):60-64
    93.廖江雄,武金榜,林炎坤,李杨瑞.三种催熟剂对甘蔗成熟期光合及糖分积累的生理生化影响.广西农业大学学报,1997,16(3):204-209
    94.邢永秀,杨丽涛,李杨瑞.乙烯利对不同甘蔗品种光合特性的影响.广西农业生物科学,2003,22(2):109-113
    95.梁和,李杨瑞,满世忐,黄文尧.不同浓度乙烯利处理对甘蔗经济性状的效应.广西农业大学学报,1995,14(2):101-106
    96.姚瑞亮.乙烯利调控甘蔗生长和糖分积累的激素和酶生理基础研究.福建农业大学博士学位论文.2000年
    97. Li YR. China: an emerging sugar super power. Sugar Tech[J], 2004, 6(4):213-228
    98. Li YR. Beneficial effects of ethephon application on sugarcane under sub-tropical climate of China. Sugar Tech, 2004, 6(4):235-240
    99.朱秋珍,李杨瑞,叶燕萍,王维赞,邓展云.应用飞机大面积喷施甘蔗增糖增产剂示范.甘蔗,2004,11(4):35-39
    100.梁和,李杨瑞,黄文尧,满世志.不同浓度乙烯利对甘蔗光合性能的影响.广西农业大学学报, 1994,18(3):223-227
    101.Page DL.乙烯利:一种优越广用的植物生长调节剂.国外农学-甘蔗,1984,13(3):9-11
    102.罗瑞忭,李扬瑞,林炎坤.甘蔗生长前期喷施乙烯利对叶光台器官形态结构的影响.广西农业大学学报,1996,15(3):214-219
    103.罗瑞忭,李杨瑞,林炎坤.甘蔗生长前期喷施乙烯利对叶绿体超微结倚的影响.广西农业大学学报,1997,16(3):192-197
    104.林炎坤,李杨瑞,叶燕萍.三种生长调节剂对甘蔗若干生理生化特性的影响.广西农业大学学报,1992,11(3):35-30
    105.曾献军.甘蔗化控技术研究进展.甘蔗,1996,3(1):19-22
    106.叶燕萍,蒙显标,黄立祝,李杨瑞,李永健,谢爱玲,杨丽涛.乙烯利对宿根蔗生理生化特性和农艺性状的影响.广西农业科学,2005,36(4):308-311
    107.潘有强,林炎坤,李扬瑞.甘蔗分蘖期喷施乙烯利对两个甘蔗品种三种保护酶活性的影响.广西农业大学学报,1997,16(2):105-109
    108.梁和,李杨瑞,周生茂,满世志,黄文尧.不同维度乙烯利对甘蔗若干生理生化特性的影响.广西农业大学学报,1995,14(1):1-8
    109.李志刚,李杨瑞,林炎坤,林鉴钊,李素丽,周维永.生长前划叶面喷施乙烯利对甘蔗茎细胞几种酶活性的影响.广西植物,2002,22(2):177-180
    110.李永健,杨丽涛,李杨瑞,叶燕萍.不同时期喷施乙烯利对甘蔗生长、主要农艺性状及抗旱性的影响.甘蔗,2002,9(1):12-18
    111.吴凯朝,叶燕萍,李杨瑞,李永健,杨丽涛.喷施乙烯利对甘蔗群体冠层结构及一些抗旱性生理指标的影响.西南农业学报,2004,17(6):724-729
    112.周琼,李杨瑞,林鉴钊,叶燕萍,杨丽涛.喷施乙烯利对生长前期甘蔗叶片维管束结构及硅镁锌含量的影响.中国农学通报,2005,21(2):147-149
    113.廖芬,林鉴钊,李杨瑞,杨丽涛,叶燕萍,谢华.乙烯利对甘蔗叶片结构的影响及其与抗旱性的关系.西南农业学报,2003,16(2):45-48
    114. O'Donnell PJ, Calvert C, Atzom R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a signal mediating the wound response of tomato plants. Science, 1996, 274:1914-1917
    115.王自章,李杨瑞,张树珍,林俊芳,郭丽琼.甘蔗1—氨基环丙烷—1—羧酸(ACC)氧化酶基因片段的克隆和序列分析.遗传学报,2003,30(1):62-69
    116. Bachem CW, Oomen RJF, Visser RG. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep, 1998, 16:157-173
    117. Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J, 1996, 9(5) :745-753
    118. Money T, Reader S, Qu LJ, Dunford RE Moore G. AFLP-based mRNA fingerprinting. Nucleic Acids Res, 1996, 24:2616-2617
    119. Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem. Biophys. Res. Commun. 1997, 234:516-521
    120. Fukuda T, Kido A, Kajino K, Tsutsumi M, Miyauchi Y, Tsujiuchi T, Konishi Y, Hino O. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method. Biochem Biophys Res Commun,1999, 261:35-40
    121. Baldwin D, Crane V, Rice D. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol, 1999, 2:96-103
    122. McClelland M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primed PCR. Trends Genet, 1995, 11:242-246
    123. Donson J, Fang Y, Espiritu-Santo SA, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene expression analysis by transcript profiling Plant Mol Biol, 2002, 48:75-97
    124. Dellagi A, Birch PR, Heilbronn J, Lyon GD, Toth IK. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology. 2000, 146 (1): 165-171
    125.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,47(18):1412-1416
    126.吴敏生,高志环,戴景瑞.利用cDNA—AFLP技术研究玉米基因的差异表达.作物学报,2001,27(3):339-342
    127.周志钦.马铃薯从休眠到发芽过程差异表达基因的分析.西南农业大学学报,2001,23(3):213-215
    128.李凌,宋文芹,毛英伟,李秀兰,陈瑞阳,孙德岭.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因.南开大学学报(自然科学版),2000,33(4):33-36
    129.孙涌栋,张兴国,侯瑞贤,郭素英,郝风.授粉后黄瓜果实膨大相关基因的鉴别植物生理与分子生物学学报,2005,31(4):403-408
    130. Suarez MC, Bemal A, Gutierrez J, Tohme J, Fregene M. Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome 2000, 43:62-67
    131. Brugmans B, Del Carmen AF, Bachem CW, Van Os H, Van Eck HJ, Visser RG. A novel method for the construction of genome wide transcriptome maps. Plant J, 2002, 31, 211-222
    132. Kojima T, Habu Y, Iida S, Ogihara Y. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Mol Gen Genet, 2000, 263:635-641
    133. Johnes J, Rower H. A comparison the efficiency of differential display and cDNA-AFLP as a tools for the isolation of differentially expressed parasite genes. Fundamental and Applied Nemadity, 1998, 21:81-88
    134.王关林,张宏筠,植物基因工程.北京:科学出版社,2002.P750
    135. Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inze D, Zabeau M. Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA, 2002, 99:14825-14830
    136. Li YR, Solomon S. Ethephon: a versatile growth regulator for Sugar industry[J]. Sugar Tech, 2003, 5(4):213-223
    137. Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 1988, 241 : 1086-1089.
    138.娄平,王晓武,Bonnema G,方智远.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列.园艺学报,2003,30(6):668-672
    139. Sanguinetti CJ, Neto ED, Simpson AJG. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Bio. Techniques, 1994, 17:915-919
    140. Kehoe DM, Villand P, Omerille S. DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends plant sci., 1999, 4(1): 38~41
    141. Diachenko LB, Ledesma J, Chenchik AA, Siebert PD. Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA. Biochem Biophys Res Commun, 1996, 219(3): 824-828
    142.郭军,屈冬玉,王晓武,金黎平,谢开云,Rays H,Jiang Y,Govers F.马铃薯晚疫病菌小种特 异无毒基因候选表达序列的cDNA-AFLP鉴定.园艺学报,2005,32(1):44-48
    143.薛春生,肖淑芹,王国英,陈捷,张柯.利用cDNA-AFLP技术分析玉米自交系黄早四甘蔗花叶病毒侵染后基因差异表达.植物病理学报,2005,35(2):229-234
    144. Rzewuski G, Sauter M. The novel rice (Oryza sativa L) gene OsSbf1 encodes a putative member of the Na+/bile acid sympoter family. Journal of Experimental Botany, 2002, 53(376):1991-1993
    145. Paepe AD, Vuylsteke M, Hummelen PV, Zabeau M, Straeten D Van Der. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J, 2004, 39(4): 537-59
    146.王爱勤.甘蔗乙烯生物合成途径中两个关键酶基因的克隆与表达.广西大学博士学位论文,2005
    147.王晓斌,刘国仰.有关内含子的研究进展.中华医学遗传杂志,2000,17(3):211-212
    148.唐红生,洪剑明,邱泽生.内含子与基因表达.细胞生物学杂志,1997,19(1):1-4
    149.丁红梅,邵根宝,徐银学.内含子与基因表达调控.Animal Husbandry & Vcterinary Medicine,2006,38(3):50-53
    150.谢先芝,吴乃虎.高等植物基因的内含子.科学通报,2002,47(10):121-127
    151.丁红,龚兴国.内含子Ⅱ的作用机制利演化.生命的化学,2003,23(5):118-120
    152.石兰馨,张晓平,梁厚果.捕光叶绿素a/b结合蛋白和cab基因.植物生理学通讯,1995,31(6):470-476
    153.向太和,王利琳,庞基良.水稻(Oryza sativa L)捕光叶绿素a/b结合蛋白基因全长cDNA的克隆利特性分析.作物学报,2005,31(9):1227-1232
    154.石延霞,李宝聚,刘学敏.高温诱导黄瓜抗霜霉病机理.应用生态学报,2007,18(2):389-394
    155.张衍荣,王小菁,张晓云,文锋.水杨酸对豇豆枯萎菌的抑制作用.华中农业大学学报,2006,25(6):610-113
    156.张丽丽,师校欣,杜国强,王惠英.植物抗病机制及果树抗病育种研究进展.华北农学报,2006,21(增刊):175-179
    157. Yanagisawa S., Izui K. Molecular Cloning of two DNA-binding proteins of Maize that are structurally different but Interact with the same sequence motif. The Journal of Biological Chemistry, 1993,268(21): 16028-16036
    158.赵普庆,童富淡,汪俏梅.生长素信号转导研究进展.细胞生物学杂志,2004,26(2):114-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700