羊草乙醛脱氢酶基因的克隆及CBF2转录因子功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆境胁迫(如干旱、高盐、低温等)是影响植物生长发育的主要因素,严重影响农作物的产量和品质,并日益恶化生态环境。如何提高植物的抗非生物胁迫能力来满足日益增长的粮食需求,已经成为现代育种工作急需解决的关键问题之一。应用基因工程手段开发耐逆资源,克隆耐逆基因,培育耐逆农作物品种已成为现代农业研究的一个重要内容,也是维持农业可持续发展的有效策略。为了进一步探讨植物抗逆反应机理,本文以羊草、烟草和拟南芥作为主要实验材料,开展了植物耐逆分子机制和相关基因工程研究,主要结果如下。
     测定了灰绿型羊草的耐盐相关生理指标,并与黄绿型羊草进行了比较,各种生理生化指标的变化趋势充分反应了灰绿型羊草是一个高抗盐性材料,其中一定含有众多的耐盐基因。利用RT-PCR技术从灰绿型羊草RNA中扩增到了3个通读的且具有醛脱氢酶基因家族保守结构域的序列LC-1、LC-2和LC-3。结构上的同源性比较表明,LC-1为一种乙醛脱氢酶基因:LC-2为甜菜碱醛脱氢酶基因;LC-3为一个未知的全新的醛脱氢酶基因。这三个序列在GenBank上的注册号分别为DQ458294,DQ497618,DQ458293.
     以LC-1为靶序列,采用RACE技术克隆到了全长1712bp的羊草乙醛脱氢酶基因LC-ALDH,该基因包括1503bp的ORF,编码501个氨基酸,含有66bp的5’-UTR和144bp的3’-UTR,在终止密码子下游72bp处有单一的加尾信号AATAAA,在GenBank上的登陆号为EF492045。经生物信息学分析,LC-ALDH具有醛脱氢酶基因家族绝对保守的谷氨酸活性位点、半胱氨酸残基和组氨酸残基。与水稻的OsALDHla基因的同源性最高,氨基酸的一致性达到87%,系统发生学分析表明LC-ALDH属于细胞质的醛脱氢酶基因。Real Time RT-PCR结果表明,LC-ALDH基因受高盐、干旱及低温等逆境胁迫的诱导,并在这些诱导条件下其表达量显著升高。推测该基因在抑制细胞膜脂过氧化反应、抵御氧化胁迫的作用中起重要的作用。
     利用PCR技术从拟南芥基因组中克隆了CBF2基因和rd20A启动子,并构建了由rd29A启动子调控的CBF2基因的植物表达载体pBI-RD-CBF_2,通过农杆菌介导法转化烟草品种龙江851。转基因植株后代遗传学分析表明,外源基因以单拷贝的形式插入到烟草基因组中并遵循孟德尔3∶1的遗传分离规律;耐盐性鉴定表明,转基因烟草在150mM NaCl胁迫下尚可正常生长,而野生型烟草在100mM NaCl胁迫下盐害症状明显;电导率测定也表明,在盐胁迫下转基因烟草叶片细胞质膜的损伤程度低于对照株。说明CBF2基因的过量表达有利于提高植物对盐胁迫的耐受性。但有部分T_0代转基因烟草在形态上发生了明显改变,如植株矮化、叶片皱缩、花色变淡、顶端优势减弱、节间缩短等,推测与CBF2基因所含的AP2保守结构域有关。
Adversity stresses such as drought, high salt and freezing is a major factor that influences plant development. It has a serious impact on the output and quality of the crop, even on the environment. How to improve the ability to resist abiotic stress and to meet the increasingly demands of provision has become one of the key problems in the modern breeding works. It has became an important content in modern agriculture research to cultivating the new crop variety which can bear the stress and developing the tolerant resources and cloning the genes which are relevant to help plant to withstand the adversity. It is also an efficient strategy to keeping agricultural sustainable development. In this research, for further study the mechanism of stress tolerance in plant, Arabidopsis thaliana, tobacco and Leymus Chinensis were used as the main experimental materials to study the molecular mechanism of stress tolerance in plant and do some researches on the gene engineering. The main results are as follow:
     By measuring the relevant physiological index of grey green type Leymus Chinensis under the salt stress and comparing with yellow green type Leymus Chinensis, the variety trends of physiological indexes show that grey green type Leymus Chinensis is a high salt tolerant material and there are many genes related to salt tolerance in it. We get three read-through sequence LC-1、LC-2 and LC-3 with a conservation domain which belong to the aldehyde dehydrogenase family by RT-PCR method from Leymus Chinensis. Homologous comparison with their structure shows that LC-1 is a aldehyde dehydrogenase gene, LC-2 is a betaine aldehyde dehydrogenase gene and LC-3 is an unknown aldehyde dehydrogenase gene. These sequences are all enrolled in GeneBank and the number is DQ458294, DQ497618 and DQ458293, respectively.
     We clone the full-length aldehyde dehydrogenase gene which contain from Leymus Chinensis by RACE which use LC-1 as the target sequence. This gene contains 1503bp ORF including 66bp 5'-UTR and 144bp 3'-UTR, and codes 501 amino acid. There is a tailing signal AATAAA at the terminator downstairs 72bp and the registered number is EF492045 at GeneBank. LC-ALDH has an absolute conservative glutamic acid active site, cysteine residue and histidine residue of aldehyde dehydrogenase by bioinformatics analysis. There is 87% homology between the LC-ALDH and the OsALDHla gene in rice. Analysis of phylogenesis shows that LC-ALDH belongs to the aldehyde dehydrogenase gene in cytoplasm. The result of Real time RT-PCR shows that LC-ALDH is induced by drought, high salt and freezing and its expression increased prominently under these conditions. We confer that this gene plays an important role in restraining membrane lipid peroxidation and resisting the oxidation stress.
     After isolating the CBF2 gene and the rd29A promoter from Arabidopsis and constructing a plant expressive vector pBI-RD-CBF2 in which the CBF2 gene regulated by rd29A promoter, we transformed this vector to the tobacco Longjiang 851 by Agrobactorium. By the genetic analysis of the transgenic offspring, it shows that the exogenous gene inserts tobacco genome as one copy form and follows the Mendel 3:1 heredity separate law. The analysis of salt tolerance shows that transgenic tobacco can grow normally under the 150mM NaCI while the wild type tobacco represent harmfully under the 100ram NaCI. The result of the relative conductance shows that the damage extent of the cytoplasmic membrane in transgenic tobacco is lower than in the wild type tobacco. The experiment account for that the over expression of CBF2 gene is propitious to improve the plant salt tolerance. But the form of the TO generation of some transgenic tobaccos are obviously changed, including the plant stunting, leaf crimpling, color of the flower thinning, apical dominance weakening and node shortening, which was conferred that the changing is correlate to the AP2 conservative domain of CBF2 gene.
引文
[1] Thomashow M.F. Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 571-599.
    [2] Hasegawa P.M., Bressan R.A., Zhu J.K. and Bohnert H.J. Plant Cellular and Molecular Responsive to High Salinity. Annu. Rev. Plant Physiol. Plant Mol Biol. 2000, 51: 463-499
    [3] Xiong L.M. and Zhu J.K.Regulation of Abscisic Acid Biosynthesis. Plant Physiol. 2003, 133: 29-36
    [4] Shinozaki K., Yamaguchi-Shinozaki K. Molecular Responses to Dehydration and Low Temperature: Differences and Cross-Talk Between Two Stress Signaling Pathways. Curr Opinion Plant Biol. 2000, 3: 217-223.
    [5] Yamaguchi-Shinozaki K., Kasuga M., Liu Q., Nakashima K., Sakuma Y., Abe H., Shinwari Z.K., Scki M., Shinozaki K. Biological Mechanisms of Drought Stress Response, JIRCAS Working Report. 2002, 1-8
    [6] Shinozaki K., Yamaguchi-Shinozaki K., Seki M. Regulatory Network of Gene Expression in The Drought and Cold Stress Responses. Curr Opinion Plant Biol. 2003, 6: 410-417.
    [7] Verslues P.E., Zhu J.K. Before and Beyond ABA: Upstream Sensing and Internal Signals that Determine ABA Accumulation and Response Under Abiotic Stress. Biochemical Society Transactions. 2005, 33: 375-379
    [8] Xiong L.M., Schumaker K.S., Zhu J.K. Cell Signaling During Cold, Drought and Salt Stress. Plant Cell. 2002, 5165-5183.
    [9] Shinozaki K., Dennis E. Cell Signaling and Gene Regulation Global Analyses of Signal Transduction and Gene Expression Profiles. Curr Opinion Plant Biol. 2003, 6: 405-409.
    [10] Kasukabe Y, He L., Nada K., Misawa S., Ihara I, Tachibana S. Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress-Regulated Genes in Transgenic Arabidopsis Thaliana. Plant Cell Physiol. 2004, 45: 712-722
    [11] Chinnusamy V., Jagendorf A., Zhu J.K. Understanding and Improving Salt Tolerance in Plants. Crop Sci. 2005, 45: 437-448
    [12] Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert HJ. Gene Expression Profiles During the Initial Phase of Salt Stress in Rice. Plant Cell. 2001, 13: 889-906.
    [13] Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y., Shino-raki K. Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell. 2001, 13: 61-72.
    [14] Kreps J.A., Wu Y., Chang H.S., Zhu T, Wang X., Harper J.F. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol. 2002, 130: 2129-2141.
    [15] Fowler S., Thomashow M.F.Arabidopsis Transcriptome Profiling Indicates that Multiple Regulatory Pathways are Activated During Cold Acclimation in Addition to The CBF Cold Response Pathway. Plant Cell. 2002, 14: 1675-1690.
    [16] Shinozaki K., Yamaguchi-Shinozalci K. Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiol. 1997, 25: 327-334
    [17] Ingrain J., Bartels D. The Molecular Basis of Dehydration Tolerance in Plants. Annu. Rev. Plant Physiol. Plant Mol Biol. 1996, 47: 377-403.
    [18] Ohno R, Takumi S., Nakamura C. Kinetics of Transcript and Protein Accumulation of a Low-Molecular-Weight Wheat LEA D-11 Dehydrin in Response to Low Temperature. Plant Physiol. 2003, 160: 193-200.
    [19] Mazel A., Leshem Y., Tiwari B.S, Levine A.Induction of Salt and Osmotic Stress Tolerance by Overexpression of an Intracellular Vesicle Trafficking Protein AtRab7 (AtRabG3e). Plant Physiol. 2004, 134: 118-128.
    [20] Sakamoto A., Alia M., Murata N. Metabolic Engineering Of Rice Leading to Biosynthesis of Glycine Betaine and Tolerance to Salt and Cold. Plant Mol Boil. 1998, 38: 1011-1019.
    [21] Abebe T., Guenzi A.C., Martin B., Cushman J.C. Tolerance of Mannitol-Accumulating Transgenic Wheat to Water Stress and Salinity. Plant Physiol. 2003, 131: 1748-1755.
    [22] Baud S., Vaultier MN., Rochat C. Structure and Expression Profile of the Sucrose Synthase Multigcne Family in Arabidopsis J Exp Bot. 2004, 55: 397-409.
    [23] Kovtun Y., Chiu W.L., Tena G., Sheen J. Functional Analysis of Oxidative Stress-Activated Mitogen-activated Protein Kinase Cascade in Plants. Proc Natl Acad Sci USA. 2000, 97: 2940-2945.
    [24] Torii K.U. Receptor Kinase Activation and Signal Transduction in Plants: An Emerging Picture. Curr Opin Plant Biol. 2000, 3: 361-367
    [25] Becraft P.W. Receptor Kinase Signaling in Plant Development. Annu Rev Cell Dev Biol. 2002, 18: 163-192
    [26] Dievart A., Clark S.E. Using Mutant Alleles to Determine the Structure and Function of Leucine-Rich Repeat Receptor-Like Kinases. Curr Opin Plant Biol. 2003, 6: 507-516.
    [27] Haffani Y.Z., Silva N.F., Goring D.R. Receptor Kinase Signalling in Plants. Can J Bot. 2004, 82: 1-15
    [28] Ludwig A.A., Romeis T, Jones J.D.CDPK-Mediated Signalling Pathways: Specificity and Cross-talk. J Exp Bot. 2004, 55: 181-188.
    [29] Yoshida S., Parniske M.Regulation of Plant Symbiosis Receptor Kinase Through Serine and Threonine Phosphorylation. J Biol Chem. 2005, 280: 9203-9209
    [30]Haake V.,Cook D.,Riechmann J.L.,Pineda O.,Thomashow M.F.,Zhang J.Z.Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis.Plant Physiol.2002,130: 639-648.
    [31]Chen W.,Provart NJ.,Glazebrook J.,KatagiriF,Chang HS.,Eulgem T,Mauch F.,Luan S.,Zou G,Whitham SA.,Budworth PR.,Tao Y,Xie Z.,Chen X.,Lam S.,Kreps JA.,Harper JF.,Si-Ammour A.,Mauch-Mani B.,Heinlein M.,Kobayashi K.,Hohn T.,Dangl JL.,Wang X.,Zhu T.Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests their Putative Functions in Response to Environmental Stresses.Plant Ce11.2002,14:559-574
    [32]Kim S.H.,Hong J.K.,Lee S.C.,Sohn K.H.,Jung H.W.,Hwang B.K.CAZFPI,Cys2/His2-Type Zinc-Finger Transcription Factor Gene Functions as a Pathogen-Induced Early-Defense Gene in Capsicum Annuum. Plant Mol Biol 2004,55:883-904.
    [33]Tang M.,Lu S.,Jing Y,Zhou X.,Sun J.,Shen S.Isolation and Identification of a Cold-Induciblc Gene Encoding a Putative DRE-Binding Transcription Factor from Festuca Arundinacea.Plant Physiol Biochem.2005,43:233-239
    [34]Luan S.Tyrosine Phosphorylation in Plant Cell Signaling.Proc Natl Acad Sci USA.2002,99:11567-11569
    [35]Mayrose M.,Bonshtien A.,Sessa G.LeMPK3 is a Mitogen-Activated Protein Kinase with Dual Specificity Induced During Tomato Defense and Wounding Responses.J Biol Chem.2004,279:14819-14827
    [36]Zhang X.,Zhang L.,Dong, F.,Gao,J.,Galbraith,D.W.,Song,C.P.Hydrogen Peroxide is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba.Plant Physiol.2001,126:1438-1448.
    [37]Urao T.,Yakubov B.,Yamaguchi-Shinozaki K.,Shinozaki K..Stress-Responsive Expression of Genes for Two-Component Responsive Regulator-Like Proteins in Arabidopsis thaliana.FEBS Lett.1998,427:175-178
    [38]Ramanjulu S.,Bartels D.Drought and Desiccation-Induced Modulation of Gene Expression in Plant.Plant Cell and Environment.2002,25:141-151.
    [39]赵恢武.干旱诱导性启动子驱动的海藻糖磷酸合酶基因载体的构建及转基因烟草的耐旱性.2000,42(6):616-619
    [40]Maurel C.,Chrispeels M.J.Aquaporins:a Molecular Entry into Plant Water Relations.Plant Physiology.2001,25:135-138
    [41]Tournaire-Roux C,Sutka M.,Javot H.,Gout E.,Gerbeau P.,Luu D.T.,Bligny R,Maurel C.Cytosolic pH Regulates Root Water Transport During Anoxic Stress Through Gating of Aquaporins. Nature.2003,425:393-397
    [42]Weig A,Deswarte C,Chrispeels M.J.The Major Intrinsic Protein Family of Arabidopsis has 23 Members that Form three Distinct Groups with Functional Aquaporins in Each Group[J].Plant Physiol.1997,114:1347-1357
    [43]Fukuhara T,Kirch H.H,Bohnert H.J.Expression of Vpl Anel Water Channel Proteins During Seed Germination[J].Plant Cell Environ.1999,22:417-424.
    [44]Yamada S,Katsuhara M,Kelly W.B,Michalowski C.B,Bohnert H.J.A family of Transcripts Encoding Water Channel Proteins:Tissue-Specific Expression in the Common ice Plant[J].Plant Cell.1995,7:1129-1142.
    [45]任仲海,马秀灵,赵彦修,张慧.Na+H+逆向转运蛋白和植物耐盐性[J].生物工程学报.2002,18(1):16-19.
    [46]Zhang H.X,Blumwald E.Transgenic Salt-tolerant Tomato Plants Accumnlate Salt in Foliage But not in Fruit.Nat.Biotechnol.2001,19:765-768
    [47]Ericson M.C,Alfinito S.H.Proteins Produced During Salts Tress in Tobacco Cell Culture.Plant Physiol.1987,74:506-509
    [48]卢青.植物耐盐性的分子生物学研究进展.生物学杂志.2000,17(4):9-11
    [49]Miernyk J.A.Protein Folding in Plant Cell.Plant Physiol.1999,121:695-703
    [50]Kiyosue T.Yamaguchi-Shinozaki K.,Shinozaki K.Cloning of cDNA for Genes that are Early-Responsive to Dehydration Stress (ERD) in Arabidopsis Thaliana L.:Identification of Three ERD) as HSP Cognate Genes.Plant Mol Bioi.1994,25:791-798
    [51]Lin S.K.,Chang M.C.,Tsai Y.G,Lur H.S.Proteomic Analysis of the Expression of Proteins Related to Rice Quality During Caryopsis Development and the Effect of High Temperature on Expression.Proteomics.2005,5:2140-2156
    [52]Russel B.L.Rathinasabapathi B.,Hanson A.D.Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth. Plant Physiol.1998,116:859-865
    [53]Holmstrom K.O.,Somersalo S.,Mandal A.,Palva T.E.,Welin B.Improved Tolerance to Salinity and Low Temperature in Transgenic Tobacco Producing Glycine betaine.J Exp Bot.2000,51:177-185.
    [54]沈义国,杜保兴,张劲松,陈受宜.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析.生物工程学报.2001,17(1)1-6
    [55]McCue K.F,Hanson A.D.Salt-Inducible Betaine Aldehyde Dehydrogenase from Sugar Beet:cDNA Cloning and Expression.Plant Mol Biol.1992,18:1-11
    [56]Ishitani M,Nakamura T,Han S.Y,Takabe T.Expression of the Betaine Aldehyde Dehydrogenase Gene in Barley in Response to Osmotic Stress and Abscisic Acid.Plant Mot Biol.1995,27:307-315
    [57]Delauney A.J.,Verma D.P.S.Proline Biosynthesis and Osmoregulation in Plants.Plans.1993,4:215-223
    [58]Yoshiba Y,Kiyosue T,Kataggiri T,et al.Correlation Between the Induction ofa gene for △' -Pyrroline-5-Carboxylate Synthetase and Accumulation of Proline in Arabidopsis Thaliana Under Osmotic Stress. Plant J, 7: 751-761
    [59] Zhang S.Z., Yang B.P., Feng C.L., Tang H.L. Genetic Transformation of Tobacco withthe Trehalose Synthase Gene from Grifola frondosa Fr. Enhances the Resistance to Drought and Salt in Tobacco. Journal of Integrative Plant Biology. 2005, 47: 579-587
    [60] Bieleski R.L. Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower. Plant Physiol. 1993, 103: 213-219
    [61] Yang J, Zhang J., Wang Z., Zhu Q., Liu L. Activities of Fructan- and Sucrose-Metabolizing Enzymes in Wheat Stems Subjected to Water Stress During Grain Filling. Planta. 2004, 220: 331-343.
    [62] Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., Schroeder J.l. Calcium Channels Activated by Hydrogen Peroxide Mediate Abscisic Acid Signaling in Guard Cells. Nature. 2000, 406: 731-734.
    [63] Zhao Z., Chen G., Zhang C. Interaction Between Reactive Oxygen Species and Nitric Oxide in Drought-Induced Abscisic Acid Synthesis in Root Tips of Wheat Seedlings. Aust J Plant Physiol. 2001, 28: 1055-1061.
    [64] Xiong L.M., Zhu J.K. Molecular and Genetic Aspects of Plant Responses to Osmotic Stress. Plant Cell Environ. 2002, 25: 131-139
    [65] Lindahl R. Aldehydc Dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochenr. Mol.. Biol. 1992, 27: 283-355
    [66] Yoshida A., Rzhetsky A., Hsu L.C. and Chang C. Human Aldehyde Dehydrogenase Family. Eur. J. Biochem. 1998, 251: 549-557
    [67] Skibbe D.S., Liu F., Wen T.J., Yandeau M.D., Xiangqin, C., Cao J., Simmons C.R. and Schnable, P.S. Characterization of the Aldehyde Dehydrogenase Gene Families of Zea mays and Arabidopsis Thaliana. Plant Mol. Biol. 2002, 48: 751-764.
    [68] Wood A.J, Saneoka H, Rhodes D, Joly RJ, Goldsbrough P.B.Betaine Aldehyde Dehydrogenase in Sorghum: Molecular Cloning and Expression of Two Related Genes. Plant Physiology. 1996, 110: 1301-1308
    [69] Valenzuela-Soto E.M., R.A.Munoz-Clares. Betaine Aldehyde Dehydrogenase from Leaves of Amaranthus hypochondriacus L. Exhibits an Iso Ordered Bi Bi Steady State Mechanism. J. Biol. Chem. 1994, 268: 23818-23824.
    [70] Chen X., Zeng Q. and Wood A.d. The Stress-Responsive Toriula Ruralis Gene ALDH21A1 Describes a Novel Eukaryotic Aldehyde Dehydrogenase Protein Family. J.Plant Physiol. 2002, 159: 677-684.
    [71] Sunkar R., Bartels D. and Kirch H.H. Overexpression of a Stress-Inducible Aldehyde Dehydrogenase Gene from Arabidopsis Thaliana in Transgenic Plants Improves Stress Tolerance. Plant J. 2003, 35, 452-464.
    [72] Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription factor. Nature Biotechnology. 1999, 17: 287-292.
    [73] Allen M.D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M. A Novel Mode of DNA Recognition by a Beta-Sheet Revealed by the Solution Structure of the GCC-box Binding Domain in Complex with DNA. EMBO J. 1998, 17: 5484-5496.
    [74] Liu Q., Kasuga M., Sakuma Y, Abe H., Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two Transcription Factors, DREBI and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signalling Pathways in Draught-and Low Temperature Responsive Gene Expression, Respectively in Arabidopsis. Plant Cell. 1998, 10: 1391-1406
    [75] Stone J.M., Walker J.C. Plant Protein Kinase Families and Signal Transduction. Plant Physiol. 1995, 108: 451-457
    [76] Guo H.W., Ecker J. The Ethylene Signaling Pathway: New Insights. Curr Opinion Plant Biol. 2004, 7: 40-49
    [77] Shou H., Bordallo P., Fan J.B., Yeakley J.M, Bibikova M., Sheen J., Wang K. Expression of an Active Tobacco Mitogen-Activated Protein Kinase Kinase Kinase Enhances Freezing Tolerance in Transgenic Maize. Proc Natl Acad Sci USA. 2004a, 101: 3298-3303
    [78] Shou H., Bordallo P., Wang K. Expression of the Nicotiana Protein Kinase (NPK1) Enhanced Drought Tolerance in Transgenic Maize. J Exp Bot. 2004b, 55: 1013-1019
    [79] Zhu J-K. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physion. 2000, 124: 941-948
    [80] Xiong L.M., Schumaker K.S., Zhu J.K. Cell Signaling During Cold, Drought and Salt Stress. Plant Cell. 2002, S165-S183.
    [81] Pandey S., Tiwari S.B. Upadhyaya K C, Sopory S.K. Calcium Signaling: Linking Environmental Signals to Cellular Functions. Critical Reviews in Plant Sciences. 2000, 19: 291-318.
    [82] Sanders D., Pelloux J, Brownlee C., Harper J.F. Calcium at the Crossroads of Signalling. The Plant Cell. 2002, 14: S401-S417
    [83] Luan S., Kudla J, Rodriguez-Concepcion M., Yalovsky S. Gruissem W. Calmodulins and Calcineurin B-like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants. The Plant Cell. 2002, 14: S389-400.
    [84] Harmon A.C., Gribskov M., Gubrium E., Harper J.F. The CDPK Superfamily of Protein Kinase. New Phytol. 2001, 151: 175-183.
    [85] Hwang L, Sze H., Harper J.F. A Calcium-Dependent Protein Kinase can Inhibit a Calmodulin-Stimulated Ca2+ Pump (ACA2) Located in the Endoplasmic Reticulum of Arabidopsis. Proc Natl Acad Sci USA. 2000, 97: 6224-6229.
    [86] Leclercq J, Ranty B., Sanchez-Ballesta M.T., Li Z., Jones B., Jauneau A., Pech J.C., Latche A., Ranjeva R., Bouzayen M. Molecular and Biochemical Characterization of LeCRK1, a Ripening-associated Tomato CDPK-Related Kinase. J Exp Bot. 2005, 56: 25-35
    [87] Yoon G.M., Cho H.S., Ha H.J., Liu J.R., Lee H.S.P. Characterization of NtCDPKI, a Calcium-Dependent Protein Kinase Gene in Nicotiana Tabacum, and the Activity of its Encoded Protein. Plant Molecular Biology 1999, 39: 991-1001.
    [88] Martin M.L., and Busconi L. A Rice Membrane-Bound Calcium-Dependent Protein Kinase is Activated in Response to Low Temperature. Plant Physiol. 2001, 125: 1442-1449.
    [89] Saijo Y, Hata S., Kyozuka J., Shimamoto K., Izui K. Over-Expression of a Single Ca2+-Dependent Protein Kinase Confers Both Cold and Salt/Drought Tolerance on Rice Plants. Plant J. 2000, 23: 319-327.
    [90] Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosakawa D., and Shinozaki K. Role of Arabidopsis MYC and MYB homologs in Drought- and Abscisic Acid-Regulated Gene Expression. Plant Cell. 1997, 9: 1859-1868.
    [91] Morris E.R., Walker J.C. Receptor-Like Protein Kinases: the Keys to Response. Curr Opin Plant Biol. 2003, 6: 339-342.
    [92] Hackett R.M., Oh S A, Morris P.C and Grierson D. A Tomato MAP Kinase Kinase Gene Differentially Regulated During Fruit Development Leaf Senscence and Wounding. Plant Physiol. 1998, 117: 1526-1531
    [93] Shibata E., Banno H, Ito Y, Hirano K, Usamin S, Machida C and Machida Y. A Tobacco Protein Kinase, NPK2, has a Domain Homologous to a Domain Found in Avticators of Mitogen Activated Protein Kinases(MAPKKs). Mol Gen Genet. 1995, 246: 401-410
    [94] Hardin S C, Wolniak S M. Molecular Cloning and Characterization of Maize ZmMEK1, a Protein Kinase with a Catalytic Domain Homologous to Mitogen and Stress-Activated Protein Kinases Kinase. planla. 1998, 206: 577-584
    [95] Munns R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25: 239-250.
    [96] Kiegetl S, Cardinale F, Silligan, Cross A, Baudouin E., Liwosz A, et al. SIMKK, A Mitogen-Activated Protein Kinase (MAPK) Kinase, is a Specific Activator of the Salt Stress-Induced MAPK, SIMK, Planl cell. 2000, 12: 2247-2258
    [97] O'Rourke S.M., Herskowitz U. The Hogl MAPK Prevents Cross Talk Between the HOG and Pheromone Response MAPK Pathways in Saccaromyces Cerevisiae, Genes Dev. 1998, 12: 2874-2886
    [98] Yang K.Y, Liu Y, Zhang S. Activation of a Mitogen-Activated Protein Kinase Pathway is Involved in Disease Resistance in Tobacco. Proc Natl Acad Sci IJSA. 2001, 98: 741-746.
    [99] Mora-Alvarez Y G, Nava-Vargas J M, Valle-Villanueva C H, Lopez-Gomez R., Lopez-Meza J E, Valdez-Alarcon J J, Cano-Camacho H, Baizabal-Aguirre V M. Osmotic Stress Induces the Activation of a Mitogen-Activated Protein Kinase(MAPK) and a Calcium-Independent Protein Kinase from Beet Root(Beta vulgaris L.). Plant science. 2004, 167: 561-567.
    [100] Milolajczyk M., Olubunmi S.A., Muszynska G, Klessig D.F., Dobrowolska G. Osmotic Stress Induces Rapid Activation of a Salicylic Acid-Induced Protein Kinase and a Homolog of Protein Kinase ASK1 in tobacco cells. Plant Cell. 2000, 12: 165-178
    [101] Hoyos M.E., zhang S. Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress. Plant Physiol. 2000, 122: 1355-1363.
    [102] Wu S.J., Lei D., Zhu J.K. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell. 1996, 8: 617-627
    [103] Liu J, and Zhu JK. An Arabidopsis Mutant that Requires Increased Calcium for Potassium Nutrition and Salt Tolerance. Proc Natl Acad Sci. 1997, 94: 14960-14964
    [104] Shi H., Ishitani M, Kim C., Zhu J.K. The Arabidopsis Thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter. Proc Natl Acad Sci USA. 2000, 97: 6896-6901.
    [105] Liu J., Ishitani M., Halfter U, Kim C.S., Zhu J.K. The Arabidopsis Thaliana SOS2 Gene Encodes a Protein Kinase that is Required for Salt Tolerance. Proc Natl Acad Sci USA. 2000, 97: 3730-3734.
    [106] Guo Y., Qiu Q., Quintero F.J., Pardo J.M., Ohta M., Zhang C., Schumaker K.S., Zhu J.K. Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis Thaliana. Plant Cell. 2004, 16: 435-449
    [107] Liu J., Zhu J.K. A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science. 1998, 280: 1943-1945.
    [108] Ishitani M., Liu J., Halfter U., Kim C.S., Shi W.d, Zhu J.K. SOS3 Function in Plant Salt Tolerance Requires N-myristoylation and Calcium Binding. Plant Cell. 2000, 12: 1667-1678.
    [109] Guo Y., Halfter U., Ishitani M., Zhu J.K. Molecular Characterization of Functional Domains in the Protein Kinase SOS2 that is Required for Plant Salt Tolerance. Plant Cell. 2001, 13: 1383-1399.
    [110] Luan S., Kudla J, Rodriguez-eoncepcion M., Yalovsky S. Gruissem W. Calmodulins and Calcineurin B-Like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants. The Plant Cell. 2002, 14: S389-400.
    [111] Gong D, Guo Y, Jagendorf A T, Zhu J K. Biochemical Characterization of the Arabidopsis Protein Kinase SOS2 that Functions in Salt Tolerance. Plant Physiol. 2002, 130: 256-264.
    [112] Gong, D., Guo, Y., Schumaker, K.S., Zhu, J.K. The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis. Plant Physiol. 2004, 134: 919-926
    [113] Harmon A.C, Gribskov M. and Harper J.F. CDPKs-a Kinase for Every Ca2+ Signal. Trends Plant Sci. 2000, 5: 154-159
    [114] Sanchez-Barrena M.J., Matinez-Ripoll M., Zhu J.K., Albert A. The Structure of the Arabidopsis Thaliana SOS3: Molecular Mechanism of Sensing Calcium for Salt Stress Response. J Mol Biol. 2005, 345: 1253-1264
    [115] Halfter U, Ishitani M., Zhu J.K. The Arabidopsis SOS2 Protein Kinase Physically Interacts with and is Activated by the Calcium-Binding Protein SOS3. Proc Natl Acad Sci USA. 2000, 97: 3735-3740.
    [116] Quintero F.J., Ohta M., Shi H., Zhu J.K., Pardo J.M. Reconstitution of the SOS Signaling Pathway for Na+ Homeostasis in Plants. Proc Natl Acad Sci USA. 2002, 99: 9061-9066.
    [117] Qiu Q., Guo Y., Dietrich M.A., Schumaker K.S., Zhu J.K. Regulation of SOS1, a Plasma Membrane Na+/H+ Exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA. 2002, 99: 8436-8441.
    [118] Zhu J.K. Regulation of Ion Homeostasis under Salt Stress. Curr Opin Plant Biol. 2003, 6: 441-445.
    [119] Taylor I.B., Burbidge A., Thompson A.J. Control of Abscisic Acid Synthesis. J Exp Bot. 2000, 25: 1563-1574.
    [120] Schwartz S.H., Qin X., Zeevaart J.A.D. Elucidation of the Indirect Pathway of Abscisic Acid Biosynthesis by Mutants, Genes, and Enzymes. Plant Physiol. 2003, 131: 1591-1601.
    [121] Zhou R., Cutler A.J., Ambrose S.J., Galka M.M., Nelson K.M., Squires T.M., Locwen M.K, Jadhav A.S., Ross A.R.S., Taylor D.C, Abrams S.R. A New Abscisic Acid Catabolic Pathway. Plant Physiol. 2004, 134: 361-369
    [122] Knight H., Brandt S. and Knight M.R. A History of Stress Alters Draught Calcium Signalling Pathway in Arabidopsis. Plant J. 1998, 16: 681-687.
    [123] Knight H., Knight M.R. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends Plant Sci. 2001, 6: 262-267.
    [124] Eckardt N.A. Specificity and Cross-Talk in Plant Signal Transduction. Plant Cell. 2002, 14: S9-S14.
    [125] Taylor J.E. and McAinsh M.R. CSyP3-SIGNALLING CROSS-TALK. Comparative Biochemistry and Physiology Part A. 2003, 134: S130-S140.
    [126] Taylor J.E., McAinsh M.R. Signalling Crosstalk in Plants: Emerging Issues. J Exp Bot. 2004, 55: 147-149.
    [127] Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M, Enju A., Sakurai T., Satou M., Akiyama K., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y, Shinozaki K.Monitoring the Expression Pattern of Around 7000 Arabidopsis Genes under ABA Treatments Using a Full-Length cDNA Microarray. Funct Integ Genom. 2002a, 2: 282-291.
    [128] Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y, Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Taji T, Yamaguchi-Shinozaki K., Carninci P, Kawai J., Hayashizaki Y, Shinozaki K. Monitoring the Expression Profiles of 7000 Arabidopsis Genes under Drought, Cold, and High-Salinity Stresses Using a Full-Length cDNA Microarray. Plant J. 2002b, 31: 279-292.
    [129] Shinozaki K., Yamaguchi-Shinozaki K. Molecular Response to Drought and Cold Stress. Curr Opin Biotechnol. 1996, 7: 161-167.
    [130] Bray E.A. Plant Responses to Water Deficit. Trends in Plant Science. 1997, 25: 48-54.
    [131] Rock C.D.Pathways to Abscisic Acid-Regulated Gene Expression. New Phytologist. 2000, 25: 357-396.
    [132] Takahashi S., Seki M., Ishida J., Satou M., Sakurai T., Narusaka M., Kamiya A., Nakajima M., Enju A., Akiyama K., Yamaguchi-Shinozaki K., Shinozaki K. Monitoring the Expression Profiles of Genes Induced by Hyperosmotic, High Salinity, and Oxidative Stress and Abscisic Acid Treatment in Arabidopsis Cell Culture Using a Full-Length cDNA Microarray. Plant Mol Biol. 2004, 56: 29-55.
    [133] Mustilli A.C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. Plant Cell. 2002, 14: 3089-3099.
    [134] Yoshida R., Hobo T., Ichimura K., Mizoguchi T., Takahashi F., Aronso J., Ecker J.R., Shinozaki K. ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis. Plant Cell Physiol. 2002, 43: 1473-1483.
    [135] Guo Y, Xiong L., Song C.P., Gong D., Halfter U. and Zhu J.K. A Calcium Sensor and its Interacting Protein Kinase are Global Regulators of Abscisic Acid Signaling in Arabidopsis. Developmental Cell. 2002, 3: 233-244.
    [136] Sakuma Y, Liu Q., Dubouzet J.G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications. 2002, 290: 998-1009.
    [137] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB Genes in RICE, Oryza saliva L.. Encode Transcription Activators that Function in Drought, High-Salt and Cold-Responsive Gene Expression. Plant J. 2003, 33: 751-763.
    [138] Gilmour S.J., Zarka D.G, Stockinger E.J., Salazar M.P., Houghton J.M. and Thomoshow M.F. Low Temperature Regulation of the Arabidopsis CBF Family of AP2 Transcriptional Activators as an Early Step in Cold-Induced COR Gene Expression. Plant J. 1998, 16: 433-442.
    [139] Zarka D.Ci, Vogel J.T., Cook D., Thomashow M.F. Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (inducer of CBF expression) Promoter Elements and a Cold-Regulatory Circuit that is Desensitized by Low Temperature. Plant Physiol. 2003, 133: 910-918.
    [140] Wang K.L., Li H., Ecker J.R. Ethylene Biosynthesis and Signaling Networks. Plant Cell. 2002, 14: S131-151
    [141] Halliday K J, Fankhauser C. Phytochrome-Hormonal Signalling Networks. New Phytologist. 2003, 157: 449-463.
    [142] Chang C, Stadler R.Ethylene Hormone Receptor Action in Arabidopsis. BioEssays. 2001, 23: 619-627.
    [143] Mine T., Hiyoshi Y., Kasaoka K., Ohyama A. CIP353 Encodes an AP2/ERF-Domain Protein in Potato (Solanum tuberosum L.) and Responds Slowly to Cold Stress. Plant Cell Physiol. 2003, 44: 10-15.
    [144] Park J.M., Park C.J., Lee S.B., Ham B.K., Shin R., Paek K.H. Overexpression of the Tobacco Tsil Gene Encoding an EREBP/AP2-Type Transcription Factor Enhances Resistance Against Pathogen Attack and Osmotic Stress in Tobacco. Plant Cell. 2001, 13: 1035-1046
    [145] Cheng Y.L., Chen X.M. Posttranscriptional Control of Plant Development. Curr Opinion Plant Biol. 2004, 7: 20-25
    [146] Wilson C, Voronin V, Youraev A, Vecente O, Heberle-Bors E A. Developmentally Regulated MAP Kinase Activated by Hydration in Tobacco Pollen. Plant Cell. 1997, 9: 2093-2100.
    [147] Xiong L.M., Zhu J.K. Abiotic Stress Signal Yransduction in Plants; Molecular and Genetic Perspectives. Physiol Plant. 2001, 112: 152-166.
    [148] Gutterson N., Reuber T.L. Regulation of Disease Resistance Pathways by AP2/ERF Transcription Factors. Curr Opin Plant Biol. 2004, 7: 465-471.
    [149] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000, 290: 2105-2110.
    [150] 路子显.常团结.刘翔等.植物碱性亮氨酸拉链(Bzip)蛋白的研究进展(一).遗传.2001,23:564-570
    [151] Choi H, Hong J H, Ha J, et al. ABFS a Family of ABA-Responsive Element Binding Factors. Jour BiolChem. 2000, 275: 1723-1730
    [152] Class S, Michoel B. The Regulation of Transcription Factor Activily in Plants. Trends in PlantSci. 1998, 3(10): 378-383
    [153] Casaretto J, Ho T. The Transcription Factors HvABI5 and HvVP1 are Required for Abscisic Acid Induction of Gene Expression in Barley Aleurone Cells. Plant Cell. 2003, 15: 271-284
    [154] Brocard I M, Lynch T J, Finkelstein R R. Regulation and Role of the Arabidopsis ABA- insensitive 5 Gene in ABA, sugar and Stress Response. Plant Physio. 2002, 129: 1533-1543
    [155] Kuhlmann M, Horvay K, Strathmann A, et al. The Alphahelical D1 Domain of The Tobacco bZIP Transcription Factor BZH Interacts With The Ankyrin-Repeat Protein ANK1 and Important for BZH Function Both in Auxin Signaling and Pathogen Response. Jour BiolChem. 2003, 278: 8786-8794
    [156] Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a Cis-Regulatory Region of a Gene in Arabidopsis Thaliana Whose Induction by Dehydration is Mediated by Abscisic Acid and Requires Protein Synthesis. Mol.Gen.Genet., 1995, 247: 391-398.
    [157] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. PlantCell. 2003, 15: 63-78.
    [158] De Bruxelles G L, Peacock W J. Dennis E S, Dolferus R. Abscisic Acid Induces the Alcohol Dehydrogenate Gene in Arabidopsis. PlantPhysiol., 1996, 111: 381-391.
    [159] Seki M, Narusaka M, Abe H, Kasuga M,Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the Expression Pattern of 1300 Arabidopsis Genes Under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell. 2001, 13(1): 61~72.
    [160] Hao D, Ohme-Takagi M, Sarai A. Unique Mode of GCC Box Recognition by The DNA-Binding Domain of Ethylene-Responsive Element-Binding Factor (ERF domain) in Plant. J Biol Chem, 1998, 273: 26857~26861
    [161] Wang H., Huang Z J., Chen Q., et al., Ectopic Overexpression of Tomato JERF3 in Tobacco Activates Downstream Gene Expression and Enhances Salt Tolerance. Plant Mol. Biol., 2004, 55: 183-192.
    [162] Kizis D, Pages M. Maize DRE-binding Proteins DBF1 and DBF2 are Involved in rab17 Regulation Through the Drought-Responsive Element in an ABA-Dependent Pathway. Plant J. 2002, 30(6): 679-689
    [163] Fujimoto S Y., Ohta M, Usui A. et al.. Arabidopsis Ethylene-Responsive Element Binding Factors act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression. Plant Cell. 2000, 12: 393-40
    [164] Park J M, Park C J, Lee S B, et al. Overexpression of the Tobacco Tsil Gene Encoding an EREBP/AP2-Type Transcription Factor Enhances Resistance Against Pathogen Attack and Osmotic Stress in Tobacco. Plant Cell. 2001, 13: 1035~1046
    [165] Ulker B, Somssich I E. WRKY Transcription Factors: From DNA Binding Towards Biological Function. Curr Opin Plant Biol. 2004, 7(5): 491-498.
    [166] Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cat-tivelli L. Hv-WRKY38: A New Transcription Factor Involved in Cold- and Drought-Response in Barley. Plant Mol Biol.2004,55(3):399~416.
    [167]Rontein D,Basset G,Hanson A.D.Metabolic Engineering of Osmoprotectant Accumulation in Plants.Metab Eng.2002,4:49-56
    [168]Hayashi H.A,Mustardy L,Deshnittm P,Ida M,Murata N.Transformation of Arabidosis thaliana with Coda Gene for Choline Oxidase;Accumulation of Glycinebetaine and Enhanced Tolerance to Salt and Cold Stress.Plant J.1997,12:133-142
    [169]Mohanty A,Kathuria H, Ferjani A,Sakamoto A, Mohanty P,Murata N,Tyagi A.K.Transgenics of an Elite Indica Rice Variety Pusa Basmatil Harbouring the CodA Gene are Highly Tolerant to salt Stress.Theor Appl Genet.2002,106:51-57
    [170]李银心,常凤启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清。转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性。植物学报,42(5):480-484
    [171]曾华宗,罗利军.植物抗旱、耐盐基因概述.植物遗传资源学报.2003,4(3):270-273
    [172]刘凤华,郭岩,谷冬梅.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,24(1):54-58.
    [173]KaviKishor P.B,Hong Z,Moap G.H ,et al.Overexpression of △' -Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Plants.Plant Physiol.1995,108:1387-1394.
    [174]Ray W, Jin S, Jayaprakash T.How to Obtain Optimal Gene Expression in Transgenic Plant.北京,第七次基因学术会议,1999
    [175]De Ronde J.A,Spreeth M.H,Cress W.A. Effect of Antisense △' -Pyrroline-5-Carboxylate Reductase Transgenic Soybean Plants Subjected to Osmotic and Drought Stress.Plant Growth Reg.2000,32:13-26
    [176]齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展.河北农业大学学报.第26卷增刊
    [177]Pilon-Smits E.,Ebskamp M.,Paul M.J.,Jeuken M.,Weisbeek P.J.,Smeekens S.Improvde Performance of Transgenic Fructan Accumulating Tobacco Under Drought Stress.Plant Physiol.1995,107:125-130.
    [178]Holmstrom K.O.Engineering Plant Adaptation to Water-Stress.Acta-Universitatis-Agriculture-Sueciase-Agraia.1998,84:49-55
    [179]Yeo E.T,Kwon H.B,Han S.E et al.Genetic Engineering of Drought Resistant Potato Plants bu Introduction of the Trehalose-6-Phosphate Sythase TPS 1 Gene from Saccharomyces Cerevisiae.Mol Cell.2000,10(3):263-268
    [180]Jang I.C,Oh S.J,Seo J.S,Choi W.B,Song S.I,Kim C.H,Kim Y.S,Seo H.S,Choi Y.D,Nahm B.H,Kim J.K.Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth. Plant Physiol. 2003,131 (2): 516-524
    [181]Xu D,Duan X,Wang B,et al.Expression of a Late Embryogenesis Abundant Protein Gene,HVA 1,from Barley Confers to Lerance to Water Deficit and Salt Stress in Transgenic Rice.Plant Physiol.1996,110:249-257.
    [182]Imai R,Chang L,Ohta,et al.A Lea-Class Gene of Tomato Congers Salt and Freezing to Lerance when Expressed in Saccha-ramyces cerevisiae.Gene.1996,170:243-248.
    [183]Takumi S.,Koike A.,Nakata M.,Kumc S.,Ohno R.,Nakamura C.Cold-Specific and Light-Stimulated Expression of a Wheat (Triticum aestiwm L.) Cor Gene Wcorl5 Encoding a Chloroplast-Targeted Protein.J Exp Bot.2003,54:2265-2274.
    [184]Ishizaki-Nishizawa O.Low-Temperature Resistance of Higher Plants is Significantly Enchanced by a Nonspecific Cyanobacterial Dessaturase.Nat Biotechnol.1996,14:1003-1009
    [185]Alscher R.G,Erturk N.,Heath L. Role of Superoxide Dismutases (SODS) in Controlling Oxidative Stress in Plants.Journal of Experimental Botany.2002,53:1331-1341.
    [186]Yoshida Y.,Hasunuma K.Reactive Oxygen Species Affect Photomorphogenesis in Neurospora crassa.J Biol Chem.2004,279:6986-6993
    [187]Foyer,C.H.,Descourvieres,P.and Kunert,K.J.Protection Against Oxygen Radicals:an Important Defense Mechanism Studied in Transgenic Plants.Plants Cell Envirore.1994,17,507-523.
    [188]Kazuo T,Kyoko K.A Recessive Arabidopsis Mutant that Grows Photoautotrohically Under Salt Stress Shows Enhanced Active Oxygen Detoxification.The Plant Ce11.1999,11:1195-1206
    [189]McKersie B.D.,Bowley S.R.,Jones K.S.Winter Survival of Transgenic Alfalfa Overexpressing Superoxide Dismutase.Plant Physiol.1999,119:839-848.
    [190]Samis K,Bowley S.,McKersie B.Pyramiding Mn-Superoxide Dismutase Transgenes to Improve Persistence and Biomass Production in Alfalfa.J Exp Bot.2002,53:1343-1350.
    [191]Tanaka Y,Hibino T,Hayashi Y.Salt Tolerance of Transgenic Rice Overexpressing Yeast Mitochondria Mn-SOD in Plasts.Plant Science.1999,148:131-138
    [192]Hideg E.,Nagy T.,Oberschall A,Dudits D,and Vass I.Detoxification Function of Aldoselaldehyde Reductase During Drought and Ultraviolet-B (280-320 nn) Stresses.Plant cell Environ.2003,26:513-522.
    [193]刘强,赵南明,K.Yamaguch-Shinozaki.DREB转录因子在提高植物抗逆性中的作用.科学通报.2000,45:11-16
    [194]洪波,仝征,马男,李建科,Mie Kasuga,Kazuko Yamaguchi-Shinozaki,高俊平.AtDREBlA 基因在菊花中的异源表达提高了植株对干旱和盐渍胁迫的耐性.中国科学C辑.2006,3:33-41
    [195]孔瑾,曹宛虹,张劲松,陈受宜.Transgenie Analysis of a Salt-inhibited OsZFPl Gene from Rice. Acta Botanica Sinica. 2004, 5: 73-77
    [196] Mukhopadhyay A, Vij S, Tyagi A.K. Overexpression of a Zincfinger Protein Gene from Rice Confers Tolerance to Cold, Dehydration, and Salt Stress in Transgenic Tobacco. Proc Nati AcadSci USA. 2004, 101: 6309-6314.
    [197] Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, Cold, and High-Salinity Stress Conditions. Plant Physiology. 2004, 136: 2734-2746.
    [198] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Overexpression of a Single Ca2+-Dependent Protein Kinase Confers Both Cold and Salt/Drought Tolerance on Rice Plants. Plant J. 2000, 23(3): 319-327
    [199] Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K. A Ca(2+)-Dependent Protein Kinase that Endows Rice Plants with Cold-and Salt-Stress Tolerance Functions in Vascular Bundles. Plant Cell Physiol. 2001, 42(11): 1228-1233
    [200] Fu S.F, Chou W.C, Huang D.D, Huang H.J. Transcriptional Regulation of a Rice Mitogen-Activated Protein Kinase Gene, OsMAPK4, in Response to Environmental Stresses. Plant Cell Physiol. 2002, 43(8): 958-63
    [201] Agrawal G.K, Rakwal R, Iwahashi H. Isolation of Novel Rice Multiple Stress Responsive MAP Kinase Gene, OsMSRMK2, Whose mRNA Accumulates Rapidly in Response to Environmental Cues. Biochem Biophys Res Commun. 2002, 294(5): 1009-1016
    [202] Halliwell, B. and Gutteridge, J.M.C. Protection Against Oxidants in Biological Systems: The Superoxide Theory of Oxygen Toxicity. Oxford: Clarendon Press. 1989, pp.86-123.
    [203] Allen, R.D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant physiol. 1995, 107: 1049-1054.
    [204] Bartels, D. Molecular Mechanisms of Desiccation Tolerance in Plants. Molecular Mechanisms of Metabolic Arrest: life in limbo, edited by K B Storey, BIOS Scientific Publishers Ltd, Oxford, 2001b, pp 187-196.
    [205] Mittle, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7: 405-410.
    [206] Ramanjulu S, and Bartels D. Drought-and Desiccation-Induced Modulation of Gene Expression In plants. Plant Cell Envion. 2002, 25: 141-151.
    [207] Perozich J., Nicholas H., Wang B.C., Lindahl R. and Hempel J. Relationships Within the Aldehyde Dehydrogenase Extended Family. Protein Sci. 1999, 8: 137-146.
    [208] Sophos, N.A. and Vasiliou, V. Aldehyde Dehydrogenase Gene Superfamily: The 2002 update. Chem. Biol Interact. 2003: 143-144, 5-22.
    [209] Kirch H.H., Nair A. and Bartels D. Novel ABA- and Dehydration-Inducible Aldehyde Dehydrogenase Genes Isolated from the Resurrection Plant Craterostigma Plantagineum and Arabidopsis thaliana.Plant J.2001,28:555-567.
    [210]Barclay K.D.,B.D.McKersie.Pcroxidation Reactions in Plant Membranes-Effects of Free Fatty Acids.Lipids.1994,29:857-882.
    [211]Ozturk Z.N.,Talame V.,Deyholos M.,Michalowski C.B.,Gal-braith D.W.,Gozukirmizi N.,Tuberosa,R.and Bohnert H.J.Monitoring Large-Scale Changes in Transcript Abundance in Drought-and Salt-Stressed Barley.Plant Mol.Biol.2002,48:571-573.
    [212]Cui X.Q,Wise R.P,Schnable P.S.The Rf2 Nuclear Restore Gene of Male-Sterile T-Cytoplasm Maize.Science.1996,272:1334-1336
    [213]Li Y,Nakazono M,Tsutsumi N,Hirai A.Molecular and Cellular Characterizations of a cDNA Clone Encoding a Novel isozyme of Aldehyde Dehydrogenase From Rice.Gene.2000,249:67-74
    [214]Op Den Camp R G L,Kuhlemeier C.Aldehyde Dehydroge- Nase in Tobacco Pollen.Plant Mol. Biol.1997,35:355-365
    [215]Nakazono M,Tsuji H,Li Y,Saisho D, Arimura S I,Tsutsumi N and Hirai A.Expression of a Gene Encoding Mitochondrial Aldehyde Dehydrogenase in Rice Increases Under Submerged Conditions.Plant Physiol.2000,124:587-598
    [216]Tsuji H,Tsutsumi N,Sasaki T,Hirai A,Nakazono M.Organ-specific expressions and chromosomal locations of two mitochondrial aldehyde dehyrogenase genes from rice(Oryza sativa L.),ALDH2a and ALDH2b.Gene,2003,305(2):195-204
    [217]徐秉芳,邢彦彦,王宗阳,张景六,朱珊珊,洪孟民.水稻乙醛脱氢酶基因的克隆及其在不育系中的表达.植物生理学报,2000,26(3):206-212
    [218]雷海燕.水稻4号染色体BAC 1365序列测定分析以及水稻ALDH,RLK,PP2A—A基因结构和功能的研究.中国科学院研究生院(上海生命科学研究院)博士论文.2002
    [219]Yamaguchi-shinozaki K.A Novel Cis-Acting Element in an Arabidopsis Geneis Involved in Respinsieness to Drought,Low-Temperature or High-SaltsTress.Plant Cell.1994,6:251-264
    [220]Baker S.S.The 5'-region of Arabidopsis thaliana Corl5a Has Cis-Acting Elements that Confer Cold-,Drought-and ABA-Regulated Gene Expression.Plant Mol Biol.1994,24:701-713
    [221]Stockinger E.J.Arabidopsis thaliana CBF1 Encodes an AP2 Domain-Containing Transcriptional Activator that Binds to the C-Repeat/DRE,Acis-Acting DNA Regulatory Element that Stimulates Transcription in Response to Low Temperature and Water Deficit.Proc Natl Acad Sci USA. 1997,94,1035-1040
    [222]Wang H.Promoters from Kinl and Cor6.6,Two Homologous Arabidopsis Thaliana Genes:Transcriptional Regulation and Gene Expression Induced by Low Temperature,ABA Osmoticum and Dehydration.Plant Mol Biol.1995,28:605-617
    [223]Iwasaki T.The Dehydration-Inducible Rd17(cor47)Gene and Its Promoter Region in Arabidopsis thaliana. Plant Physiol.1997,115:1287
    [224]Moffat A.S.Finding New Ways to Protect Drought-Stricken Plants.Science.2002,296:1226-1229
    [225]Stockinger E..J.Transcriptional Adaptor and Bistone Acetyltransferase Proteins in Arabidopsis and their Interactions With CBFI,a Transcriptional Activator Involved in Cold- Regulated Gene Expression.Nucleic Acida Res.2001,29:1524-1533
    [226]Gao M.J.Regulation and Characterization of Four CBF Transcription Factors from Brassica Napus.Plant Mol Biol.2002,49(5):459-471
    [227]Kanaya E. Characterization of the Transcriptional Activator CBF1 from Arabidopsis thaliana.J Biol Chem. 1999,274(23):16068-16076
    [228]Medina J.The Arabidopsis CBF Gene Family is Composed of Three Gene Encoding AP2 Domain-Containing Proteins Whose Expression is Regulated by Low Temperature but Not by Abscisic Acid or Dehydration.Plant Physiology.1999,119:463-469
    [229]Shinwari Z.K.Art Arabidopsis Gerte Family Encoding CRT/DRE Binding Proteins Involved in Low-Temperature-Responsive Gene Expression.Biochem Biophys Res Commun.1998,250(1):161-170
    [230]Liu Q.Two Transcription Factors,DREBl and DREB2,with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought-and Low-Temperature Responsive Gene Expression,Respectevely,in Arabidopsis.Plant Cell.1998,10(8):1391-1406
    [231]Thomashow M F.Role of the Arabidopsis CBF Transcriptional Activators in Cold Acclimation.Physiol Plant.2001,112:171-175
    [232]Guy C.L.Cold Acclimation and Freezing Stress Tolerance Role of Protein Metabolism.Annu Rev Plant Mol Biol.1990,41:187-223
    [233]Gimlour S J,Sebolt A M,Salazar M P,Everard J D,Thomashow M F.Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation.Plant Physiol,2000,124:1854-1865
    [234]Hsieh T.H,Lee J.T,Charng Y.Y,Chan M.T.Tomato Plants Ectopically Expressing Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress.Plant Physiol.2002a,130:618-626
    [235]Jaglo K R,Kleff S,Amundsen K L,Zhang X,Haake V,Zhang J Z,Deits T,Thomashow M F.Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.Plant Physiol,2001,127:910-917
    [236]汤章程.现代植物生理学实验指南.北京:科学出版社.1999,302-303
    [237]吴关庭,胡张华,陈锦清.CBF转录激活因子及其在提高植物耐逆性中的作用植 物生理学通讯,2003,39(4):404-410
    [238]Novillo F,Alonso J.M,Ecker J.R;Salinas J.CBF2/DREB1C is a Negative regulator of CBF1/DREB 1B and CBF3/DREB 1A Expression and Plays a Central Role in Stress Tolerance in Arabidopsis.Proc Natl Sci USA,2004,101:2985-2990
    [239]Gilmour S.J,Fowler S.G,Thomashow M.F,Arabldopsis Transcriptional Activators CBF1,CBF2, and CBF3 Have Matching Funtional Activities.Plant Mol Biol,2004,54:767-781
    [240]桑新华,吴忠义,黄丛林,张潞生.植物逆境抗性相关转录因子的研究进展.植物学通报,2004,21(6):700.708
    [241]Kasuga M.,Liu Q.,Miura S.,Yamaguchi-Shinozaki K.,and Shinozaki K.Improving Plant Drought,Salt,and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription Factor.Nat.Biotech.1999,17:287-291
    [242]Jiang C.,Lu B.,and Singh J.Requirement of a CCGAC Cis-Acting Element for Cold Induction of the BNll5 Gene from Winter Brassica napus.Plant Mol.Biol.1996,30:679-684
    [243]Hsieh T.H,Lee J.T,Yang P.T,Chiu L.H,Charng Y.Y,Wang Y.C,Chan M.T.Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses on Transgenic Tomato.P lant Physiol.2002b,129:1086-1094
    [244]Okamuro J.K,den Boer B.G.W,Jofuku K.D.Regulation of Arabidopsis Flower Development.Plant Cell.1993,5:1183-1193
    [245]Jofuku K.D,Den Boer B.G.W,Montage M.V,Okamuro J.K.Control of Arabidopsis Flower and Seed Development by the Homeotic Gene APETALA2.The Plant Cell.1994,6:1211-1225
    [246]徐兆师.,J、麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定.中国农业科学院博士学位论文2005
    [247]边红武.脱水蛋白和CBFl转录因子对植物抗旱性和抗冻性作用的研究.浙江大学博士学位论文2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700