水稻逆境相关转录因子的分离和功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、冷害和盐碱等非生物逆境对于作物的产量和品质有着非常重要的影响。干旱是植物逆境最普遍的形式,在许多地区是农业发展的瓶颈。因而抗逆育种特别是抗旱育种一直受到重视。虽然有很多报道认为超量表达某些基因可以提高转基因植株的抗逆性,但真正用于大田实验或在作物中尝试的少之又少。
     本研究以最终获得用于水稻抗逆遗传改良的基因为目的,通过超量表达一些对逆境起核心调控作用的转录因子,系统地对这些转基因水稻在大田和温室环境中进行抗逆性分析和鉴定,初步鉴定出SNAC1和SNAC2等基因在抗逆遗传改良中的有效性,并对这两个基因进行了深入的功能研究和抗逆性机制探讨。主要结果如下:
     1.在载体pCAMBIA1301S(含double CaMV 35S启动子),pCAMBIA1301A(含Actin1启动子),pCAMBIA1301U(含Ubiquitinl启动子)和pCAMBIA1301H(含HVA1-like干旱诱导启动子)的基础上,构建了43个目标基因超量表达载体和1个诱导表达载体;在载体pHELLSGATE2的基础上,构建了32个目标基因的RNA干扰(RNAi)抑制表达载体。
     2.通过northern和Southern杂交对转基因植株进行了表达量的检测和转基因拷贝数的检测,结果表明大概有50%左右的植株为超量表达,30%左右的植株为单拷贝转基因插入。
     3.通过田间对苗期转基因水稻的干旱筛选,筛选出4个目标基因的转基因家系干旱敏感和5个目标基因的转基因家系表现为抗旱增强。
     4.通过田间对成株期转基因水稻的干旱筛选,筛选出4个目标基因的转基因部分家系抗旱性明显增强。综合抗旱筛选结果,详细鉴定了SNAC1的功能;同时对另外两个基因(SNAC2和T052)的功能进行初步分析。
     5.对SNAC1基因的表达谱分析,表明SNAC1受干旱、高盐、低温和ABA的诱导表达,并且在干旱条件下,SNAC1在保卫细胞特异诱导表达。
     6.酵母细胞中的反式激活和单杂交实验以及亚细胞定位结果表明SNAC1具有NAC(NAM,ATAF and CUC2)转录因子的特性,其中241-271位的氨基酸序列对于SNAC1具有转录激活功能是必不可少的,同时SNAC1能结合具有CACG和CATGTG核心序列(类似于拟南芥中鉴定的NACRS序列)的顺式作用元件,并促进报告基因的表达。
     7.SNAC1超量表达转基因植株在成株期和苗期的抗旱性明显增强。特别是在重度干旱条件下,野生型植株的结实率低于5%,而转基因水稻的结实率在20%以上。但是转基因与野生型植株的表型没有任何差异。
     8.扫描电镜观察结果表明转基因植株的气孔关闭数要显著高于野生型植株;在干旱过程中,转基因植株丧失水分的速率要慢于野生型,具有更低的临界相对含水量。
     9.无论是个体水平还是细胞水平,SNAC1的超量表达能提高转基因水稻的耐盐性。
     10.SNAC1的超量表达引起转基因水稻植株的ABA敏感性。
     11.SNAC1超量表达的转基因水稻植株进行基因表达谱分析,发现有很多与气孔运动、渗透调节、细胞膜稳定性、脱毒作用等相关的基因都上升表达。
     12.T052基因(编码MYB类转录因子)也受非生物逆境的诱导表达,但在水稻和早稻之间存在表达量的差异;与GFP的融合基因的表达谱分析表明T052也在保卫细胞中表达。
     13.SNAC1蛋白与T052启动子的互作,它们在保卫细胞的表达模式以及SNAC1转基因植株的基因表达谱分析等结果表明T052可能是SNAC1的下游调控基因,SNAC1和T052在调控气孔关闭中可能起着重要作用。
     14.SNAC2也具有转录激活、DNA结合和定位在细胞核等转录因子所通常具有的特性。它不仅受非生物逆境(干旱、高盐、低温和ABA)的诱导表达,同时还受JA和伤害的诱导表达。
     15.SNAC2在水稻中超量表达或诱导表达后能提高转基因植株的耐盐性和耐冷性,同时也大大提高了对ABA的敏感性。
     16.考虑到SNAC1的潜在应用价值,本研究进一步构建了两个应用型的遗传转化载体pSMDP01和pSMDP01。载体中将SNAC1作为筛选标记基因,利用具有双向诱导活性的启动子OCPI1P来驱动筛选标记基因和抗逆基因(或同时控制多个抗逆基因)的同时表达。
Drought and salinity are major abiotic stresses reducing crop production and qualityand are critical bottlenecks to the development of agriculture in many countries.Therefore, stress resistance has long been targeted in designing better crops. Althoughmany reports have shown that over-expression of some stress-inducible genes intransgenic plants can improve drought and salt resistance, very few are conducted ineconomically improtant crops or tested under the field conditions.
     The objective of this research is to isolate and characterize some transcriptionfactors conferring drought resistance and to utilize them for genetic improvement ofstress resistance in rice. In this study, large number of stress-inducible transcription factorgenes were over-expressed in rice and transgenic rice were tested for drought resistanceat both seedling and anthesis stages in the field. Based on the evaluation of droughtresistance and functional characterization of a few genes, we found that the SNAC1 andSNAC2 genes showed very significant effect in improving drought resistance and salttolerance in rice. The main results are as follows:
     1. A total of 33 genes were constructed for over-expression, and 31 genes wereconstructed for RNAi suppression.
     2. Expression level and copy number of T-DNA were analyzed by northem andSouthern blotting respectively. Results showed that 50% of transgenic plants hadover-expression of transgenes and 30% of transgenic plants had one copy of transgene.
     3. Compared to the wild type (WT), transgenic seedlings of four target genesshowed drought sensitivity and of five genes showed drought resistance when tested inthe nursery field of rice.
     4. Transgenic rice of four genes showed increased drought toletance when droughttesting was conducted in the field and PVC pipes at the anthesis stage. According to, theresult of drought testing, we chose SNAC1 and SNAC2 for detail analysis of theirfunctions in drought resistance and/or salt tolerance.
     5. Northern blot analysis revealed that SNAC1 could be induced in leaves by drought,salt, low temperature, ABA and other stresses. Under drought stress, SNAC1 was predominantly induced in guard cells.
     6. Transactivation assay, yeast one-hybrid assay, and subcellular localizationanalysis showed that SNAC1 functions as a transcription factor belong to NAC (NAM,ATAF and CUC2) family. The region of amino acid 241-271 is essential to transcriptionalactivation activity. Meanwhile, SNAC1 can bind to the NACRS-like sequence containingCACG and CATGTG core sequences identified in Arabidopsis.
     7. SNAC1-overexpressing transgenic rice showed increased drought resistance atboth seedling and anthesis stages. Under severe drought stress, seed-setting rate oftransgenic lines could remain more than 20% while that of WT was less than 5%. Nosignificant difference of morphological and agronomic traits was observed betweentransgenic and WT plants.
     8. SEM analysis indicated that SNAC1-overexpressing transgenic plants have morestomatal closed than WT under normal and drought conditions. Under drought stress,transgenic plants showed delayed leaf-rolling, lost water more slowly, and had lowerminimum relative water content (mRWC) for re-establishing turgor.
     9. Over-expression of SNAC1 significantly enhanced salt tolerance of transgenic riceat both individual and cellular levels.
     10. Over-expression of SNAC1 enhanced ABA sensitivity of transgenic plants.
     11. Many genes related to stomatal movement, osmotic adjustment, cell membranestability and detoxification were up-regulated in the SNAC1-overexpressing transgenicplants.
     12. T052, encoding a MYB protein, was up-regualted in the SNAC1-overexpressingtransgenic plants. This gene was also induced by abiotic stresses, but the induction levelshowed difference between irrigated rice and upland rice cultivars. Moreover, this genewas expressed in guard cells under drought stress conditions.
     13. Results of the interaction between SNAC1 and T052 promoter, inducedexpression of both SNAC1 and T052 in guard cells, and increased expression of T052 inSNAC1-overexpressors, all together indicated that T052 was a target gene of SNAC1 mayinvolve in regulation of stomatal closure.
     14. SNAC2 was induced not only by abiotic stresses (such as drought, high salinity, low temperature and ABA), but also by biotic stress (such as wounding and jasmonicacid). It also functions as a transcription factor belonging to NAC family.
     15. Over-expression of SNAC2 enhanced salt and cold tolerance and ABA sensitivityof transgenic plants.
     16. Considering the potential usefulness of SNAC1 in gene engineering for stressresistance improvement, two vectors (pSMDP01 and pSMDP02) for genetictransformation were constructed. SNAC1 was used as a marker gene and OCPI1 promoterwith a bidirectional stress-inducible activity was used to control the expression of boththe marker gene and target gene simultaneously.
引文
1.黄越敏.水稻逆境相关遗传基因的转化和功能鉴定.[硕士学位论文].武汉:华中农业大学图书馆,2006
    2. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868
    3. Afolabi A S, Worland B, Snape J W, Vain E A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet, 2004, 109:815-826
    4. Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva E T, Kangasjarvi J. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 2004, 16: 1925-1937
    5. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9:841-857
    6. Akashi H, Miyagishi M, Taira K. RNAi Expression Vectors in Plant Cells. Methods Mol Biol, 2004, 252: 533-544
    7. An G, Lee S, Kim S H, Kim S R. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005, 46:14-22
    8. Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J, Ehlert C, Maclean D J, Ebert P R, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16:3460-3479
    9. Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999, 285: 1256-1258.
    10. Assmann S M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002, Suppl, 14: S355-373
    11. Aukerman M J, Schmidt R J, Burr B, Burr F A. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev, 1991, 5: 310-320
    12. Babu R C, Shashidhar H E, Lilley J M, Thanh N D, Ray J D, Sadastvam S, Sarkarung S, O'Toole J C, Nguyen H T. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed, 2001, 122: 233-238
    13. Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701-713
    14. Barr H D, Weatherley P E. Aust J Biol Sci, 1962, 15:413-28
    15. Bartels D. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci, 2001,6: 284-286
    16. Beck F X, Schmolke M, Guder W G. Osmolytes. Curr Opin Nephrol Hypertens, 1992,1: 43-52
    17. Bernacchia G, Furini A. Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant, 2004, 121: 175-181
    18. Bilaud T, Koering C E, Binet-Brasselet E, Ancelin K, Pollice A, Gasser S M, Gilson E. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res, 1996, 24:1294-1303
    19. Birkenmeier G F, Ryan C A. Wound signaling in tomato plants: Evidence that aba is not a primary signal for defense gene activation. Plant Physiol, 1998, 117: 687-693
    20. Bladergroen B A, Wensing T, Van Golde L M., Geelen M J. Reversible translocation of CTP: phosphocholine cytidylyltransferase from cytosol to membranes in the adult bovine liver around parturition. Biochim Biophys Acta, 1998, 1391: 233-240
    21. Bourque J E, Folk W R. Suppression of gene expression in plant cells utilizing antisense sequences transcribed by RNA polymerase III. Plant Mol Biol, 1992, 19: 641-647
    22. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    23. Breitler J C, Meynard D, Van Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res, 2004, 13: 271-287
    24. Brown R L, Kazan K, McGrath K C, Maclean D J, Manners J M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 2003, 132: 1020-1032
    25. Calkhoven C F, Ab G. Multiple steps in the regulation of transcription-factor level and activity. Biochem J, 1996, 317: 329-342
    26. Cannon M, Platz J, O'Leary M, Sookdeo C, Cannon F. Organ-specific modulation of gene expression in transgenic plants using antisense RNA. Plant Mol Biol, 1990, 15: 39-47
    27. Carrera E, Prat S. Expression of the Arabidopsis abil-1 mutant allele inhibits Proteinase inhibitor wound-induction in tomato. Plant J, 1998, 15: 765-771
    28. Catala R, Santos E, Alonso J M, Ecker J R, Martinez-Zapater J M, Salinas J. Mutations in the Ca~(2+)/H~+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003, 15: 2940-2951
    29. Chang S H, Bugos R C, Su W H, Yamamoto H Y. Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions. Photosynth Res, 2000, 64: 95-103
    30. Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 55: 2365-2384
    31. Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003, 17: 1043-1054
    32. Choi H, Hong J, Ha J, Kang J, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723-1730
    33. Chu Z H, Peng K M, Zhang L D, Zhou B, Wei J, W S P. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chin Sci Bul, 2003, 48: 229-235
    34. Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2000, 97: 4985-4990
    35. Church G M, Gilbert W. Genomic sequencing. Proc Natl Acad Sci USA, 1984, 81: 1991 -1995
    36. Collinge M, Boiler T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol, 2001, 46: 521-529
    37. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates Stomatal movements and plant drought tolerance. Curr Biol, 2005,15: 1196-1200
    38. Courtois B, McLaren G, Sinhua P K, Prasad K, Yadav R, Shen L. Mapping QTLs associated drought avoidance in upland rice. Mol Breed, 2002,6: 55-66
    39. da Silva J M, Arrabaca M C. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol, 2004, 161: 551-555
    40. Daniell H, Muthukumar B, Lee S B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet, 2001, 39: 109-116
    41. de Vetten N, Wolters A M, Raemakers K, van der Meer I, ter StegeR, Heeres E, Heeres P, Visser R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol, 2003, 21: 439-442
    42. Dejardin A, Sokolov L N, Kleczkowski L A. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J, 1999, 344: 503-509
    43. Denekamp M, Smeekens S C. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol, 2003, 132: 1415-1423
    44. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751-763
    45. Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA, 1997, 94: 2117-2121
    46. Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411: 494-498
    47. Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J, 2002, 30: 115-122
    48. Epstein E. How calcium enhances plant salt tolerance. Science, 1998, 280: 1906-1907
    49. Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5: 199-206
    50. Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use-efficiency of wheat genotypes. Aust J Plant Physiol, 1984, 11: 539-552
    51. Farquhar G D, Gan K S. On the progressive enrichment of the oxygen isotopic composition of water along a leaf. Plant Cell Environ, 2003,26: 801-819
    52. Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14:1675-1690
    53. Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404
    54. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J, 2004,39: 863-876
    55. Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res, 1995, 40: 67-86
    56. Gangopadhyay J P, Ikemoto N. Role of the Met~(3534)-Ala~(4271) region of the ryanodine receptor in the regulation of Ca~(2+) release induced by calmodulin-binding domain peptide. Biophys J, 2005.
    57. Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu, R J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898-15903
    58. Gilmour S J, Fowler S G, Thomashow M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol, 2004, 54: 767-781
    59. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000,124: 1854-1865
    60. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16: 433-442
    61. Gleave A P, Mitra D S, Mudge S R, Morris B A. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol, 1999, 40: 223-235
    62. Gu R, Fonseca S, Puskas L G, Hackler L, J, Zvara A, Dudits D, Pais M S. Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol, 2004, 24: 265-276
    63. Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002,130: 639-648
    64. Haldrup A, Petersen S G, Okkels F T. The xylose isomerase gene from Thermoanaerobacterium thermosulfuro genes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol, 1998, 37: 287-296
    65. Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286: 950-952
    66. Han Y, Grierson D. Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. Plant J, 2002, 29: 509-519
    67. Hao D, Yamasaki K, Sarai A, Ohme-Takagi M. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 2002,41:4202-4208
    68. He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44: 903-916
    69. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol, 2003, 53: 383-397
    70. Hibara K, Takada S, Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J, 2003, 36: 687-696
    71. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6:271-282
    72. Hincha D K, Meins Jr F, Schmitt J M. β-1, 3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol, 1997, 114: 1077-1083
    73. Hohn B, Levy A A, Puchta H. Elimination of selection markers from transgenic plants. Curr Opin Biotechnol, 2001, 12: 139-143
    74. Hsieh T H, Lee J T, Charng Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002, 130: 618-626
    75. Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell, 1996, 8: 81-94
    76. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol Biol, 1996, 47: 377-403
    77. Ishitani M, Xiong L, Stevenson B, Zhu J K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 1997, 9: 1935-1949
    78. Ito M. Factors controlling cyclin B expression. Plant Mol Biol, 2000, 43: 677-690
    79. Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol, 2002, 43: 1285-1292
    80. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27: 325-333
    81. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106
    82. Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127:910-917
    83. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111
    84. Jia Z P, McCullough N, Martel R, Hemmingsen S, Young P G. Gene amplification at a locus encoding a putative Na~+/H~+ antiporter confers sodium and lithium tolerance in fission yeast. Embo J, 1992,11: 1631-1640
    85. Joersbo M. Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol Plant, 2001 111: 269-272
    86. Kalde M, Barth M, Somssich I E, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact, 2003, 16: 295-305
    87. Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14: 343-357
    88. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287-291
    89. Keon J P, Owen J W, Hargreaves J A. Lack of evidence for antisense suppression in the fungal plant pathogen Ustilago maydis. Antisense Nucleic Acid Drug Dev, 1999, 9: 101-104
    90. Kikuchi K, Ueguchi-Tanaka M, Yoshida K T, Nagato Y, Matsusoka M, Hirano H Y. Molecular analysis of the NAC gene family in rice. Mol Gen Genet, 2000, 262: 1047-1051
    91. Kim H J, Hyun Y, Park J Y, Park M J, Park M K, Kim M D, Lee M H, Moon J, Lee I, Kim J. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet, 2004a, 36: 167-171
    92. Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 2001, 25: 247-259
    93. Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004b, 40: 75-87
    94. Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J, 2002, 30: 679-689
    95. Klahre U, Crete P, Leuenberger S A, Iglesias V A, Meins F Jr. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci USA, 2002, 99: 11981-11986
    96. Klaus S M, Huang F C, Golds T J, Koop H U. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol, 2004, 22: 225-229
    97. Knight H, Veale E L, Warren G J, Knight M R. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 1999, 11:875-886
    98. Knight H, Knight M R. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci, 2001, 6: 262-267
    99. Knight H, Zarka D G, Okamoto H, Thomashow M F, Knight M R. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol, 2004, 135: 1710-1717
    100. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J, 1996,10: 165-174
    101. Kranz H D, Denekamp M, Greco R, Jin H, Leyva A, Meissner R C, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 1998, 16: 263-276
    102. Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237-1246
    103. Lee H, Xiong L M, Gong Z , Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev, 2001, 15: 912-924
    104. Liang Y K., Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB transcription factor controlling Stomatal aperture in Arabidopsis thaliana. Curr Biol, 2005, 15: 1201-1206
    105. Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    106. Liu J, Zhu J K. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiolm, 1997, 114: 591-596
    107. Liu J L, Kung H J. Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style. Virus Genes, 2000, 21: 51-64
    108. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406
    109. Lyck R, Harmening U, Hohfeld I, Treuter E, Scharf K D, Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202: 117-125
    110. Ma L, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J, Li J, Pedersen, S, Bolund L, Zhao H, Yuan L, Wong G K, Wang J, Deng X W, Wang, J. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res, 2005, 15: 1274-1283
    111. Margaret C, Boiler T. Differential induction of two potato genes Stprx2 and StNAC in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol, 2001, 46: 521-529
    112. Meins F Jr. RNA degradation and models for post-transcriptional gene-silencing. Plant Mol Biol, 2000,43:261-273
    113. Meissner R C, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz H D, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Jones J J. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell, 1999, 11: 1827-1840
    114. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A K. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet, 2002a, 106: 51-57
    115. Mohanty D, Colah R B, Gorakshakar A C, Nadkarni A H, Phanasgaonkar S P, Shetty S, Ghosh K, Mukherjee M B. Genetic disorders in haematological practice in India. Community Genet, 2002b, 5: 197-200
    116. Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 2004, 101:6309-6314
    117. Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y. Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics, 2005, 273: 123-129
    118. Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol, 2000, 42: 657-665
    119. Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148
    120. Neuteboom L W, Veth-Tello L M, Clijdesdale O R, Hooykaas P J, van der Zaal B J. A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res, 1999, 6: 13-19
    121. Nguyen H T, Babu R C, Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci, 1997, 37: 1426-1434
    122. Ni M, Dehesh K, Tepperman J M, Quail P H. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell, 1996, 8: 1041-1059
    123.Niederberger C, Graub R, Costa A, Desgres J, Schweingruber M E. The tRNA N2,N2-dimethylguanosine-26 methyltransferase encoded by gene trm1 increases efficiency of suppression of an ochre codon in Schizosaccharomyces pombe. FEBS Lett, 1999, 464: 67-70
    124.Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 3985-3990
    125. Oeda K, Salinas J, Chua N H. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. Embo J, 1991, 10: 1793-1802
    126. Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol, 2005, 138: 341-351
    127. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182
    128. Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076-7081
    129. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239-247
    130. Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035-1046
    131. Pastori G M, Foyer C H. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiol, 2002, 129: 460-468
    132. Price A H, Cairns J E, Horton P, Jones H G, Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate Stomatal and mesophyll responses. J Exp Bot, 2002a, 53: 989-1004
    133. Price A H, Townend J, Jones M P, Audebert A, Courtois B. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol, 2002b, 48:683-695
    134. Qi Z, Spalding E P. Protection of plasma membrane K~+ transport by the salt overly sensitive1 Na~+/H~+ antiporter during salinity stress. Plant Physiol, 2004, 136: 2548-2555
    135.Renner M J, Breznak J A. Purification and properties of ArfI, an alpha-L-arabinofuranosidase from Cytophaga xylanolytica. Appl Environ Microbiol, 1998, 64: 43-52
    136. Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1998, 1: 404-411
    137. Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000,290:2105-2110
    138. Rios G, Lossow A, Hertel B, Breuer F, Schaefer S, Broich M, Kleinow T, Jasik J, Winter J, Ferrando A, Farras R, Schell J, Koncz C. Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J, 2002, 32: 243-253
    139. Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J, 2001, 28: 123-133
    140. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B H, Matsumoto T K, Koiwa H, Zhu J K, Bressan R A, Hasegawa P M. AtHKTl is a salt tolerance determinant that controls Na~+ entry into plant roots. Proc Natl Acad Sci USA, 2001, 98: 14150-14155
    141. Ryu C H, You J H, Kang H G, Hur J, Kim Y H, Han M J, An K., Chung B C, Lee C H, An G. Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol, 2004, 54: 489-502
    142. Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, Lee Y H, Bhoo S H, Wang G L, Hahn T R, Jeon J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25: 836-847
    143. Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103
    144. Sainz M B, Goff S A, Chandler V L. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol, 1997, 17: 115-122
    145. Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene, 2000,248: 23-32
    146. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746
    147. Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009
    148. Sales K, Brandt W, Rumbak E, Lindsey G. The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta, 2000,1463: 267-278
    149. Sallaud C, Gay C,Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J, 2004, 39: 450-464
    150. Samson B K, Hasan M, Wade L J. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Res, 2002, 76: 175-188
    151. Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis J M, Casse-Delbart F, Lamaze T. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J, 1997, 12: 1103-1111
    152. Schwechheimer C, Smith C, Bevan M W. The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factors for high-level expression. Plant Mol Biol, 1998, 36: 195-204
    153. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol, 2003, 14: 194-199
    154. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, and Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61-72
    155. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292
    156. Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet, 2003a, 106: 923-930
    157. Shen Y G, Zhang W K, Yan D Q, Du B X, Zhang J S, Liu Q, Chen S Y. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet, 2003b, 107:155-161
    158. Shi H, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21: 81-85
    159. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223
    160. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003,6: 410-417
    161. Shinwari Z K, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in cold-responsive gene expression. Biochem Biophys Res Commun, 1998,250: 161-170
    162. Silveira J A, Viegas Rde A, da Rocha I M, Moreira A C, Moreira Rde A, Oliveira J T. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol, 2003, 160: 115-123
    163. Simon R, Igeno M I, Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature, 1996, 384: 59-62
    164. Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436
    165. Sivanandan C, Sujatha T P, Prasad A M, Resminath R, Thakare D R, Bhat S R, Srinivasan. T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis. Biochim Biophys Acta, 2005, 1731: 202-208
    166. Sizolwenkosi M, Olivier V, Florian M, Matzke M, Vicki B V. RNA silencing and the mobile silencing signal. Plant Cell, 2002, s289-s301
    167. Smirnoff N, Bryant J A. DREB takes the stress out of growing up. Nat Biotechnol, 1999, 17: 229-230
    168. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159-170
    169. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035-1040
    170. Sugahara S, Yamada T, Yazaki J. Global gene expression analysis of rice seedlings under coldstress conditions. Breeding Res, 2002, 4 (suppl. 2): 104
    171. Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J, 2000, 22: 461-469
    172. Szweykowska-Kulinska Z, Jarmolowski A, Figlerowicz M. RNA interference and its role in the regulation of eucaryotic gene expression. Acta. Biochim, 2003, 50: 217-229
    173. Tabara H, Grishok A, Mello C C. RNAi in C. elegans: soaking in the genome sequence. Science, 1998,282:430-431
    174. Takagi M, Satofuka H, Amano S, Mizuno H, Eguchi Y, Hirata K, Miyamoto K, Fukui K, Imanaka T. Cellular toxicity of cadmium ions and their detoxification by heavy metal-specific plant peptides, phytochelatins, expressed in Mammalian cells. J Biochem, 2002, 131: 233-239
    175. Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol, 2003, 131: 454-462
    176. Tang G, Zamore P D. Biochemical dissection of RNA silencing in plants. Methods Mol Biol, 2004, 257: 223-244
    177. Teerawanichpan P, Chandrasekharan M B, Jiang Y, Narangajavana J, Hall T C. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta, 2004, 218: 337-349
    178. Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599
    179. Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498
    180. Ulker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491-498
    181. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632-11637
    182. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529-1539
    183. Vogel J T, Zarka D G, Van Buskirk H A, Fowler S G, Thomashow M F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J, 2005, 41: 195-211
    184. Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T. Overexpression of a Na~+/H~+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA, 2002, 99: 4109-4114
    185. Wang M B, Waterhouse P M. Application of gene silencing in plants. Curr Opin Plant Biol, 2002, 5: 146-150
    186. Wang Y J, Zhang Z G, He X J, Zhou H L, Wen Y X, Dai J X, Zhang J S, Chen S Y. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet, 2003, 107: 1402-1409
    187. Waterhouse P M, Helliwell C A. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2003, 4: 29-38
    188. Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 1998, 95: 13959-13964
    189. Waterhouse P M, Wang M B, Lough T. Gene silencing as an adaptive defence against viruses. Nature, 2001, 411: 834-842
    190. Wesley S V, Helliwell C A., Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Stoutjesdijk P A, Robinson S P, Gleave A P, Green A G, Waterhouse P M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J, 2001, 27: 581-590
    191. Wu C Y, Li X H, Yuan W Y, Chen G X, Kilian A, Li J, Xu C G, Li X J, Zhou D X, Wang S P, Zhang Q F. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003,35:418-427
    192. Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res, 2005, 12: 9-26
    193. Xie K, Zhang J, Xiang Y, Feng Q, Han B, Chu Z, Wang S, Zhang Q, Xiong L. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China C Life Sci, 2005, 48: 445-451
    194. Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev, 2000, 14: 3024-3036
    195. Xiong L, Ishitani M, Zhu J K. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol, 1999, 119: 205-212
    196. Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan R A, Hasegawa P M, Zhu J K. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 10899-10904
    197. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol, 2005, 59: 191-203
    198. Xue G P. An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a CGAC motif. Biochim Biophys Acta, 2002, 1577: 63-72
    199. Xue G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 2003, 33:373-383
    200. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264
    201. Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 236:176-186
    202. Yu L, Ray J D, O'Toole J C, Nguyen H T. Using of wax-petrolatum layers to simulate compacted soil for screening rice (Oryza sativa L.) root penetration ability. Crop Sci, 1995, 35: 684-687
    203. Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q. Genetic basis of drought resistance at reproductive stage in rice: separation of, drought tolerance from drought avoidance. Genetics, 2006, 172: 1213-1228
    204. Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001, 19: 765-768
    205. Zhang J, Zheng H G, Aarti A, Pantuwan G, Nguyen T T, Tripathy J N, Sarial A K, Robin S, Babu, R C, Nguyen B D, Sarkarung S, Blum A, Nguyen H T. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet, 2001, 103: 19-29
    206. Zhao R, Dielen V, Kinet J M, Boutry M. Cosuppression of a plasma membrane H~+-ATPase isoform impairs sucrose translocation, Stomatal opening, plant growth, and male fertility. Plant Cell, 2000, 12:535-546
    207. Zhu J, Shi H, Lee B H, Damsz B, Cheng S, Stirm V, Zhu J K, Hasegawa P M, Bressan R A. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA, 2004, 101: 9873-9878
    208. Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700