转录因子PAP2对丹参酚酸类产物合成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参(Salvia miltiorrhiza Bunge)为唇形科鼠尾草属多年生草本植物,是我国传统名贵大宗药材之一,其主要药理活性成分为脂溶性二萜醌类和水溶性酚酸类化合物,具有活血祛瘀、养血安神、通利关脉、消除烦心等多种药理学活性,被广泛应用于心脑血管等疾病的治疗。近年来,随着丹参更多有效成分及其新的药理学作用被发现,丹参药材需求量逐年增加。目前野生丹参资源日益匮乏,栽培丹参品质逐步退化。因此利用现代生物技术手段培育优质品系具有重要的意义。长久以来,丹参水溶性成分被认为是其发挥药效的主要物质基础。目前通过丹参多倍体诱导、毛状根培养等手段能提高其酚酸性成分的含量,但收效甚微。基于分子生物学和基因工程而发展起来的药用植物次生代谢工程在提高某些药用植物特定次生代谢物或生物学特性指标方面具有广阔的应用前景。药用植物次生代谢工程所采取的策略主要有两个方面:其一是采取RNAi或过表达某些次生代谢物合成的关键酶基因进而控制其产量,而植物代谢途径是由多种酶参与的多步反应,对单个基因进行修饰有时难以奏效;其二是基于转录因子可以与植物次生代谢途径相关酶基因调控序列中相同或相似的顺式作用元件结合,达到调控整个代谢途径的特性,经分子生物学方法调节特定转录因子的表达,提高特定化合物的积累。已有的研究表明,MYB类转录因子广泛参与了植物苯丙烷类代谢途径的调节。本实验室前期研究发现丹参酚酸类活性物质合成众多相关酶基因的启动子区域均含有MYB结合位点,我们推测MYB类转录因子可能在酚酸类物质的合成及协同表达中具有重要的调控作用。为此,我们将拟南芥MYB90家族转录因子PAP2在丹参中过表达,试图筛选出某些酚酸类成分含量显著提高的株系,为日后优良丹参品系的选育提供基础。
     主要研究内容及结论如下:
     1.从NCBI的核酸数据库中下载拟南芥PAP2基因的全长序列,利用DNAStar软件上的ORF finder找到完整的读码框,选取拟南芥PAP2基因上750bp的片段做为目标靶片段,构建PAP2过表达的pCAMBIA1302载体,利用叶盘法介导的丹参遗传转化,将载体pCAMBIA1302/PAP2采用热激法转化入丹参,在潮霉素浓度为(Hyb5mg/1)的选择培养基上选择4-5次后,DNA水平的PCR检测获得9个阳性株系。
     2.采用实时定量PCR对9个阳性株系中PAP2基因的表达水平进行检测,以及分析此转录因子基因在丹参植株中的表达模式,结果显示,获得的9个阳性株系中,有4株PAP2基因的表达水平均表现为明显的上调,且过表达的效率由高到低依次为PAP2-8、PAP2-4、PAP2-13、PAP2-7,其它获得的株系则为假阳性。在分析其器官特异性时,PAP2基因在叶和根的部位均有表达,且表达的水平有较大的差别,在茎中无表达,从表达量分析,PAP2基因在叶中的表达量最高,且远高于根中的表达量。
     3.采用高效液相色谱来检测丹参不同部位的四种水溶性酚酸成分,分别为丹参素、咖啡酸、迷迭香酸以及丹酚酸B的含量。结果表明,转基因株系中丹参素、迷迭香酸以及丹酚酸B的含量均有提高,而咖啡酸含量变化不明显。
     4.发现了PAP2转录因子调控丹参酚酸合成的转录激活新功能
     分析了三个阳性株系中显著变化的标志性代谢产物和差异性表达基因,结果表明,PAP2转录因子通过激活苯丙烷代谢途径中PAL、C4H、4CL-1和酪氨酸代谢途径中TAT基因的表达,促进了酚酸类物质的合成积累;以及花青素代谢途径上F3’H、F3’5’H基因的表达。
     5.采用Stephen Y.Lin等人的重量法来检测总木质素的含量以及酸可溶性(Acid lignin)木质素和克拉森(Klason)木质素的含量。结果表明,转基因株系无论是酸可溶性木质素还是Klason木质素含量均有所降低,从而总木质含量也有少量的降低,可能与CCR及COMT基因表达量下调相关。
     6.采用Folin-Ciocalteu法、DewantoⅤ等人的氯化铝——亚硝酸钠比色法以及花青素等测定方法分别测定总酚酸、总黄酮和花青素的含量。结果表明花青素、黄酮的含量均有少量的提高。
Salvia miltiorrhiza Bunge is a well-known medicinal plant in the Labiatae family. The active constituents of S. miltiorrhiza can be divided into two groups:lipid-soluble tanshinones and water-soluble phenolic acids, its phenolic acids has been widely used for treatment of cardiovascular, cerebrovascular and heart disease. In recent years, accompanied by the growing demand of S. miltiorrhiza and a gradual reduction of its wild resources, improving the content of the active ingredients and cultivating new varieties with high quality have become the most urgent and key issues in the development of Salvia resources. For a long time, the phenolic acids from S. miltiorrhiza were considered the main components in water-decoction, which is the major form administered to patients in clinical medication of China. At present, many means have been employed for enhance the contents of phenolic acids based on hairy root cultures and changes in ploidy, but the result were not good. The development of plant metabolic engineering through specific regulation of secondary metabolism was a promising alternative strategy for generating medicinal plants with enhanced health-promoting compounds. The strategy has two aspects:first, RNAi or overexpression of some key genes in the synthesis of secondary metabolites pathway, but plant metabolic pathway was a multi-step reaction with a variety of enzymes, so a single gene modification is difficult to work. The second strategy is based on the transcription factor, which can combine with cis-acting element to control the characteristics of the metabolic pathways. Previous studies have showed that, MYB transcription factor involved in phenylpropanoid metabolism regulation widely, the molecular biology had been applied to regulate the expression of specific transcription factors to enhance the accumulation of specific compounds. Preliminary studies in our laboratory found that many genes which contain MYB binding sites were related to the synthesis of phenolic acids. In view of the above-mentioned facts, we speculate that MYB transcription factors may have an important regulatory role in the synthesis of phenolic acids. In order to provide some evidences of breeding fine strains for Salvia, so we choose the MYB90 family transcription factors PAP 2 in Arabidopsis to overexpress in S. miltiorrhiza, screening of some strains which the phenolic components were significantly improved.
     The main results were as follows:
     1. The 750 bp fragments, located in the 3'end of the coding region of PAP2genes, were chosen for overexpression investigation, which was introduced into S. miltiorrhiza by Agrobacterium tumefaciens-mediated gene transformation, and 9 transgenic lines were obtained by PCR screening.
     2. Compared with the controls, analysis of transcription quantity by real-time PCR showed the high transcription and translation in three transgenic lines.
     3. Water extracts of three transgenic lines were chosen for HPLC analysis. The PAP 2 roots and leaves, compared with control plants, shows difference. The contents of danshensu, salvianolic acid B and rosmarinci acid in transgenic lines were significantly higher than those in control,while the content of caffeic acid was not predominant.
     4.PAP2 has an additional, previously unknown role as a transcriptional activator of phenolic acid biosynthesis in S. miltiorrhiza
     PAP2 activated a broader spectrum of genes, such as PAL, C4H,4CLand TAT in the phenylpropanoid pathway. It is effective in enriching the formation of phenolic acids in transgenic S. miltiorrhiza.Besides, PAP2 induced F3'Hand F3'5'Hhigh transcription and enhanced the metabolic flux in anthocyanin pathway.
     5. The total lignin, the Klason lignin and acid lignin in transgenic plants were detected. The results show that:Klason lignin and acid lignin were decreased in the transgenic lines, related to the decrease of CCR and COMT gene expression.
     6. Total phenolic, total flavonoid and anthocyanin contents were detected. The results showed that the contents of three ingredients increased a little.
     In conclusion,9 transgenic lines were obtained by PCR screening. Phenolic acids level increased diversely in leaves and roots. The total phenolic, flavonoid and anthocyanin increased slightly, while the content of lignin decreased but not significant. This research is of great significance for the further studies of the secondary metabolite regulation and molecular breeding of S. miltiorrhiza, and provides a promising strategy for genetic engineering of other medicinal plants.
引文
[1]Ho JH, Hong CY. Salvianolic Acids:small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci.2011,18(1):30.
    [2]Pharmacopoeia Committee of the People's Republic of China,2005. Pharmacopoeia of the People's Republic of China, Chemical Industry Press,China,52.
    [3]唐晓清,王康才,陈暄,等.丹参不同居群的生物量与活性成分含量分析[J].中国中药杂志,2007,32(23):2485-2488.
    [4]Zhang Y, Li X, Wang Z. Antioxidant activities of leaf extract of Salvia miltiorrhiza Bunge and related phenolic constituents. Food Chem Toxicol.2010, 48(10):2656-2662.
    [5]杨宏,韩数欣.丹参的鉴别[J].时珍国医国药,2004,15(7):417.
    [6]Zhao G R, Zhang H M, Ye T X, et al.Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B [J]. Food Chem Toxicol, 2008,46(1):73-81.
    [7]刘娟,刘颖.丹参药理活性成分研究进展[J].辽宁中医药大学学报,2010,12(7):15-17.
    [8]Park E J, Zhao Y Z, Kim Y C, et al. Preventive effects of a purified extract isolated from Salvia miltiorrhiza enriched with tanshinone I, tanshinone II A and cryptotanshinone on hepatocyte injury in vitro and in vivo[J]. Food Chem Toxicol, 2009,47(11):2742-2748.
    [9]Mei Z, Zhang F, Tao L, et al. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alphasecretase in vivo and in vitro[J].Neurosci Let,2009,452(2):90-95.
    [10]Li G S, Jiang W L, Tian J W, et al. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis[J]. Phytomedicine,2010,17(3-4): 282-288.
    [11]Li, Y.G, Song, L, Liu, M, et al.Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen)[J]. Chromatogr,2009,12(16):1941-1953.
    [12]Cheng, Y.Y, Fong, S.M, Chang, H.M. Protective action of Salvia miltiorrhiza aqueous extract on chemically induced acute myocardial ischemia in rats[J]. Zhong Xi Yi Jie He Za Zhi,1990,10:609-611.
    [13]赵娜,郭治昕,赵雪,等.丹参的化学成分与药理作用[J].国外医药·植物药分册,2007,22(4):155-160.
    [14]高玉桂,宋玉梅,杨友义,等.丹参酮的药理[J].药学学报,1979,14(2):75-81.
    [15]石乃玉,董华民,黄海金.丹参酮药理及临床应用[J].中国医师杂志,2001,3(2):150-152.
    [16]The Pharmacopoeia Commission of PRC, Pharmacopoeia of the People's Republic of China Version 2000, vol.1, Beijing Chemical Industry Press,2000.
    [17]Li, X, Wang, Z.Z. Chemical composition, antimicrobial and antioxidant activities of the essential oil in leaves of Salvia miltiorrhiza Bunge[J]. Essent. Oil Res, 2009,21:476-480.
    [18]贺玉林,蔡芳,孟国彬,等.丹参水溶性成分生物合成途径及其调控研究进展[J].河北化工,2009,32(4):7-8.
    [19]Ma L J, Zhang X Z, Guo H, et al. Determination of four water-soluble compounds in Salvia miltiorrhiza Bunge by high-performance liquid chromatography with a coulometric electrode array system [J]. J Chromatogr B Analyt Technol Biomed Life Sci.2006,833:260-263.
    [20]杜冠华张,均田.丹参水溶性有效成分-丹酚酸研究进展[J].基础医学与临床,2000,2(5):10-14.
    [21]Huang, Y.S, Zhang, J.T.Antioxidative effect of three water soluble components isolated from Salvia miltiorrhiza in vitro[J]. Yaoxue Xuebao,1992,27:96-100.
    [22]Matkowski,A, Zielinska,S, Oszmianski,J, et al. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge[J].Technol,2008,99:7892-7896.
    [23]Zhao,G.R, Xiang,Z.J, Ye,T.Y, et al. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng[J]. Food Chem,2007,99:767-774.
    [24]李朝霞,王地.丹参水溶性成分的研究进展[J].北京中医,2004,23(3):176-178.
    [25]吴俊芳,王洁,张均田.总丹酚酸对小鼠和大鼠脑缺血再灌注损伤的保护作用[J].中草药,2001,32(3):227-229.
    [26]王洁,吴俊芳,张均田.总丹酚酸的抗脑缺血研究[J].中国药理学通报,1999,15(2):164-166.
    [27]Watzke A, O'Malley SJ, Bergman RG, et al.Reassignment of the configuration of salvianolic acid B and establishment of its identity with lithospermic acid B. J Nat Prod 2006,69:1231-1233.
    [28]Liu CS, Cheng Y, Hu JF, et al.Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract [J]. Acta Pharmacol Sin,2006, 27:1137-1145.
    [29]段艳冰.丹参迷迭香酸生物合成途径的苯丙氨酸支路基因的克隆及研究[D].上海:第二军医大学,2006.
    [30]徐江平,孙莉莎,吴航宇,等.丹酚酸B对大鼠心肌缺血/再灌注损伤的保护作用[J].中国药学杂志,2003,38(8):595-597.
    [31]湛月娥,孙莉莎,程玉芳,等.丹酚酸B对犬心肌耗氧量的影响[J].实用医学杂,2006,22(9):1000-1002.
    [32]Lin, Y.L, Wu, C.H, Luo, M.H, et al. In vitro protective effects of salvianolic acid B onprimary hepatocytes and hepatic stellate cells[J]. Ethnopharmacol,2006, 105:215-222.
    [33]Tang, M.K, Ren, D.C, Zhang, J.T. Effect of salvianolic acids from radix Salviae miltiorrhizae on regional cerebral blood flow and platelet aggregation in rats[J]. Phytomedicine,2002,9:405-409.
    [34]Chen, Y.H, Du, G.H, Zhang, J.T,et al. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats[J]. Acta Pharmacol,2000, 21:463-466.
    [35]Lay, I.S, Hsieh, C.C, Chiu, J.H, et al. Salvianolic acid B enhances in vitro angiogenesis and improves skin flap survival in Sprague-Dawley rats [J].Surg.Res, 2003,115:279-285.
    [36]Zhao, B.L, Jiang, W, Zhao, Y, et al. Scavenging effects of Salvia miltiorrhiza on free radicals and its protection for myocardial mitochondrial membranes from ischemia-reperfusion injury[J]. Biochem. Mol. Biol,1996,38:1171-1182.
    [37]ZhouL, ZuoZ, ChowMS. Danshen:an overviewof its chemistry, pharmacology, pharmacokinetics, and clinical use[J]. ClinPharmacol 2005,45:1345-1359.
    [38]Cheng TO. Cardiovascular effects of Danshen[J]. Int J Cardiol,2007,121:9-22.
    [39]Han JY, Horie Y, Miura S, et al.Ameliorating effects of compounds derived from Saliva miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion[J]. Pharmacol Ther,2008,117:280-295.
    [40]李莉,刘耕陶.五味子酚和丹酚酸A对H202引起大鼠脑神经细胞凋亡的保护作用[J].中国药理学与毒理学杂志,1996,10(2):92.
    [41]杨卫东,朱鸿良,赵保路.丹参的氧自由基清除作用[J].中国药理学通报, 1990,6(2):118.
    [42]黄诒森,张均田.丹参中三种水溶性成份的抗氧化作用[J].药学学报,1992,27(2):96.
    [43]李伟光,梁敬珏.迷迭香酸的研究进展[J].海峡药学,2004,16(1):1-4.
    [44]陈立亚.迷迭香酸的研究概况[J].中国药事,2007,21(11):923-926.
    [45]Englberger W, Hadding U, schenberg E, et al.Rosmarinic acid:A new inhibit or of complement C3 convert ase with anti-infammatory activity [J]. Int J Immunopharmacol,1988,10(6):729.
    [46]Peake P W, Pussel l B A, Mart yn P, et al.The inhibitory effect of rosmarinic acid on complement involves the C5 convert ase[J]. Int J Immunopharmacol,1991,13 (7):853.
    [47]Sahu A, Rawal N, Pangburn M K. Inhibit ion of complement by covalent attchment of rosmarinic acid to activated C3b [J]. Biochem Pharmacol,1999,57 (12):1439.
    [48]Li W, Pi R, Chan H H, et al.Novel dimeric acetylcholinest erase inhibitor bistacrine, but not donepezil prevents glutamate induced neuronal apoptosis by blocking N-methyl-Daspartate receptors [J]. J Biol Chem,2005,280(18):179-181.
    [49]Park EJ, Zhao YZ, Kim YC, et al. Preventive effects of a purified extract isolated from Salvia miltiorrhiza enriched with tanshinone Ⅰ, tanshinone Ⅱ A and cryptotanshinone on hepatocyte injury in vitro and in vivo[J]. Food Chem Toxicol,2009,47(11):2742-2748.
    [50]Mei Z, Zhang F, Tao L, et al.Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alpha-secretase in vivo and in vitro[J].Neurosci Let,2009,452 (2):90-95.
    [51]杜冠华,张均田.丹参水溶性有效成分-丹酚酸研究进展[J].基础医学与临床,2000,2(5):10-14.
    [52]中国医学科学院.中草药现代研究(第二册)[M].北京:北京医科大学中国协和医科大学联合出版社,1996,472-541.
    [53]李耿,于长安,李振坤,唐仕欢,廖文强,杨洪军.丹参煎煮化学成分溶出规律研究[J].中国实验方剂学杂志,2009,15(8):46-49.
    [54]Lu, Y, Foo, L.Y. Polyphenolics of Salvia;A review. Phytochemistry 2002, 59:117-140.
    [55]Gerhardt, U, Schroeter, A.Rosmarinic acid—a naturally occurring antioxidant in spices[J]. Fleischwirtschaft,1983,63:34-36.
    [56]Yuan Zhang, Ya-Ping Yan, Zhe-Zhi Wang*. The Arabidopsis PAP1 Transcription Factor Plays an Important Role in the Enrichment of Phenolic Acids in Salvia miltiorrhiza[j]. Agric. Food Chem,2011.
    [57]J.-L.Ferrer a,*,M.B. Austin b,C,Stewart Jr.b,et al.Structure an function of enzymes involved in the biosynthesis of phenylpropanoids[J]. Plant Physiology and Biochemistry,2008,46:356-370.
    [58]Yuan JM, Tao LL, Xu JT. Immobilization of callus tissue cells of Salvia miltiorrhiza and the characteristics of their products [J]. Chinese Journal of Biotechnology,1990,6(3):199-205.
    [59]Kang-cai Wang; Qing-yun Luo, Hong-xia Chen,et al. Study on Production of Allochtonic Formations in Callus Cells of Salvia miltiorrhiza Bge[J]. China Journal of Chinese Materia Medica,1998,23(10):592-594.
    [60]Huang L, Liu D, Hu Z. Effects of phytohormones on growth and content of depsides in Salvia miltiorrhiza suspension cells [J]. Zhong Yao Cai (in Chinese), 2000,23(1):1-4.
    [61]Memelink, J, Verpoorte, R, Kijne, J.W. ORCAnisation of jasmonate-responsive gene expression in alkaloid metabolism[J]. Trends Plant Sci.2001,6:212-219.
    [62]王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500-508.
    [63]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程[J].生命科学,1996,8(2):8-9.
    [64]董妍玲,潘学武.植物次生代谢产物简介[J],生物学通报,2002,37(11):17-18.
    [65]Harborne JB:Twenty-five years of chemical ecology. Nat Prod Rep 2001, 18:361-379.
    [66]LorenceA,Medina-BolivarF.NesslerCL:Camptothecinand 10-hydroxycamptothecin from Camptotheca acuminate hairy roots. Plant Cell Rep 2004,22:437-444.
    [67]Baskaran P, Jayabalan N. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia. Biotechnol Lett.2009,31(7):1073-1077.
    [68]Dellapenna D.Plant metabolic engineering[J]. Plant Physiol,2001,125:160-163.
    [69]潘夕春,孙敏,张磊,等.RNA干扰及其在药用植物代谢工程中的应用[J].中草药,2005,36(9):1281-1284
    [70]杨致荣,毛雪,李润植.植物次生代谢基因工程研究进展[J].植物生理与分子生物学学报,2005,31(1):11-18.
    [71]生书晶,赵炜,赵树进.药用植物次生代谢工程研究概况[J].生命的化学,2010,30(6):968-971.
    [72]刘强,张贵友,陈受宜,等.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [73]李洁.植物转录因子与基因调控[J].生物学通报,2004,39(3):9-11.
    [74]Vom-Endt D, Kijne J.W, Memelink,J. Transcription factors controlling plant secondary metabolism:what regulates the regulators? [J]. Phytochemistry,2002, 61:107-114.
    [75]Memelink J,Verpoorte R,Kijne J.W.ORCAnisation of jasmonate-responsive gene expression in alkaloid metabolism[J]. Trends Plant Sci,2001,6:212-219.
    [76]van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J]. Science,2000, 289:295-297.
    [77]陈霞,罗世巧,段翠芳,等.高等植物转录因子研究进展[J].安徽农学通报,2008,14(9):48-52.
    [78]Kosug i S, Ohas h i Y.PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene.Plant Cell,1997,9 (9):1607-1619.
    [79]Feng S, Wang Y, Yang S, et al. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta,2010,232(1):245-55.
    [80]Mol, J, Grotewold, E, Koes, R. How genes paint flowers and seeds[J]. Trends Plant 1998,3:212-217.
    [81]Butelli E, Titta L, Giorgio M,et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors [J]. Nat. Biotechnol,2008,26 (11):1301-1308.
    [82]Bovy A, deVos R, Kemper,M, etal.High-flavonol toma-toes resulting the heterologous Expression of the maize transcription factor genes LC and Cl[J]. Plant Cell 2002,14:2509-2526.
    [83]Borevitz J.O, Xia Y, Blount J,et al. Activation tagging identifies a conserved MYB regulator of phenyl-propanoid biosynthesis[J]. Plant Cell,2000,12:2383-2394.
    [84]Zhou, L. L, Zeng, H. N, Shi, M. Z,et al. Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis[J]. Planta 2008,229 (1):37-51.
    [85]Li X, Gao, M. J, Pan, H. Y, et al. Purple canola:Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves[J]. Agric. Food Chem,2010, 55:1639-1645.
    [86]Borevitz, J. O, Xia, Y. J, Blount, J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. PlantCell 2000,12:2383-2393.
    [87]Lillo C, Lea US, RuoV P. Nutrient depletion as a key factor for manipulating gene expression and product formation in diVerent branches of the Xavonoid pathway. Plant Cell Environ,2008,31:587-601.
    [88]孙敏,梁成珠,高宏伟,林超,刘彩霞.花椰菜花叶病毒CaMV 35S启动子LAMP检测方法的建立.食品科技,2010,35(4):255-258.
    [89]Vain P. Thirty years of plant transformation technology development[J]. Plant Biotechnol,2007,5(2):221-229
    [90]Anklam E, Gadani F, Heinze P, et al. Analytical methods for detection and determination of genetical modified or ganisms in agricultural crops and plant-derived food products [J].European Food Research And Technology,2002,214(1): 3-26.
    [91]Stephen Y.Lin, CarLton W.Dence, Methods in Lignin Chemitry,1990,13(2):24-27.
    [92]Lee HS, Wicker L. Anthocyanin pigments in the skin of lychee fruit [J]. Journal of Food Science,1991,56(2):466-468,483.
    [93]Yan Q, Shi M, Ng J, et al. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots[J]. Plant Sci.2006,170:853-858.
    [94]Dewanto V, Wu X, Adorn K K, et al. Thermal proeessing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agriculture and Food Chemistry,2002,50:3010-3014.
    [95]甘蓓,杨红玉.拟南芥中类黄酮代谢途径及其调控[J].安徽农业科学,2008,36(13):5290-5292.
    [96]李默怡,余龙江,陈超等.黑曲霉及其多糖组分诱导红豆杉叶子产生抗病反应之比较[J].植物研究,2003,1(3):72-76.
    [97]欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控[J].植物生理学通讯,1988,24(3):9-16.
    [98]程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望 [J].果树学报,2003,20(5):351-357.
    [99]国家药典委员会编.中华人民共和国药典[M].北京:化学工业出版社2005:52-53.
    [100]秦海燕,索志荣,刘文哲.丹参营养器官中酚酸含量的动态变化[J].中药材,2009,32(8):1199-1201.
    [101]赵淑娟,张国瑛,刘涤,等.丹参酚酸类化合物药理及生物合成途径研究进展[J].中草药,2004,35(3):341-344.
    [102]沈忠伟,许昱,夏彝,等.植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用[J].2008,6(3):542-548.
    [103]Bovy A, de Vos R, Kemper M, et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1[J]. PlantCell,2002,14:2509-2526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700