磁共振成像中若干方法问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管磁共振成像技术在医学诊断治疗和认知神经科学中已得到广泛应用,但正处于发展阶段的磁共振成像在许多方面还不成熟,存在着一些急待解决的技术问题。本论文针对一些技术问题进行了研究,其主要内容如下:
     1.低场MRI系统上弥散加权PROPELLER技术研究
     该章先简单概述了磁共振弥散成像的基本原理、临床应用和磁共振弥散加权成像方法,然后就低场磁共振成像系统上多激发弥散加权PROPELLER技术进行了研究。我们在0.35T永磁开放式磁共振成像系统上成功实现了DW-PROPELLER方法,并且得到了高质量的弥散加权图像和相应的ADC图,研究表明多激发DW-PROPELLER在低场上应用是可行的。
     2.低场永磁开放型磁共振成像系统中外磁场干扰引起的图像伪影校正方法研究
     该章采用磁共振方法和磁通门磁力计测量了靠近地铁的永磁磁共振成像系统的主磁场变化。然后针对这一主磁场振荡引起的图像伪影,我们提出了一种新的导航回波方法监控主磁场的波动并用以补偿磁共振信号的相位变化,通过水模和人体脑部成像研究了该方法的有效性。
     3.人体肝脏磁共振波谱中运动伪影抑制方法研究
     该章首先概述了活体磁共振波谱技术和生理运动对其的影响,然后研究了频率校正技术在活体肝脏1H磁共振波谱的应用价值。本章还在1.5T磁共振成像系统上实现了导航回波磁共振波谱技术,并研究了导航回波监控和屏气采集相结合的方法在活体肝脏1H磁共振波谱的应用价值。
     4.3.OT磁共振成像系统上32通道线圈在BOLD-fMRI中的应用研究
     本章采用黑白棋盘格和新型图像记忆编码两种刺激范式,研究了3T磁共振成像系统上采用不同采集分辨率和空间平滑参数时,32通道线圈的应用对视皮层和内侧颞叶区域的时间序列信噪比和激活体积的影响。
Magnetic resonance imaging (MRI) is the most flexible diagnostic imaging modalities, possessing the ability to characterize a wide range of parameters in the living subject and provide exquisite spatial resolution. MRI has also been extensively used in cognitive neuroscience and for the mapping of human brain function. However, MRI still meets challenges in some applications, such as low field permanent system and in vivo liver MRS. So some solutions were proposed in this thesis and the main contents include:
     1. Multi-shot diffusion weighted PROPELLER on 0.35T open MRI system
     The purpose of this chapter was to develop diffusion weighted periodically rotated overlapping parallel lines with enhanced reconstruction (DW-PROPELLER) on low-field open MR systems. The DW-PROPELLER was implemented on a 0.35T open MR system, and an auto pre-scan technique was used to mitigate non-Carr-Purcell-Meiboom-Gill (CPMG) artifacts. High quality diffusion weighted images and associated ADC maps were obtained. Multi-shot DW-PROPELLER is feasible for clinical use in the diagnosis of acute cerebral infarction on low-field open systems.
     2. Image correction during large and rapid BO variations in an open MRI system with permanent magnets using navigator echoes and phase compensation
     An open permanent magnet system with vertical BO field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. BO variation in such a system located close to a subway station was measured to be greater than 0.7 u T by both MRI and a fluxgate magnetometer. This BO variation caused image artifacts. A navigator echo approach that monitored and compensated the view-toview,variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with BO variations were effectively removed using the navigator method.
     3. Motion artifacts reduction in in vivo 1H-MRS of liver
     (1) In vivo 1H-MRS of liver:The effects of frequency correction
     The aim of this work was to evaluate the effect of frequency correction on reducing the motion artifacts of in vivo 1H-MRS of liver. Single voxel spectra of middle region in the human liver were acquired using frame-by-frame PRESS 1H-MRS at 1.5 Tesla. The frame-by-frame variations of the frequency of the residual water-signal were analyzed and the variations were corrected retrospectively by frequency shifting individual spectra prior to averaging. Comparison of the summed spectra prior to frequency correction, the summed spectra with frequency correction showed increased SNR and narrower linewidth of both lipid(-(CH2)n-) and residual water signals. This work demonstrated that the frequency correction effectively improved the spectra of in vivo 1H-MRS of liver.
     (2) Navigator gated breathhold liver proton MR spectroscopy.
     Multiple breathhold summation was suggested to reduce motion artifacts in liver 1H magnetic resonance spectroscopy, but there could be substantial misregistration among breathholds. We propose a navigator gated breathhold method that can be easily implemented on a standard scanner. The diaphragm navigator echo is used to monitor respiration during the entire scan. A retrospective gating is used to exclude misregistred breathholds. This navigator gating substantially improved the spectral width and peak.
     4. Benefits of 32-channel over 12-channel coils for BOLD-fMRI at 3.0T MRI
     The purpose of this study was to investigate how much the 32-channel 3T phased-array head coil can benefit the BOLD-fMRI, as exemplified in the visual cortex at the brain surface and the medial temporal lobe at the brain center. Ten subjects participated in the visual stimulus study and eight subjects in the memory encoding study on a 3T MRI system using both the 32-channel and 12-channel head coil. For each coil, single-shot gradient-echo EPI data at two different spatial resolutions (2×2×2 mm3 and 3×3×3 mm3) were collected. Statistical analysis was performed at the individual level using both the unsmoothed and smoothed functional data. In agreement with prior studies, the time-course SNR reaches an asymptotic limit due to effect of physiological noise as the image SNR is increased with the 32-channel coil or large effective voxels. The high image SNR from a 32-channel head coil at 3T MRI system is beneficial for both high and low resolution BOLD-fMRI in the medial temporal lobe, but may benefit only high resolution BOLD-fMRI in the visual cortex, which is close to the coil elements.
引文
[1]Edelman RR, Hesselink JR, Zlatkin MB. Clinical magnetic resonance imaging. Philadelphia: W.B. Saunders Company; 1996.
    [2]Matson GB, Weiner MW, Stark DD, William G. Bradley J. Magnetic resonance imaging. St. Louis:Mosby Year Book,INC.; 1992.
    [3]Rinck PA. Magnetic resonance in medicine:the textbook of the european magnetic resonance forum. Oxford:Blackwell Scientific Publication; 1993
    [4]裘祖文,斐奉奎.核磁共振波谱.北京:科学出版社;1989.
    [5]周康荣,陈祖望.体部磁共振成像.上海:上海医科大学出版社;2000.
    [6]http://www.gehealthcare.com/.
    [7]http://www.medical.philips.com/.
    [8]http://www.medical.siemens.com/.
    [9]http://www.cmr-tek.com/.
    [10]Kose K, Matsuda Y, Kurimoto T, Hashimoto S, Yamazaki Y, Haishi T, Utsuzawa S, Yoshioka H, Okada S, Aoki M, Tsuzaki T. Development of a compact MRI system for trabecular bone volume fraction measurements. Magn Reson Med 2004;52(2):440-444.
    [11]http://www.esaote.com.cn.
    [12]Handa S, Tomiha S, Haishi T, Kose K. Development of a compact MRI system for trabecular bone microstructure measurements of the distal radius. Magn Reson Med 2007;58(2):225-229.
    [13]http://www.auroramri.com/.
    [14]Hynynen K. MRI-guided focused ultrasound treatments. Ultrasonics 2010;50(2):221-229.
    [15]Frackowiak KF, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W. Human Brain Function. Amsterdam:Elsevier Academic Press,; 2004.
    [16]Blamire AM. The technology of MRI--the next 10 years? Br J Radiol 2008;81(968):601-617.
    [17]Macovski A. MRI:a charmed past and an exciting future. J Magn Reson Imaging 2009;30(5):919-923.
    [18]Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches:PET/CT and PET/MRI. Handb Exp Pharmacol 2008(185 Pt 1):109-132.
    [1]Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003; 45 (3):169-184.
    [2]韩鸿宾.临床磁共振成像序列设计与应用.北京:北京大学医学出版社;2003.
    [3]周康荣,陈祖望.体部磁共振成像.上海:上海医科大学出版社;2000.61-67p.
    [4]Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006;6:135-143.
    [5]Kabasawa H, Masutani Y, Aoki S, Abe O, Masumoto T, Hayashi N, Ohtomo K.3T PROPELLER diffusion tensor fiber tractography:a feasibility study for cranial nerve fiber tracking. Radiat Med 2007; 25 (9):462-466.
    [6]Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N. Diffusion-weighted MR of the brain:methodology and clinical application. Radiol Med 2005; 109(3):155-197.
    [7]van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LM, Mali WP. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 1998;29(9):1783-1790.
    [8]Lovblad K0, Jakob PM, Chen Q, Baird AE, Schlaug G, Warach S, Edelman RR. Turbo spin-echo diffusion-weighted MR of ischemic stroke. AJNR Am J Neuroradiol 1998; 19(2):201-208; discussion 209.
    [9]Ebisu T, Tanaka C, Umeda M, Kitamura M, Fukunaga M, Aoki I, Sato H, Higuchi T, Naruse S, Horikawa Y, Ueda S. Hemorrhagic and nonhemorrhagic stroke:diagnosis with diffusion-weighted and T2-weighted echo-planar MR imaging. Radiology 1997:203(3):823-828.
    [10]苗延巍,张德辉,伍建林.磁共振弥散成像在脑肿瘤诊断中的临床应用.2003:18(10):767-770.
    [11]Maier SE, Gudbjartsson H, Patz S, Hsu L, Lovblad K0, Edelman RR, Warach S, Jolesz FA. Line scan diffusion imaging:characterization in healthy subjects and stroke patients. AJR Am J Roentgenol 1998;171 (1):85-93.
    [12]Prayer D, Prayer L. Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 2003;45(3):235-243.
    [13]Sullivan EV, Pfefferbaum A. Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 2003;45(3):244-255.
    [14]Koh DM, Collins DJ. Diffusion-weighted MRI in the body:applications and challenges in oncology. AJR Am J Roentgenol 2007;188(6):1622-1635.
    [15]张月浪,孙兴旺,强永乾.腹部磁共振弥散加权成像的临床应用.实用放射学杂志2005:21(3):313-315
    [16]Kwee TC, Takahara T, Ochiai R, Nievelstein RA, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS):features and potential applications in oncology. Eur Radiol 2008:18(9):1937-1952.
    [17]Bammer R, Augustin M, Prokesch RW, Stollberger R, Fazekas F. Diffusion-weighted imaging of the spinal cord:interleaved echo-planar imaging is superior to fast spin-echo. J Magn Reson Imaging 2002; 15 (4):364-373.
    [18]Terada H, Gomi T, Harada H, Chiba T, Nakamura T, Iwabuchi S, Nemoto H, Kawasaki S, Watanabe S, Nagamoto M, Kawawa Y, Kohda E. Development of diffusion-weighted image using a 0.3T open MRI. J Neuroradiol 2006; 33 (1):57-61.
    [19]Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med 1996; 36 (4):509-519.
    [20]Hori M, Okubo T, Aoki S, Kumagai H, Araki T. Line scan diffusion tensor MRI at low magnetic field strength:feasibility study of cervical spondylotic myelopathy in an early clinical stage. J Magn Reson Imaging 2006;23(2):183-188.
    [21]Mamata Y, Mamata H, Nabavi A, Kacher DF, Pergolizzi RS, Jr., Schwartz RB, Kikinis R, Jolesz FA, Maier SE. Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J Magn Reson Imaging 2001;13(1):115-119.
    [22]Ozawa N, Muragaki Y, Nakamura R, Lseki H. Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part II:clinical study of usefulness and efficacy. Minim Invasive Neurosurg 2008;51 (2):67-71.
    [23]姜小平,李建奇, 范明霞,陈群.低场MRI系统中线扫描弥散张量成像方法的研究.波谱学杂志2008:25(4):470-477.
    [24]De Foer B, Vercruysse JP, Pilet B, Michiels J, Vertriest R, Pouillon M, Somers T, Casselman JW, Offeciers E. Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR Am J Neuroradiol 2006;27(7):1480-1482.
    [25]Mehdizade A, Somon T, Wetzel S, Kelekis A, Martin JB, Scheidegger JR, Sztajzel R, Lovblad KO, Ruefenacht DA, Delavelle J. Diffusion weighted MR imaging on a low-field open magnet. Comparison with findings at 1.5T in 18 patients with cerebral ischemia. J Neuroradiol 2003;30(1):25-30.
    [26]Pipe JG. Motion correction with PROPELLER MRI:application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42(5):963-969.
    [27]陈伟波, 李建奇, 姜小平, 李鲠颖.自导航快速自旋回波在低场MRI上的实现.波谱学杂志2009:26(2):197-205.
    [28]Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002; 47 (1):42-52.
    [29]Deng J, Miller FH, Salem R, Omary RA, Larson AC. Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 2006; 41 (10):769-775.
    [30]Forbes KP, Pipe JG, Karis JP, Heiserman JE. Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging. Radiology 2002;225(2):551-555.
    [31]Fries P, Runge VM, Kirchin MA, Stemmer A, Naul LG, Wiliams KD, Reith W, Bucker A, Schneider G. Diffusion-weighted imaging in patients with acute brain ischemia at 3 T:current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER). Invest Radiol 2009;44(6):351-359.
    [32]Wohlgemuth WA, Schulte-Altedorneburg G, Becker T, Zha L, Kramer D, Kirchhof K. Evaluation of a new Spin-echo diffusion-weighted sequence on a 0.35 T open magnetic resonance imaging (MRI)-system:first experiences within 3 h after acute stroke. Neuroradiology 2005; 47 (7):532-538.
    [33]姜小平,低场磁共振成像系统中弥散成像方法的研究,硕士研究生学位论文,2008.
    [34]Bammer R, Glover GH, ME. M. Diffusion tensor spiral imaging.2002; Honolulu, HI. The International Society of Magnetic Resonance in Medicine, p 1111.
    [35]陈伟波,低场自导航快速自旋回波技术的研究,硕士研究生学位论文,学位论文2009.
    [36]Zoroofi RA, Sato Y, Tamura S, Naito H, Tang L. An improved method for MRI artifact correction due to translational motion in the imaging plane. IEEE Trans Med Imaging 1995; 14 (3):471-479.
    [37]Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 1991;10(3):473-478.
    [38]Pipe JG, Menon P. Sampling density compensation in MRI:rationale and an iterative numerical solution. Magn Reson Med 1999;41(1):179-186.
    [39]Pipe JG, Zwart N. Turboprop:improved PROPELLER imaging. Magn Reson Med 2006;55(2):380-385.
    [40]Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008;59(5):947-953.
    [1]Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York:Wiley & Sons; 1999.804 p.
    [2]Durand E, van de Moortele PF, Pachot-Clouard M, Le Bihan D. Artifact due to B(0) fluctuations in fMRI:correction using the k-space central line. Magn Reson Med 2001;46(1):198-201.
    [3]Wu ML, Wu PH, Huang TY, Shih YY, Chou MC, Liu HS, Chung HW, Chen CY. Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T. Magn Reson Med 2007;57(2):369-79.
    [4]Henry PG, van de Moortele PF, Giacomini E, Nauerth A, Bloch G. Field-frequency locked in vivo proton MRS on a whole-body spectrometer. Magn Reson Med 1999;42(4):636-42.
    [5]Foerster BU, Tomasi D, Caparelli EC. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 2005;54(5):1261-7.
    [6]Ebel A, Maudsley AA, Schuff N. Correction of local BO shifts in 3D EPSI of the human brain at 4 T. Magn Reson Imaging 2007;25(3):377-80.
    [7]Van de Moortele PF, Pfeuffer J, Glover GH, Ugurbil K, Hu X. Respiration-induced BO fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med 2002;47(5):888-95.
    [8]Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology 1989;173(1):255-63.
    [9]El-Sharkawy AM, Schar M, Bottomley PA, Atalar E. Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. Magma 2006;19(5):223-36.
    [10]Hu X, Kim SG. Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med 1994;31(5):495-503.
    [11]Liu HL, Kochunov P, Lancaster JL, Fox PT, Gao JH. Comparison of navigator echo and centroid corrections of image displacement induced by static magnetic field drift on echo planar functional MRI. J Magn Reson Imaging 2001;13(2):308-12.
    [12]Thiel T, Czisch M, Elbel GK, Hennig J. Phase coherent averaging in magnetic resonance spectroscopy using interleaved navigator scans:compensation of motion artifacts and magnetic field instabilities. Magn Reson Med 2002;47(6):1077-82.
    [13]Lee J, Santos JM, Conolly SM, Miller KL, Hargreaves BA, Pauly JM. Respiration-induced BO field fluctuation compensation in balanced SSFP:real-time approach for transition-band SSFP fMRI. Magn Reson Med 2006;55(5):1197-201.
    [14]Benner T, van der Kouwe AJ, Kirsch JE, Sorensen AG. Real-time RF pulse adjustment for B0 drift correction. Magn Reson Med 2006;56(1):204-9.
    [15]Barry RL, Martyn Klassen L, Williams JM, Menon RS. Hybrid two-dimensional navigator correction:A new technique to suppress respiratory-induced physiological noise in multi-shot echo-planar functional MRI. Neuroimage 2008;39(3):1142-1150.
    [16]Barry RL, Menon RS. Modeling and suppression of respiration-related physiological noise in echo-planar functional magnetic resonance imaging using global and one-dimensional navigator echo correction. Magn Reson Med 2005;54(2):411-8.
    [17]Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 1995;34(2):201-12.
    [18]Le TH, Hu X. Retrospective estimation and correction of physiological artifacts in fMRI by direct extraction of physiological activity from MR data. Magn Reson Med 1996;35(3):290-8.
    [19]Bisdas S, Baghi M, Huebner F, Mueller C, Knecht R, Vorbuchner M, Ruff J, Gstoettner W, Vogl TJ. In vivo proton MR spectroscopy of primary tumours, nodal and recurrent disease of the extracranial head and neck. Eur Radiol 2007;17(1):251-7.
    [20]Bolan PJ, Henry PG, Baker EH, Meisamy S, Garwood M. Measurement and correction of respiration-induced BO variations in breast 1H MRS at 4 Tesla. Magn Reson Med 2004;52(6):1239-45.
    [21]Felblinger J, Kreis R, Boesch C. Effects of physiologic motion of the human brain upon quantitative 1H-MRS:analysis and correction by retro-gating. NMR Biomed 1998;11(3):107-14.
    [22]Helms G, Piringer A. Restoration of motion-related signal loss and line-shape deterioration of proton MR spectra using the residual water as intrinsic reference. Magn Reson Med 2001;46(2):395-400.
    [23]Jehenson P, Syrota A. Correction of distortions due to the pulsed magnetic field gradient-induced shift in BO field by postprocessing. Magn Reson Med 1989;12(2):253-6.
    [24]Nixon TW, McIntyre S, Rothman DL, de Graaf RA. Compensation of gradient-induced magnetic field perturbations. J Magn Reson 2008;192(2):209-17.
    [25]Noworolski SM, Tien PC, Merriman R, Vigneron DB, Qayyum A. Respiratory motion-corrected proton magnetic resonance spectroscopy of the liver. Magn Reson Imaging 2008:doi:10.1016/j.mri.2008.08.008
    [26]Star-Lack JM, Adalsteinsson E, Gold GE, Ikeda DM, Spielman DM. Motion correction and lipid suppression for 1H magnetic resonance spectroscopy. Magn Reson Med 2000;43(3):325-30.
    [27]Iijima T, Takegoshi K. Compensation of effect of field instability by reference deconvolution with phase reconstruction. J Magn Reson 2008;191(1):128-34.
    [28]van Bentum PJM, Maan JC, van Os JWM, Kentgens APM. Strategies for solid-state NMR in high-field bitter and hybrid magnets. Chem Phys Lett 2003;376:338-345.
    [29]Soghomonian V, Sabo M, Powell A, Murphy P, Rosanske R, T.A.Cross, Schneider-Muntau HJ. Identification and minimization of sources of temporal instabilities in high field (>23 T) resistive magnets. Rev Sci Inst 2000;71(7):2882-2889.
    [30]Hayashi N, Watanabe Y, Masumoto T, Mori H, Aoki S, Ohtomo K, Okitsu O, Takahashi T. Utilization of low-field MR scanners. Magn Reson Med Sci 2004;3(1):27-38.
    [31]Blanco RT, Ojala R, Kariniemi J, Perala J, Niinimaki J, Tervonen O. Interventional and intraoperative MRI at low field scanner--a review. Eur J Radiol 2005;56(2):130-42.
    [32]Gelbien M; Apparatus and method for magnetic systems U.S. patent 5,952,734.1999.
    [33]Kazimierczuk K, Kozminski W. Efficient compensation of low-frequency magnetic field disturbances in NMR with fluxgate sensors. J Magn Reson 2005;174(2):287-91.
    [34]Derome AE. Modern NMR Techniques for Chemistry Research. Oxford:Pergamon Press; 1987.
    [35]de Crespigny AJ, Marks MP, Enzmann DR, Moseley ME. Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 1995;33(5):720-8.
    [36]Blumich B, Perlo J, Casanova F. Mobile single-sided NMR. Prog. NMR Spectr. 2008;52(4):197-269.
    [37]Paulsen JL, Bouchard LS, Graziani D, Blumich B, Pines A. Volume-selective magnetic resonance imaging using an adjustable, single-sided, portable sensor. Proc Natl Acad Sci U S A 2008;105(52):20601-4.
    [38]Brau AC, Brittain JH. Generalized self-navigated motion detection technique:Preliminary investigation in abdominal imaging. Magn Reson Med 2006;55(2):263-70.
    [1]周康荣,陈祖望.体部磁共振成像.上海:上海医科大学出版社.2000.p78-88
    [2]Smith ICP, Stewart LC. Magnetic resonance spectroscopy in medicine:clinic impact. Prog. Nucleic Mag Reson Spectrosc,2002,40:1-34
    [3]Kurhanewicz J, Swanson MG, Nelson SJ, et al. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imag, 2002,16:451-63
    [4]Kreis R,1H MR Spectroscopy:Clinical Applications. ESMRM 2002
    [5]Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart:kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:714-719.
    [6]Katz-Brull R, Rofsky NM, Lenkinski RE. Breathhold abdominal and thoracic proton MR spectroscopy at 3T. Magn Reson Med,2003,50:461-7
    [7]Bolan PJ, Henry PG, Baker EH, et al. Measurement and correction of respiration-induced B0 variations in Breast 1H MRS at 4 Tesla. Magn Reson Med,2004,52:1239-1245
    [8]Tyszka JM, Silverman JM. Navigated single-voxel proton spectroscopy of the human liver. Magn Reson Med,1998,39:1-5.
    [9]Felblinger J, Jung B, Slotboom J, et al. Methods and reproducibility of cardiac/respiratory double-triggered 1H-MR spectroscopy of the human heart. Magn Reson Med,1999, 42:903-910
    [10]Schar M, Kozerke S, Boesiger P. Navigator gating and volume tracking for double-triggered cardiac proton spectroscopy at 3 Tesla, Magn Reson Med,2004,51:1091-1095
    [11]Star-Lack JM, Adalsteinsson E, Gold GE, et al. Motion correction and lipid suppression for 1-H magnetic resonance spectroscopy. Magn Reson Med,2000,43:325-330.
    [12]Helms G, Piringer A. Restoration of motion-related signal loss and line-shape deterioration of proton MR spectra using the residual water as intrinsic reference. Magn Reson Med,2001, 46:395-400.
    [13]Katz-Brull R, Lenkinski RE. Frame-by-frame PRESS'H-MRS of the brain at 3 T:the effects of physiological motion. Magn Reson Med,2004,51:184-187.
    [14]Cho SG, Kim MY, Kim HJ, et al. Chronic hepatitis:in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology,2001,221: 740-746.
    [15]Kuo YT, Li CW, Chen CY, et al. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imag, 2004,19:598-204
    [16]Li CW, Kuo YT, Chen CY, et al. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn Reson Med,2005,53(4):770-6
    [17]范明霞,田建明,陆建平.肝脏病变活体MR波谱研究进展.中华放射学杂志,2004,38:771-773
    [18]李建奇,吴斌,唐峰,彭卫军,余亦华,陈群,频率校正方法在活体肝脏1H磁共振波谱中的应用,波谱学杂志2007,24(3):334-340
    [19]Noworolski SM, Tien PC, Merriman R, Vigneron DB, Qayyum A, Respiratory motion-corrected proton magnetic resonance spectroscopy of the liver, Magn Reson Imag, 2009,27:570-576
    [20]Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 1996;198(1):55-60.
    [21]Gruetter R (1993) Automatic, localized in vivo adjustment of all first-and second-order shim coils. Magn Reson Med 29:804-811
    [22]Hetherington HP, Chu WJ, Gonen O, Pan JW. Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 2006; 56:26-33
    [1]Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87:9868-9872
    [2]Frederick Bd, Wald LL, Maas LC,3rd, Renshaw PF. A phased array echoplanar imaging system for fMRI. Magn Reson Imaging 1999; 17:121-129
    [3]de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 2004;51:22-26
    [4]Lupo JM, Lee MC, Han ET, et al. Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight-channel phased-array coil with and without SENSE reconstruction. JMagn Reson Imaging 2006;24:520-529
    [5]Yacoub E, Van De Moortele PF, Shmuel A, Ugurbil K. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 2005;24:738-750
    [6]Kruger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T:comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;45:595-604
    [7]Bartha R, Michaeli S, Merkle H, et al. In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI:detection of microscopic susceptibility contrast. Magn Reson Med 2002;47:742-750
    [8]Meindl T, Born C, Britsch S, Reiser M, Schoenberg S. Functional BOLD MRI:comparison of different field strengths in a motor task. Eur Radiol 2008; 18:1102-1113
    [9]Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH. Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T. Neuroimage 1999;9:446-451
    [10]Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL.32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216-223
    [11]Tsai SY, Otazo R, Posse S, et al. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil. Magn Reson Med 2008;59:989-998
    [12]Fries P, Runge VM, Kirchin MA, et al. Diffusion-weighted imaging in patients with acute brain ischemia at 3 T:current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER). Invest Radiol 2009;44:351-359
    [13]de Zwart JA, Gelderen P, Fukunaga M, Duyn JH. Reducing correlated noise in fMRI data. Magn Reson Med 2008;59:939-945
    [14]Parrish TB, Gitelman DR, LaBar KS, Mesulam MM. Impact of signal-to-noise on functional MRI. Magn Reson Med 2000;44:925-932
    [15]Kruger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;46:631-637
    [16]Triantafyllou C, Hoge RD, Krueger G, et al. Comparison of physiological noise at 1.5 T,3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243-250
    [17]Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. In. New York:Wiley-Liss,1999:340
    [18]Bodurka J, Ye F, Petridou N, Murphy K, Bandettini PA. Mapping the MRI voxel volume in which thermal noise matches physiological noise--implications for fMRI. Neuroimage 2007;34:542-549
    [19]Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000;44:457-465
    [20]Troncoso XG, Tse PU, Macknik SL, et al. BOLD activation varies parametrically with corner angle throughout human retinotopic cortex. Perception 2007;36:808-820
    [21]Michelich CR, Song AW, Macfall JR. Dependence of gradient-echo and spin-echo BOLD fMRI at 4 T on diffusion weighting. NMR Biomed 2006; 19:566-572
    [22]Binder JR, Bellgowan PS, Hammeke TA, Possing ET, Frost JA. A comparison of two FMRI protocols for eliciting hippocampal activation. Epilepsia 2005;46:1061-1070
    [23]Restom K, Perthen JE, Liu TT. Calibrated fMRI in the medial temporal lobe during a memory-encoding task. Neuroimage 2008;40:1495-1502
    [24]Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding:evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996;93:8660-8665
    [25]Szaflarski JP, Holland SK, Schmithorst VJ, Dunn RS, Privitera MD. High-resolution functional MRI at 3T in healthy and epilepsy subjects:hippocampal activation with picture encoding task. Epilepsy Behav 2004;5:244-252
    [26]Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289
    [27]Bonilha L, Kobayashi E, Cendes F, Min Li L. Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum Brain Mapp 2004;22:145-154
    [28]Friston K. Experimental design and statistical parametric mapping. In:Frackowiak RSJ, Friston K, Frith CD, Dolan RJ, Price CJ, Zeki S, et al., eds. Human Brain Function. Amsterdam:Elsevier Academic Press,2004:599-634
    [29]Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 1997;7:181-192
    [30]Schweizer R, Voit D, Frahm J. Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 2008;42:28-35
    [31]Robinson SD, Pripfl J, Bauer H, Moser E. The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe:a comparative group study of deactivation of the Default Mode. Magma 2008;21:279-290
    [32]Foerster BU, Tomasi D, Caparelli EC. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 2005;54:1261-1267
    [33]Weisskoff RM. Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 1996;36:643-645
    [34]Durand E, van de Moortele PF, Pachot-Clouard M, Le Bihan D. Artifact due to B(0) fluctuations in fMRI:correction using the k-space central line. Magn Reson Med 2001;46:198-201
    [35]Casanova R, Ryali S, Serences J, et al. The impact of temporal regularization on estimates of the BOLD hemodynamic response function:a comparative analysis. Neuroimage 2008;40:1606-1618
    [36]Le TH, Patel S, Roberts TP. Functional MRI of human auditory cortex using block and event-related designs. Magn Reson Med 2001;45:254-260
    [37]Heim S, Amunts K, Mohlberg H, Wilms M, Friederici AD. Head motion during overt language production in functional magnetic resonance imaging. Neuroreport 2006; 17:579-582
    [38]Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI:RETROICOR. Magn Reson Med 2000;44:162-167
    [39]Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 1995;34:201-212
    [40]Barry RL, Menon RS. Modeling and suppression of respiration-related physiological noise in echo-planar functional magnetic resonance imaging using global and one-dimensional navigator echo correction. Magn Reson Med 2005;54:411-418
    [41]Fox MD, Snyder AZ, Zacks JM, Raichle ME. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 2006;9:23-25
    [42]Poser BA, Versluis MJ, Hoogduin JM, Norris DG. BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI:parallel-acquired inhomogeneity-desensitized fMRI. Magn Reson Med 2006;55:1227-1235
    [43]Deckers RH, van Gelderen P, Ries M, et al. An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data. Neuroimage 2006;33:1072-1081
    [44]Rabrait C, Ciuciu P, Ribes A, et al. High temporal resolution functional MRI using parallel echo volumar imaging. J Magn Reson Imaging 2008;27:744-753
    [45]Otazo R, Lin FH, Wiggins G, Jordan R, Sodickson D, Posse S. Superresolution parallel magnetic resonance imaging:application to functional and spectroscopic imaging. Neuroimage 2009;47:220-230
    [46]Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J. Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 2006;29:1244-1251
    [47]Fellner C, Doenitz C, Finkenzeller T, Jung EM, Rennert J, Schlaier J. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect:benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla. Clin Hemorheol Microcirc 2009;43:71-82
    [48]Lutcke H, Merboldt KD, Frahm J. The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging 2006;24:1-5
    [49]Perthen JE, Bydder M, Restom K, Liu TT. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T. Magn Reson Imaging 2008;26:513-522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700