ECAP技术对不同组织结构的LY12铝合金高温压缩变形与损伤行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ECAP技术制备的超细晶材料因其具有各种独特的力学行为近年来引起越来越多研究者的兴趣,但是对此类材料的表面变形特征,尤其是在高温环境下的变形行为的认识还很不全面,而这些研究对ECAP制备材料的开发和应用具有其重要的实际意义。本论文选取了LY12铝合金作为研究对象,制备了初始态、450℃/3h、初始态+1ECAP、450℃/3h+1ECAP、500℃/3h+1ECAP、初始态+2ECAP和450℃/3h+2ECAP七种不同微观组织结构的LY12铝合金样品,考察了它们在不同温度(25~400℃)下的压缩变形行为、表面变形及损伤特征以及相应的微观结构变化。
     研究发现,不同处理工艺对LY12铝合金的压缩力学行为具有不同的影响,且七种状态LY12铝合金的压缩变形及损伤特征与实验温度密切相关。具体表现如下:
     初始态样品内部均匀分布着的大量细小S沉淀相(AlCuMg)的强化作用十分显著。对初始态样品进行450℃/3h退火处理后,晶粒尺寸长大,内应力降低,均匀分布的细小沉淀相在退火过程中长大形成针状S相,致使450℃/3h样品的屈服强度及流变应力在各温度压缩条件下均低于初始态样品。由于晶粒尺度影响,退火后样品在压缩变形过程中,粗大的晶粒承担了更多的变形,导致其在压缩后表面产生了晶内滑移和沿晶裂纹。
     利用ECAP技术对初始态LY12铝合金样品直接进行变形处理后,一方面,可明显细化晶粒,引入高密度位错,使样品得到应变强化;另一方面,在ECAP制备过程中,大量细小的S相在严重的塑性变形过程中被基体所溶解,使沉淀强化作用减弱。两种强化机制的共同作用导致ECAP样品强度低于初始态样品。但是,ECAP变形处理使样品高温塑性变形能力有所增加,在压缩过程中,表面除出现大尺度剪切裂纹和剪切带外,还有许多沿晶微裂纹出现,随压缩温度的升高,剪切带减少,剪切裂纹尺度降低,当压缩温度达到400℃时,剪切裂纹、剪切带和微裂纹基本消失,在晶内和晶界上形成了许多微孔。而此时初始态样品强度依然较高,其表面仍然存在尺度较大的剪切裂纹。
     对初始态样品进行450℃/3h退火后再进行ECAP变形处理,晶粒得到细化,位错密度增加,大量强化作用较弱的大尺寸针状S相在严重塑性变形过程中被折断而发生了重溶或尺寸减小,此时,由ECAP变形处理所引入的应变强化作用显得更加突出,不同的应变强化机制和沉淀强化机制导致了退火+ECAP和退火样品的流变应力相当,但是应变强化机制有效地提高了退火合金的屈服强度。与直接ECAP变形处理样品相类似,经退火+ECAP处理后压缩变形,表面同样出现了大量的剪切带、大尺度裂纹和沿晶微裂纹。在300℃以下进行压缩时,450℃/3h+2ECAP样品屈服强度虽然低于初始态样品,但始终保持在较高水平(320~350 MPa),表现出较好的高温变形稳定性。
In recent years, ultrafine-grained (UFG) materials prepared by the equal channel angular pressing (ECAP) technology have been attracting more and more interests of research, owing to their unique mechanical behaviors. However, the surface deformation characteristics of such materials, especially the deformation behavior in high temperature environment, is still far from comprehensive studies, and these studies are of practical significance for the development and application of such ECAPed materials. Therefore, in the present work, LY12 Al alloys are selected as the target materials, and seven kinds of samples with different structures induced by various treatments, such as original, 450℃/3h annealed, 1 ECAPed, 450℃/3h annealed+1ECAPed, 500℃/3h annealed+1ECAPed, 2ECAPed, 450℃/3h annealed+2ECAPed, are prepared. Then, the compressive deformation behavior, the surface deformation and damage characteristics, and the corresponding changes in microstructures of these samples are considerably examined at different temperatures (e.g. 25℃-400℃).
     It is clearly found that the LY12 Al alloy exhibits different compressive mechanical behavior depending on different treatments, and the compressive deformation characteristics and damage behavior of LY12 Al alloys with seven treating states are closely related with the experimental temperature. The details are presented as follows.
     A large number of small S-phase precipitates (AlCuMg) uniformly distributed in the original sample shows a remarkable strengthening effect. As the original sample is annealed at 450℃for 3h, the grain size distinctly increases, the internal stress significantly reduces, and the needle-like S phase evolves from uniformly distributed small precipitates in the process of annealing, causing that the yield strength and flow stress of 450℃/3h sample are markedly lower than that of the original sample under compressive deformation at all temperatures. As a result of the effects of the sample grain size, coarsened grains accommodate large deformation in the process of compressive deformation, resulting in the crystallographic slips within grains and intergranular cracks.
     As the original sample of the LY12 Al alloy is directly deformed by ECAP, the grains can be obviously refined and the high-density dislocation can be significantly induced. Thus the sample is strongly strain-strengthened. Meanwhile, a large number of small S-phases in the process of severe plastic deformation (SPD) of ECAP are dissolved into the matrix, and the precipitation-strengthening effect is thus weakened. The combined effect of two kinds of strengthening mechanisms leads to the fact that the strength of ECAP samples is lower than that of the original sample. However, the capacity of high-temperature plastic deformation of the sample is slightly enhanced by ECAP deformation treatment. During compression, many micro-cracks along grain boundaries (GBs) in addition to large-scale shear cracks and shear bands appear on the surface. With the temperature increasing, the number of shear bands and the scale of shear cracks reduce. When the temperature is raised up to 400°C, the shear cracks, shear bands and micro-cracks almost disappear, but a number of micro-voids are found to appear in the grains or along GBs. In contrast, the strength of the original sample still keeps relatively high, and large-scale shear cracks are still formed on the surface.
     As the original sample is annealed at 450℃for 3h and then deformed by ECAP, grain refinement takes place and the dislocation density increases. Moreover, lots of the large-size needle-like S phases have been broken in the SPD process so that the resolution of S phases takes place or the size correspondingly decreases. At this point, the strain-strengthening effect resulting from ECAP deformation becomes more prominent, and the joint strain-hardening and precipitation-strengthening effects bring about a comparative flow stress of the annealed-ECAPed sample and the just-annealed sample. However, the yield strength of the annealed alloy can be effectively enhanced by the strain-hardening mechanism. Similar to the sample directly deformed by ECAP, a lot of the shear bands, large-scale cracks and GB cracks are also formed on the surface of the pre-annealed and ECAPed samples. As the testing temperature is below 300℃, although the yield strength of the 450℃/3h+2ECAPed sample is obviously lower than that of the original sample, it always maintains at a relatively high level (i.e., 320-350 MPa). To sum up, the 450℃/3h+2ECAPed sample shows a good high-temperature deformation stability.
引文
1.周东海.控制LY12合金性能的途径[J],铝加工,1994,17(6):24-29.
    2.王祝堂,田荣璋.铝合金及其加工手册[M],长沙:中南大学出版社,1988,98-222.
    3.Valiev R Z.Structure and mechanical properties of ultrafine-grained metals[J],Mater Sci Eng A,1997,234-236:59-66.
    4.Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J],Prog Mater Sci,2000,45(2):103-189.
    5.Lowe T C,Valiev R Z,et al.Investigations and Applications of Severe Plastic Deformation[M],Kluwer Academic Publishers,2000.
    6.冯端著.金属物理学(第三卷 金属力学性质)[M],科学出版社,1999.
    7.《铝合金热处理》编写组.铝合金热处理[M],北京:冶金工业出版社,1972,65-69.
    8.Yang Y P,Dong P,Tian X.Hot cracking mitigation technique for welding high-strength aluminum alloy[J],Welding Journal,2000,79(1):9-17.
    9.张宝昌.有色合金及其热处理[M],西安:西北工业大学出版社,1993:3-10.
    10.工程材料实用手册编辑委员会.工程材料使用手册(3)[M],北京:中国标准出版社,1989,92-144.
    11.李学朝.论LY12硬铝合金的过烧[J],理化检验—物理分册,1982,5:7-12.
    12.宏永先等编译.国外近代变形铝合金专集[M],北京:冶金工业出版社,1987,7.
    13.刘瑞琦著.彩色金相图普[M],辽宁:辽宁科学技术出版社,1996,23-28.
    14.邢淑仪,王世洪编.铝合金和钛合金[M],北京:机械工业出版社,1987,28-31.
    15.王群骄编著.有色金属热处理技术[M],北京:化学工业出版社,2008:100-106.
    16.American society for testing and materials.Annual Book of ASTM Standards[M],Philadelphia:American society for testing and materials,1979:part 7,Table 6.
    17.Davis J R.Aluminum and Aluminum Alloys[M],USA:International Handbook Committee,1993:329.
    18.鹿尽忠.LY12与LC4厚板材淬火工艺[J],铝加工,1993,1:39-40.
    19.管征芳.不同淬火温度和加热时间对LY12合金组织及性能的影响[J],理化检验—物理分册,2001,37(5):191-194.
    20.陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能[J],中国有色 金属学报,2000,10(6):819-822.
    21.田秀云,刘艳红,高立柱.2024铝合金新人共时效制度的探讨[J],航空材料学报,2000,20(2):35-39.
    22.刑淑仪,王世洪.铝合金和钛合金[M],北京:机械工业出版社,1987:40-45.
    23.景诚.铝合金时效过程(上)[J],轻合金加工技术,1985,3:25-28.
    24.景诚.铝合金时效过程(下)[J],轻合金加工技术,1985,4:14-18.
    25.朱玉义.LY12铝合金在普通炉井式电阻炉中进行淬火加热试验[J],金属热处理,1987,7:54-55.
    26.潘金生等.材料科学基础[M],北京:清华大学出版社,1998:78-88.
    27.陈惠民.热处理温度和时间对LC4和LY12变形铝合金机械性能的影响[J],金属热处理,1981,6:22-28.
    28.Shih H C,Ho N J,Huang J C.Precipitation behaviors in Al-Cu-Mg and 2024 aluminum alloys[J],Metall Mater Trans A,1996,27(9):2479-2493.
    29.Brown R H,Fink W L,Hunter M S.Measurement of Irreversible Potentials as a Metallurgical Research Tool[J],Trans AIME,1941,143:115-122.
    30.Segal V M.Materials processing by simple shear[J],Mater Sci Eng A,1995,197(1):157-164.
    31.Valiev R Z,Krasilnikov N A,Tsenev N K.Plastic deformation of alloys with submicron-grained structure[J],Mater Sci Eng A,1991,137(5):35-40.
    32.Iwahashi Y,Horita Z,Nemoto M,et al.An investigation of microstructural evolution during equal channel angular pressing[J],Acta Mater,1997,45(11):4733-4741.
    33.Valiev R Z,Kozlov E V,Ivanov Y F,et al.Deformation behavior of ultrafine grained copper[J],Acta Mater,1994,42(7):2467-2475.
    34.Kim I,Jeong W S,Kim J,et al.Deformation structures of pure Ti produced by equal channel angular pressing[J],Scripta Mater,2001,45(5):575-581.
    35.Kim I,Kim J,Shin D H,et al.Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J],Mater Sci Eng A,2003,342(2):302-310.
    36.Delo D P,Semiatin S L.Finite-element modeling of nonisothermal equal-channel angular extrusion[J],Metall Mater Trans A,1999,30(5):1391-1402.
    37.Ferrasse S,Segal V M,Hartwig K T,et al.Development of a submicrometer grained microstructure in aluminum 6061 using equal channel angular extrusion[J],J Mater Res, 1997,12(55):1253-1261.
    38.Ferrasse S,Segal V M,Hartwig K T,et al.Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[J],Metall Mater Trans A,1997,28(4):1047-1057.
    39.Wang J,Hotrita Z,Furukawa M,et al.An investigation of ductility and microstructural evolution in an Al-30%Mg alloy with submicron grain size[J],J Mater Res,1993,8(11):2810-2818.
    40.Iwahashi Y,Wang J,Horita Z,et al.Principle of equal channel angular pressing for the processing of ultra-fine grained materials[J],Scripta Mater,1996,35(2):143-146.
    41.Wang S C,Starink M J,Gao N,et al.Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy[J],Acta Mater,2008,56(15):3800-3809.
    42.Furukawa M,Horita Z,Langdon T G,Processing by equal-channel angular pressing:Application to grain boundary engineering[J],J Mater Sci,2005,40(4):909-917.
    43.Segal V M.Equal channel angular extrusion:from macromechanics to structure formation[J],Mater Sci EngA,1999,271(1-2):322-333.
    44.Estrin Y,Toath L S,Molinari A,et al.A Dislocation-Bases Model for All Hardening Stages in Large Strain Deformation[J],Acta Mater,1998,46(9):3317-3331.
    45.Chang J Y,Yoon J S,Kim G H.Development of sub micron sized grain during cyclic equal channel angular pressing[J],Scripta Mater,2001,45(3):347-354.
    46.Segal V M,Reznikov V I,Drobyshevskiy A E,et al.Plastic working of metals by simple shear[J],Russ Metall,1981,19(1):99-105.
    47.Suresh S著.王中光等译.材料的疲劳(第2版)[M],北京:国防工业出版社,1999.
    48.王东宁,吕占江,王淑花.LY12合金低温拉伸变形行为研究[J],2007,36(10):28-34.
    49.Berbonf P B,Furukawa M,Horita Z,et al.Influence of Pressing Speed on Microstructural Development in Equal-channel Angular Pressing,Metal Master Trans,1999,30A(8):1989-1997.
    50.Lee J C,Seok H K,Suh J Y.Micro-structural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing[J],Acta Mater,2002,50(16):4005-4019.
    51.Tsuji N,Saito Y,Lee S H,et al.ARB and other new techniques to produce bulk ultrafine grained materials[J],Adv Eng Mater,2003,5(5):338-344.
    52.魏伟,陈光.大塑性变形制备块体纳米材料[J],机械工程学报,2002,38(7):1-5.
    53.张郑,杜忠泽,王经涛等.7475铝合金ECAP变形及组织人稳定性[J],有色金属,2004,56(2):31-34.
    54.王媛.低碳钢的ECAP变形及组织细化研究[D],西安:西安建筑科技大学,2000.
    55.Huang X,Tsuji N,Hansen N,et al.Microstructural evolution during accumulative roll-bonding of commercial purity aluminum[J],Mater Sci Eng A,2003,340(1-2):265-271.
    56.黄晓旭,蔡大勇,刘庆等.冷轧多晶铜与多晶铝形变显微组织演变的研究[J],材料科学与工艺,2000,8(3):1-5.
    57.刘燕声,赵骧,梁志德.工业纯铜的异步冷轧及再结晶织构研究[J],金属学报,1990,26(3):198-202.
    58.宋刚.纳米结构2024Al的强变形制备、结构及性能[D],南京:南京江苏大学,2007.
    59.Kim W J,Chung C S,Ma D S,et al.Optimization of strength and ductility of 2024 Al by equal channel angular pressing(ECAP) and post-ECAP aging[J],Scripta Mater,2003,49(4):333-338.
    60.Valiev R Z,Gertsman V Y,Kaibyshev O A.Grain boundary structure and properties under external influences[J],Phys Stat Sol(a) 1986;97(11):11-56.
    61.Valiev R Z,Islamgaliev R K,Alexandrov I V.Superplasticity of Ultrafine-Grained Aluminum Alloy Processed by ECAP and Warm Rolling[J],Prog Mater Sci,2000,45(2):103-189.
    62.Islamgaliev R K,Valiev R Z.Electron microscope study of grain boundaries in ultrafine-grained germanium[J],Solid State Phys 1995;37(12):1979-1984.
    63.Islamgaliev R K,Valiev R Z.Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining[J],Fiz Met Metalloved 1999;87(3):46.
    64.Horita Z,Fujinami T,Nemoto M,et al.Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J],J Mater Process Technol,2001,117(3):288-292.
    65.Li X W,Wu S D,Wu Y,et al.Temperature-Dependent Microstructures in Fatigued Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing[J],Adv Eng Mater,2005,7(9):829-833.
    66.Li X W,Umakoshi Y,Wu S D,et al.Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing[J],Phys Stat Sol,2004,201(15):119-122.
    67.Li X W,Jiang Q W,Wu Y,et al.Stress-Amplitude-Dependent Deformation Characteristics and Microstructures of Cyclically Stressed Ultrafine-Grained Cooper[J],Adv Eng Mater,2008,10(8):720-726.
    68.姜庆伟.应力幅和温度对超细晶铜的疲劳与损伤行为的影响[D],沈阳东北大学,2008.
    69.Li X W,Wu S D,Wu Y,et al.Surface Deformation Feature in Ultrafine-Grained Copper Cyclically Stressed at Different Temperatures[J],Mater Tran,2005,46(12):3077-3080.
    70.Li X W,Jiang Q W,Liu Y,et al.Effect of strain rate on the high-temperature compressive deformation behavior of ultrafine-grained copper[J],Int J Mod Phys B,2009,23(6):1758-1763.
    71.Yu Z Y,Jiang Q W,Li X W.Temperature-dependent deformation and damage behavior of ultrafine-grained copper under uniaxial compression[J],Phys Stat Sol,2008,205(10):2417-2421.
    72.姜庆伟,刘印,王尧等.超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J],金属学报,2009,45(7):873-879.
    73.刘印.超细晶铜的高温压缩变形与损伤行为研究[D],沈阳东北大学,2008.
    74.Conrad H,Jung K.On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion(ECAE)[J],Scripta Mater,2005,53(5):581-584.
    75.Wei Q,Jiao T,Ramesh K T,et al.Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression[J],Acta Mater,2006,54(1):77-87.
    76.Li Y J,Kapoor R,Wang J T,et al.Structural stability of ultrafine-grained copper[J],Scripta Mater,2008,58(1):53-56.
    77.Agnew S R,Vinogradov A,Hashimoto S,et al.Overview of fatigue performance of Cu processed by severe plastic deformation[J],Electron Mater,1999,28(9):1038-1044.
    78.Mughrabi H.Investigations and Applications of Severe Plastic Deformation[M],Moscow:Kluwer Publishers 2000,p.241.
    79.Vinogradov A,Hashimoto S.Multiscale phenomena in fatigue of ultrafine frain materials-an overview[J],Mater Trans,2001,42(1):74-84.
    80.Vinogradov A,Patlan V,Hashimoto S,et al.Acoustic emission during cyclic deformation of ultrafine-grained copper processed by severe plastic deformation.Phil Mag A,2002,82(2):317-335.
    81.Wu S D,Wang Z G,Jiang C B,et al.Shear bands in cyclically deformed ultrafine grained copper processed by ECAP[J],Mater Sci EngA,2004,387-389:560-564.
    82.Chang S Y,Ahn B D,Hong S K,et al.Tensile deformation characteristics of a nano-structured 5083 Al alloy[J],J Alloy and Compounds,2005,386(1-2):197-201.
    83.Dupuy L,Blandin J J.Microstructure and high temperature deformation of an ECAE processed 5083 Al alloy[J],Mater Sci Forum,2001,357-359:437-442.
    84.Xu C,Furukawa M,Horita Z,et al.Using ECAP to achieve grain refinement precipitate fragmentation and high strain rate superplasticity in a spraycast aluminum alloy[J],Acta Mater,2003,51(20):6139-6149.
    85.房大然,段启强,黄崇湘等.等通道转角挤压Al-Cu合金的冲击性能[J],金属学报,2007,43(12):1251-1255.
    86.Wang J,Furukawa M,Horita Z,et al.Enhanced growth in an Al-Mg alloy with ultrafine grain size[J],Mater Sci EngA,1996,216(1-2):41-46.
    87.Furukawa M,Horita Z,et al.Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size[J],Acta Mater,1996,44(11):4619-4629.
    88.Ratchev P,Vedinden B,Smet P D,et al.Precipitation hardening of an Al-4.2wt.%Mg-0.6wt.%Cu alloy[J],Acta Mater,1998,46(10):3523-3533.
    89.Poortmans S,Duchene L,Habraken A M.Modelling compression tests on aluminum produced by equal channel angular extrusion[J],Acta Mater,2009,57(6):1821-1830.
    90.Ratchev P,Verlinden B,Smet P D,et al.Artificial ageing of Al-Mg-Cu alloys[J],Mater Trans JIM,1999,40(1):34-41.
    91.Zhang Z R,Houtte P V,Verlinden B.Influence of previous ageing treatments on the strength of an Al-4.3wt.%Mg-1.2wt.%Cu alloy processed by ECAE[J],Int J Mater Res,2008,99(3):273-280.
    92.Zhang Z F,Wu S D,Li S M,et al.Cyclic deformation and fatigue properties of Al-0.7wt.%Cu alloy produced by equal channel angular pressing [J], Mater Sci Eng A,2005, 412(1-2): 279-286.
    
    93. Kapoor R, Chakravartty J K. Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing [J], Acta Mater, 2007, 55(16): 5408-5418.
    
    94. Mazurina I, Sakai T, Miura H, et al. Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP [J], Mater Sci Eng A, 2008, 486(1-2):662-671.
    
    95. Xu H X, Cheng X N, et al. Effect of ECAP on mechanical properties of 2024 Al alloy [J],Mater Sci Eng A, in press.
    
    96. Fang D R, Zhang Z F, Wu S D, et al. Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys [J], Mater Sci Eng A, 2006,426(1-2): 305-313.
    
    97. Peng X, Zhang X, Fan J, et al. Effect of heating-rate on the thermomechanical behavior of aluminum alloy LY12 and a phenomenological description [J], Int J Sol Struct, 2006,43(11-12): 3527-3541.
    
    98. Yang P S, Zhang M, Xu F, et al. Effect of strain rate on low-cycle fatigue behavior and mechanism of SiCp/Ly12 composite [J], Mater Sci Eng A, 1997, 234-236: 127-131.
    
    99. Zheng L J, Li H X, Hashmi M F, et al. Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment [J], J Mater Proc Tech, 2006,171(1): 100-107.
    
    100.Horita Z, Fujinami T, Nemoto M, et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing [J], J Mater Proc Tech, 2001, 117(3):288-292.
    101.Peng X, Fan J, Yang Y, et al. Investigations to the effect of heating-rate on the mechanical properties of aluminum alloy LY12 [J], Int J Sol Struct, 2003, 40(26): 7385-7397.
    102.Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J], Acta Mater, 2004, 52(15): 4589-4599.
    103.May J, Amberger D, Dinkel M, et al. Monotonic and cyclic deformation behavior of ultrafine-grained aluminum [J], Mater Sci Eng A, 2008, 483-484: 481-484.
    104.Nijs O, Holmedal B, Friis J, et al. Sub-structure strengthening and work hardening of an ultra-fine grained aluminum-magnesium alloy[J],Mater Sci Eng A,2008,483-484:51-53.
    105.Kang S B,Lim C Y,Kim H W,et al.Microstructure evolution and hardening behavior of 2024 aluminum alloy processed by the severe plastic deformation[J],Mater Sci Forum,2002,396-402:1163-1168.
    106.Meyer W,Hockauf M,Lr(u|¨)ger L,et al.Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates[J],Int J Mater Res,2007,98(3):191-199.
    107.Khan I N,Starink M J,Yan J L.A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys[J],Mater Sci Eng A,2008,472(1-2):66-74.
    108.Chauhan M,Roy I,Mohamed F A.Creep behavior in near-nanostructured Al 5083 alloy [J],Mater Sci Eng A,2005,410-411:24-27.
    109.Malek P,Cieslar M,Islamgaliev R K.The influence of ECAP temperature on the stability of Al-Zn-Mg-Cu alloy[J],J Alloy and Compounds,2004,378(1-2):237-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700