淬火碳钢的温变形行为及组织演变与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文目的是研究碳钢的马氏体温变形行为及温变形过程中的超细晶组织演变与性能特征。
     在Gleeble3500热模拟机上利用热机械模拟方法对淬火态低碳钢(Q235)、中碳钢(45)和高碳钢(T8和T12)在Acl温度以下的马氏体温变形行为进行了研究,建立了温变形本构方程,分析了变形温度、变形速率和碳含量对变形抗力的影响;利用光学显微镜(OM)和透射电镜(TEM)研究了不同工艺温变形的超细晶组织演变、位错形态和碳化物变化;还对淬火碳钢温变形后的样品的超细晶钢力学性能、物理性能和化学性能进行了分析。
     结果表明,随着变形温度的提高或变形速率的降低,淬火碳钢温变形抗力下降。在一定的变形温度和变形速率范围内,随着碳含量的增加峰值应力先升高后下降。碳含量为0.45 wt.%时峰值应力最高。其中淬火态45钢在60℃以应变速率0.01s-1进行50%变形量的温变形处理后,变形抗力达357MPa;与其在室温下的变形抗力(2600MPa)相比较,温变形处理后变形抗力降低84%左右。
     实验发现,含C0.17-1.26wt.%的淬火碳钢在Acl以下温变形可以制备超细晶/亚微米等轴晶粒铁素体和纳米渗碳体颗粒组成的超细晶组织。随着碳含量的增加,超细晶铁素体晶粒尺寸先减小后增大,含C0.45wt.%时铁素体晶粒最小;变形量从30%增加到90%,铁素体晶粒尺寸也呈先减小后增大趋势,变形量达到50%时晶粒尺寸最小。
     研究显示,淬火45钢在600℃以应变速率0.01s-1进行50%压下量的温变形得到超细晶组织,用微拉伸试样获得的屈服强度达777MPa,延伸率达19%。与国家标准GB/T699-1999(840℃淬火+600℃回火)给出的屈服强度355 MPa和延伸率16%相比,屈服强度提高了近1.2倍,延伸率略高于该标准。同样,淬火Q235钢在600℃以0.001s-1的应变速率进行50%变形量的温变形处理,屈服强度达到420MPa,延伸率16%。屈服强度是热轧态的约1.8倍。淬火后温变形处理制备的超细晶Q235钢热膨胀分析表明,以5℃/min升温的淬火Q235钢在250℃开始发生碳原子的脱溶,550℃脱溶结束。变形量50%以上温变形试样,膨胀系数无明显变化,说明没有出现碳原子脱溶现象,即获得了完全再结晶的铁素体。这种超细晶Q235钢人工海水腐蚀以均匀腐蚀为主,而盐雾腐蚀出现了较多的均匀分布的腐蚀坑。人工海水腐蚀表面粗糙度随腐蚀时间呈S形变化,在35天以内腐蚀缓慢,在35-55天腐蚀最快,超过55天腐蚀又趋于缓慢。
The aim of this dissertation is to investigate the warm deformation behavior of quenched carbon steels and the microstructure evolution and properties features during the warm deformation.
     The warm deformation behavior of quenched carbon steels with (0.17-1.26)C (wt.%), such as Q235,45, T8 and T12, at temperatures below Acl was studied by thermalmechanical simulation, and constitutive equations of the warm deformation were set up. Microstructure evolution during the warm deformation with different processes was examined by optical microscopy (OM) and transmission electron microscopy (TEM). In addition, the mechanical, physical and chemical properties of these steels subjected to quenching and warm deformation were also analyzed.
     Experimental results show that the resistance of the warm deformation of the quenched steels decreases with the deformation temperature elevating and the strain rate reducing. In certain rang of deformation temperature and strain rate, the peak stress of the warm deformation shows a trend from ascent to descent with the increase of carbon content, and the peak stress reaches maximum for 0.45C steel. Ultrafine microstructures with equiaxial ultrafine/submicron-grained ferrite and nano cementite particles can be fabricated in (0.17-1.26C) steels by quenching and warm deformation (QWD). With the increase of carbon content, the size of ferrite grain shows a trend from descent to ascent, and the finest grains can be obtained in 0.45C steel. With the increase of the reduction from 30% to 90%, the size of ferrite grain also shows a trend from descent to ascent, and the finest grains can be obtained at reduction of 50%. The yield strength and elongation are reached to 777 MPa and 19% for 0.45C steel by QWD with a reduction of 50% at 600℃and 0.01 s-1. Comparing to the yield strength (355 MPa) and elongation (16%) given in GB/T699-1999 for 0.45C steel treated by quenching at 840℃and tempering at 600℃, the yield strength is increased by~1.2 times and the elongation is slightly increased by QWD treatment. For the Q235 steel (0.17C) treated by quenching and warm deformation in reduction of 50% at 600℃and 0.001 s-1, the yield strength reaches 420 MPa which is higher than that of the as hot rolled sample by~80%, and the elongation is 16%. Thermal dilatometry measurement reveals that the precipitation of C from quenched Q235 steel starts at 250℃and completes at 550℃when heating at a rate of 5℃/min. However, for samples warmly deformed in reduction over 50%, the expansion coefficient is unchanged, suggesting that the pretipitation is not occurred, i.e. obtaining the completely recrystallized ferrite grains. The corrosion of this ultrafine grained Q235 steel in artificial sea water is mainly in mode of uniform corrosion, and the corrosion pits with uniform distribution ocuurs in the process of salt spray corrosion. The relationship between the surface roughness of the sample corroded in artificial sea water and corrosion time displays S-shape curve. The corrosion rate is slow for corrosion time less than 35 days, rapid for 35-55 days and slow for over 55 days.
引文
1翁宁庆.超细品钢-钢的组织细化理论与控制技术.北京:冶金工业出社2003:17,42,68,295,409-484,537,900
    2 R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci.,2000,45:103-189
    3 N. Tsuji, R. Ueji, Y. Minamino, Y. Saito. A new simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scr. Mater.,2002,46:305-310
    4刘振宇,许云波,干国栋.热轧钢材组织—性能演变的模拟和预测.沈阳:东北大学出版社,2004:87-93
    5 Yuwei Gao, Tianfu Jing, Guiying Qiao, Jinku Yu, Tiansheng Wang, Qun Li, Xinyu Song, Shuqiang Wang, Hong Gao. Microstructural evolution and tensile properties of low-carbon steel with martensitic microstructrue during warm deforming and annealing. J. Uni. Sci. Techno. Beij., 2008,15(3):245-249
    6曹乃光.金属塑性加工原理.北京:冶金工业出版社,1983:82
    7汪大年.金属塑性成型原理.北京:机械工业出版社,1982:197
    8荆天辅,肖福仁,蔡大勇.纳米晶粒低合金钢板及其制造技术.中国发明专利,专利号:00101493,5,2003
    9 Y. Okitsu, N. Takata, N. Tsuji. A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scr. Mater.,2009,15:76-79
    10牧正志.细化钢铁材料晶粒的原理与方法.热处理,2006,21(1):1-9
    11 P.J. Hurley, P.D. Hodgson. Formation of ultrafine ferrite in hot rolled strip:potential mechanism for grain refinement. Mater. Sci. Eng. A,2001,302:206-214
    12瓦利耶夫,亚力克山卓夫 著,林柏年译.剧烈塑性变形纳米材料.北京:科学出版社,2006,5:84
    13 S.I. Kim, Y.D. Lee, Y.C. Yoo. Prediction of the flow stress curves in austentic stainless steels. Mater. Sci. Forum,2003,426-432:1071-1076
    14 S. Cheng, J.A. Spence, W.W. Milligan. Strength and tension/compression asymmetry in nanostructured and ultrafine-graine meals. Acta Mater.,2003,51:4505-4518
    15 V. M. Segal. Deformation mode and plastic flow in ultra fine grained metals. Mater. Sci. Eng. A, 2005,406:205-216
    16 C.C. Koch. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater.,2003,49:657-662
    17 M. Y. Liu, B. Shi, C. Wang, S. K. Ji, X. Cai, H. W. Song. Normal Hall-Petch behavior of mild steel with submicron grains. Mater. Lett.,2003,57:2798-2802
    18 M. Liu, B. Shi, G. Bi, H. Cao, X. Cai, H. Song. A submicron mild steel produce by simple warm deformation. Mater. Sci. Eng. A,2003,360:101-106
    19董瀚.先进钢铁材料.北京:科学出版社,2008:16
    20宋洪伟,史弼,王聪,张俊宝,李键,季思凯,曹涵清.具有纳米析出的亚微米钢的显微组织特点.宝钢技术,2005,1:50-52
    21宋洪伟.微米、亚微米与纳米超细晶粒钢的研究进展.世界科技研究与发展,2002,24(5):31-35
    22 T.G. Nieh, J. Wadsworth. Hall-Petch relation in nanocrystalline solid. Scr. Mater.,1991,25: 955-958
    23 B.Q. Han, S. Yue. Processing of ultrafine ferrite steels. J. Mater. Proc. Technol.,2003,136 100-104
    24范建文.800 MPa级低合金钢超细晶组织与力学性能研究.钢铁研究总院博士后论文.2000:35-38
    25荆天辅,傅万堂,张静武,高明.塑性变形诱发内生复合板的强化机制.物理测试,1997,(1):17-21
    26 T.S. Wang, J.G. Peng, Y.W.Gao, F.C. Zhang, T.F. Jing. Microstructure of 1Cr18Ni9Ti stainless steel by cryogenic compression deformation and anneatlng. Mater. Sci. Eng. A,2005,407:84-88
    27 T.H. Courtney. Mechanical Behavior of Materials. Beijing:China Machine Press,2004,167: 175-233
    28 N. Krasilnikov, W. Loijkowski, Z. Pakiela, R. Valiev. Tensile strength and ductility of ultra-fine grained nikel propocced by severe plastic deformation. Mater. Sci. Eng. A,2005,397:330-337
    29 A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari. Severe plastic deformation (SPD) processes for metals. CIRP. Annals-Manifacture Technol.,2008,57(2):716-735
    30 G. Krauss. Martensite in steel:strength and structure. Mater. Sci. Eng. A,1999,273-275:40-57
    31 D.A. Porter, K.E. Easterling. Phase Transformations in Metals and Alloys. Oxford:The Alden Press,1981:417-428
    32 Y. Fukuda, K. Ohpishi, Z. Horita, T.G. Langdon. Processing of low-carbon steel by ECAP pressing. Acta Mater.,2002,50:1359-1368
    33 N. Tsuji, T. Maki. Enhanced strutural refinement by combining phase transformation and plastic deformation in steels. Scr. Mater.,2009,60:1044-1049
    34 X. Zhao, T.F. Jing, Y.W. Gao, J.F. Zhou, W. Wang. A new SPD process for sheroidal cast tron. Mater. Lett.,2004,58:2335-2339
    35 Y. Liu, L. Xu, Q. Wang, W. Li, X. Li, Y. Xie, X. Zhang. Bulk α-Fe/Nd2Fe14B nanocomposite magnets prepared by the transition of amorphous Nd9Fe81Co3Nb1B6 under high pressure. Mater. Lett.,2008,62:3890-3892
    36 K..P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt. Hot deformation studies on a low-carbon steel:Part 1-flow curves and the constitutive relationship. J. Mater. Process. Technol.,1996,56:897-1907
    37康晓洁.Gleeble-3800热/力模拟系统的性能特点及使用.大型铸锻件,2005,(3):43-45
    38 D. Ferguson W. Chen, T. Bonesteel, J. Vosburgh. A look at physic simulation of metallurgical processes, past, present and future. Mater. Sci. Eng. A,2009,499:329-332
    39牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社,2007:16-48
    40 R.Z. Valiev, Terence G. Langdon. Princople of ECAP as a processing tool for grain refinement. Prog. Mater. Sci.,2006,51:881-981
    41杜忠泽,曹小芳,符寒光,王经涛,赵西成ECAP变形低碳钢的组织变化规律.北京科技大学学报,2006,28(5):430-439
    42 Y.Z. Bao, Y. Adachi, Y. Toomine, P.G. Xu, T. Suzuki, Y. Tomota. Dynamic recrystallization by rapid heating followed by compresssion for a 17Ni-0.2C martensite steel. Scripta Mater.,2005, 53:1471-1476
    43 Y. Akira, Y. Jun. Regression method of determining generalized description of flow curve of steel under dynamic recrystallization.ISIJ Inter.2005,45(6):858-866
    44黄斌,王永善,王占领,聂新林.40Cr钢晶粒超细化工艺研究.热处理,2006,21(4):34-36
    45 Y. Ivanisenko, R.K. Wunderlinch, R.Z. Valiev, H.J. Fecht. Annealing behavior of nanostructured carbon steel produced by severe plastic deformation. Scr. Mater.,2003,45:947-952
    46 A.L.M. Costa, A.C.C.C. Reis, L. Kestas. Ultra grain refinment and hardening of IF-steel during accumulative rolled bonding. Mater. Sci. Eng. A,2005,406:279-285
    47 Y. Xiong, S. Sun, Y. Li, J. Zhao, Z. Lv, D. Zhao, Y. Zeng, W. Fu. Effect of warm cross-wedge rolling on microstrucrure and mechanical properties of high carbon steel rods. Mater. Sci. Eng. A, 2006,431:152-157
    48 Y. Akira, Y. Jun. A novel approach to determine the kinetics for dynamic recrystallization by the flow curve. J. Mater. Process. Technol.,2004,151:33-38
    49徐光,张不军.金属低温变形理论与技术.北京:冶金工业出版社,2007:89-124
    50 C.M. Sellars, W.J. McTegart. On the mechanism of hot deformation. Acta Mater.,1966,14: 1136-1138
    51李维娟,张红梅,杜林秀,刘相华,王国栋.中温加工对低碳钢显微组织的影响.钢铁研究,2000,(5):44-47
    52 T.F. Jing, Y.W. Gao, G.Y. Qiao, Q. Li, T.S. Wang, W. Wang, F.R. Xiao, D.Y. Cai, X.Y. Song, X. Zhao. Nanocrystalline steel processed by severe rolling of lath martensite. Mater. Sci. Eng. A, 2006,432:216-220
    53张斌,张鸿冰20CrMnTi (?)结构钢热变形行为及其数学模型.上海交通大学报,2003,37(12):17-20
    54 Y.D. Huang, W.Y. Yang, Z.Q. Sun. Formation of ultrafine grained ferrote in low carbon steel by heavy deformation in ferrite or dural phase region. J. Mater. Process. Technol.,2003,134:19-25
    55 S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo. Dynamic recrystallinzation of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr. Mater.,2005,53: 763-768
    56熊毅,付万堂,厉勇,吕知清,赵得利,邢广忠,孙淑华.高碳钢的温变形行为.钢铁研究学报,2007,19(5):58-62
    57李治华,许云波,吴迪,赵贤明,王国栋.C-Mn钢高温变形过程再结晶及位错密度的研究.钢铁研究,2007,(4):35-38
    58蔺永诚,陈明松,钟掘42CrMo钢的热压缩流变应力行为.中南大学学报,2008,39(3):549-553
    59 A.W.F. Smith, D.N. Growther, P.J. Apps, P.B. Prangnell. Ultrafine grained high carbon steel by innovation deformation. Mater. Sci. Forum,2007,550:301-306
    60 P.B. Prangnell, J.R. Bowen, P.J. Apps. Ultra-fine grain structures in aluminium alloys by svere defromation processing. Mater. Sci. Eng. A,2004,375-377:178-185
    61王昭东,何晓明,赵昆,张不军,李自钢,刘相华,王国栋Ti-IF钢铁素体区热变形行为和Zener-Hollomen参数方程的建立.材料科学与工艺,2000,8(4):6-10
    62齐俊杰,杨王玥,孙祖庆,章晓中,董志锋.低碳钢SS400形变强化相变组织演变动力学.金属学报,2005,41(6):605-610
    63徐光,徐楚韶Ti-IF钢750-800℃变形的Zener-Hollomen参数方程.特殊钢,2006,27(1):1-2
    64 D.B. Santos, R.K. Bruzszek, P.C.M. Rodrigues, E.V. Pereloma. Formation of ultra-fine ferrite microstructure in warm rolled and annealed C-Mn steel. Mater. Sci. Eng. A,2003,346:189-195
    65 A. Oudin, M.R. Barnett, P.D. Hodgson. Grain size effect on the warm deformation behavior of a Ti-IF steel. Mater. Sci. Eng. A,2004,367:282-294
    66张麦仓,董建新,曾燕屏,孙影,杨忠民.Q235低碳钢高温变形过程的动态组织演化分析.北京利·技大学学报,2005,27(2):183-186
    67 G. Luo, J. Wu, J. Fan, H. Shi, Y. Lin, J. Zhang. Deformation behavior of an ultrahigh carbon steel (UHCS-3.0Si) at elevated temperture. Mater. Sci. Eng. A,2004,379:302-307
    68苏连锋,王昭东,刘相华,王国栋,陆匠新,李自钢.用蠕变方程建立高强微合金钢的流变应力预测模型.钢铁研究,2002,(2):23-26
    69李鸿标15CrMnMoVA合金钢马氏体温变形行为及其组织与性能研究.燕山大学工学硕士学位论文.2009
    70 S.I. Kim, Y. Lee, S.M. Byon. Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures. J. Mater. Process. Technol.,2003,140:84-89
    71 C. Huang, E.B. Hawbolt, X. Chen, T.R. Meadowcroft, D.K. Matlock. Flow stress modeling and warm rolling simulation behavior of two Ti-Nb interstitutial-free steels in the ferrite region. Acta Mater.,2001,49:1445-1452
    72戴铁军,刘战英,刘相华,王国栋30MnSi钢金属塑性变形抗力的数学模型.塑性工程学报,2001,8(3):17-20
    73魏立群B30MnSi钢的动态再结晶行为.特殊钢,2005,26(4):13-15
    74王艳,王明家,蔡大勇,熊良银,工青峰.高强度奥氏体不锈钢的热变形行为及其热工图.材料热处理学报,2005,26(4):65-68
    75杨干玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制.金属学报,2000,36(10):1050-1054
    76 A. Belyakov, H. Miura, T Sakai. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Mater. Sci. Eng. A,1998,225:139-147
    77 G. Krauss. Deformation processing and structure. ASM. Metals Park, Ohio,1982:77,133
    78李龙飞,杨王玥,孙祖庆.低碳钢在Acl点以下温度变形的铁素体动态再结晶.金属学报,2003,39(4):419-425
    79 B. Eghbali, A.A. Zadeh. Deformation-induced ferrite tranformation in a low carbon Nb-Ti microalloyed steel. Mater. Design,2007,28:1021-1026
    80 H. Beladi, P. D. Hodgson. Effect of carbon cntent on the recrystallization kinetics of Nb-steels. Scripta Mater.,2007,56:1059-1062
    81陈国安,杨王玥,郭守真,孙祖庆.低碳微量铌钢形变过程中动态相变的特点.材料热处理学报,2006,27(6):89-96
    82 B. Poorganji, G. Miyamoto, T. MAki, T. Furuhara. Formation of ultrafine grained ferrite by warm deforamtion of lath martensite in low-alloy steels with different carbon cntent. Scr. Mater.,2008, 59:279-281
    83 C.K. Syn, D.R. Lesuer, O.D. Sherby, E.M. Taleff. Stress-strain rate relations in ultrahigh carbon steels deformed in the ferrite range of temperature. Mater. Sci. Forum,2003,426-432:853-858
    84 H.F. Lan, W.J. Liu, X.H. Liu. Ultrafine ferrite grains produced by tempering cold-roll martensite in low carbon and microalloyed steels. ISIJ Intern.2007,47(11):1652-1657
    85 Fan Jianwen, Dai Xiaoli, Xie Ruiping, Zhang Weixu, Wang Zubin. Surface ferrite grain produced refinement and mechanical properties of low caebon plates. J. Iron. Steels. Resear. Intern.,2006, 13(4):35-39
    86 Y.T. Zhu, T.C. Lowe, T.G. Langdon. Performance and apllication of nanostractured materials produced by severe plastic deformation. Scr. Mater.,2004,51:1039-1044
    87 J. Liu, H. Chang, T.Y. Hsu, X. Ruan. Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network. J. Mater. Process. Technol.,2000,103:200-205
    88刘芳,单德彬,吕炎,杨玉英.2A70铝合金本构关系的新模型.哈尔滨工业大学学报,2005,37(4):449-450
    89 X. He, Z. Yu, X. Lai. A method to predict flow stress considering dynamic recrystallization. Compu. Mater. Sci.,2008,44:760-764
    90蔺永诚,陈明松,钟掘.形变温度对42CrMo钢塑性成型与动态再结晶的影响.材料热处理学报,2009,30(1):70-74
    91 M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon. The use of severe plastic deformation for microstructureal control. Mater. Sci. Eng. A,2002,324:82-89
    92赵新,荆天辅,高聿为,王威,周继锋.板条马氏体大变形轧制工艺的晶粒细化机制.钢铁研究学报,2004,16(6):69-73
    93潭洪峰,杨王玥,陈国安.初始组织形态对中碳钢温变形组织演变的影响.北京科技大学学报,2008,30(4):367-373
    94 S. Nambu, M. Michiuchi, Y. Ishimoto, K. Asakura, J. Inoue, T. Koseki. Transition in deformation behavior of martensitic steel during large deformation under uniaxial tensile loading. Scr. Mater., 2009,60:221-224
    95 N. Tsuji, N. Kamikawa, Y. Minamino. Effect of strain on deformation microstructure and subsequencent annealing behavior of IF steel heavily deformed by ARB process. Mater. Sci. Forum,2004,467-470:341-346
    96 M. Hayakawa, S. Matsuoka, Y. Furuya. Nanoscopic measurement of local plastic deformation for a temperated martensitic steel by atomic force microscopy. Mater. Lett.,2003,57:3037-3042
    97 R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, K. Nogi. Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process. Mater. Sci. Eng. A,2006,423: 324-330
    98黄蓉,张静武,缑慧阳,张宝石,路漫漫,张湘义.冷轧15钢高压再结晶组织的TEM分析.物理测试,2006,24(3):1-4
    99 X.H. Chen, J. Lu, J. Lu, K. Lu. Tensile properties of a nanocrystalline 316L austenite stainless steel. Scr. Mater.,2005,52:1039-1044
    100 Y.H. Zhao, Y.Z. Guo, Q.Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia. Influence of specimen dimension on the tensile behavior of ultrafine grained Cu. Scr. Mater.,2008,59:627-630
    101清,段占强,董翰,杨柯,李守新,王光中.微型拉伸试样的设计及其在高性能管线钢研究中的应用.金属学报,2000,36(6):626-629
    102 J. Wadsworth, D.R. Lesure. Acient and modern laminated composites-from the Greet Pyramid of Gizeh to Y2K. Mater. Character,2000,45:289-313,
    103 Jing Tao Wang. Historic retrospection and present status of severe plastic deformation in China. Mater. Sci. Forum.2006,503-504:363-3170
    104 G. Krauss. Steels:Heat Treatment and Processing Principles. ASM Intern. Mater. Park, Ohio, 1995:62
    105李立新.材料表面纳米尺度力学及电学特性的原子力显微镜研究.燕山大学博士学位论文.2006
    106王占学.塑性加工金属学.北京:冶金工业出版社,1991:185
    107李窘,方威,胡小军.高强度SUS304不锈钢切割丝生产工艺研究.金属制品,1999,(3):27-30
    108 Guoyi Tang, Mingxin Zheng, Yonghua Zhu, Jie Zhang, Wei Fang, Qun Li. The application of the electro-plastic techenique in the cold-drawing of steel wires. J. Mater. Process. Technol.,1998,84: 268-270
    109 Guoyi Tang, Jin Zhang, Mingxin Zheng, Jie Zhang, Wei Fang, Qun Li. Experimental study of electroplastic effect on stainless steel wire 304L. Mater. Sci. Eng. A,2000,281:263-267
    110李窘,方威,唐国翌,朱永华,郑明新.精密合金3J53钢丝的电塑性拔丝研究.金属制品,1999,(5):4-7
    111 W. Stumpf, K. Banks. The hot working characteristics of a boron bearing and a conventional low carbon steel. Mater. Sci. Eng. A,2006,418:86-94
    112许云波,刘相华,王国栋.低碳钢低温区流变应力预测.钢铁研究学报,2002,14(2):40-43
    113 B. Wang, W. Fu, Z. Lv, P. Jiang, W. Zhang, Y. Tian. Study on hot deformation behavior of 12%Cr ultra-super critical rotor steel. Mater. Sci. Eng. A,2008,487:108-113
    114 Y.C. Lin, M.S. Chen, J. Zhong. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel. J. Mater. Process. Technol.,2008,205:308-315
    115 Y.Y. Zong, D.B. Shan, M. Xu, Y. Lv. Flow softening and microstructureal evolution of TC 11 titannium alloy during hot deformation. J. Mater. Process. Technol.,2009,209:1988-1994
    116 S. Serajzadeh, A. Karimi Taheri.An investigation on the effect of carbon and sillicon on flow behavior of steel. Mater. Design,2002,23:271-276
    117 A. Niechajowicz, A. Tobota. Warm Deformation of Carbon Steel. J. Mater. Process. Technol., 2000,106:123-130
    118 J.C.M. Li, A.K. Mukherjee. Processes in Plastic Deformation of Materials. New York:American Society for Metals,1975:532
    119 P.J. Wray. Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures. Metall. Trans. A,1982,:125-131
    120张贵锋,米运卿,张建勋,裴伟.超细晶粒钢制备工艺及机制与传统控轧控冷钢的异同.材料导报,2004,18(8):53-55
    121 P.哈森.材料的相变.刘治国译.北京:科学出版社,1998:347-352
    122 R.W.K. Honeycombe. The Plastic Deformation of Metals. London:Edaward Arnold,1984: 196,301,321
    123 B. Eghbali, A.A. Zadeh, H. Beladi, P.D. Hodgson. Characterization on ferrte microstructure evolution during large strain warm torsion testing of plain carbon steell. Mater. Sci. Eng. A,2006, 435-436:499-503
    124 D. Griffiths, J.N. Riley. Dislocation arrangement in deformation polycrystalline 3% silicon-iron. Acta Mater.,1966,14:755-773
    125 B. Shi, H. Song, J. Zhang, H. Cao, X. Wang. Low carbon low alloy submicro-steel with nano-precipitation. Mater. Sci. Forum,2006,503-504:511-514
    126刘涛,杨王钥,陈国安,张湘义.共析钢温变形过程的组织球化与细化.北京科技大学学报,2008,30(6):604-609
    127 Kun Yang, Huiyang Gou, Bo, Zhang, Rui Huang, Hui Li, Manman Lu, Xiangyi Zhang, Jigwu Zhang. Microstructures and fractuue features of cold rolled low carbon steel sheet after anneaning and mechanical stress concurrently loaded. Mater. Sci. Eng. A,2009,502:126-130
    128 J. Pesicka, R. Kuzel, A. Dronhofer, G. Eggeler. The evolution of dislocation density during heat treatment and creep of tempered martensite ferrite steels. Acta Mater.,2003,51:4847-4862
    129 J.弗里埃德尔.位错.王煜 译.北京:科学出版社,1980:171-172
    130 D. Rabe, D. Ponge, O. Dmitrieva, B. Sander. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater.,2009,60:1141-1144
    131 B. Cao, S.P. Joshi, K.T. Ramesh. Strengthening mechanisms in milled ultrafine-grained aluminum alloy at quasi-static and dynamic rates of loading. Scr. Mater.,2009,60:619-622
    132 Z.H. Jia, L. Arnberg, S.J. Andersen, J.C. Walmsley. On nanoscale Al precipitates forming in eutectic Si particles in Al-Si-Mg cast alloys. Scr. Mater.,2009,61:500-503
    133 A.J. Papworth, D.B. Williams. STEM imaging of prior austentite grain boundaries. Scr. Mater., 2000,42:627-630
    134 M. Enomoto, N.Maruyama, K.M. Wu, T. Tarui. Alloying element accumulation at ferrite/austensite boudaries below the time-temperature-transformation diagram bay in an Fe-C-Mo alloy. Mater. Sci. Eng. A,2003,343:151-157
    135 T. Kato, K. Nunome, K.Kaneko, H. Saka. Formation of the ζ phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvanealing. Acta. Mater.,2000,48: 2257-2262
    136 H. Nakamichi, K. Sato, Y. Miyata, M. Kimura, K. Masamura. Quantative analysis of Cr-depleted zine morphology in low carbon martensite stainless steel using FE-(S)TEM. Corro. Sci.,2008, 50:309-315
    137 J. Lis, J. Morgiel, A. Lis. The effect of Mn partitioning in Fe-Mn-Si alloy investigated with STEM-EDS techniques. Mater. Chem. Phys,2003,81:466-468
    138关云,陈庆丰.ULCB钢中铜析出行为及对回火性能的影响.物理测试,2005,23(2):19-32
    139徐瑞,荆天辅.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社,2003:246-249
    140潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,2004:589-590
    141毕刚.低碳低合金钢晶粒超细化研究.上海交通大学博士后论文.2004,5:41-44
    142 R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi. Ulreafine refinment of plain low carbon steel by cold-rolling and annealing of martensite. Acta. Mater.,2002,50:4177-4189
    143 M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsuji. Microstructure qualitification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by ECAP. Mater. Chara,2008,59:1312-1323
    144王宏伟,吕绍尧.‘截线法’测量灰铸铁共晶团数的统计分析.理化检测-物理,1990,26(4):31-3
    145魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,2002:192
    146 T. Nishimura. Rust formation and corosion performannce of Si- and Al-bearing ultrafine grained weathering steel. Corro. Sci.,2008,50:1306-1312
    147 R.V. Steward, G.J. Fan, L.F. Fu, B.A. Green, P.K. Liaw, G. Wang R.A. Buchanan. Pitting behavior of a bulk Ni-18w.% Fe nanocystallization alloy. Corro. Sci.,2008,50:946-953
    148 B. Hadizima, M. Janeck, Y. Estrin,H.S. Kim. Microstructure and corrosion properties of ultrafined grain IF steel. Mater. Sci. Eng. A,2009,462:243-124
    149 D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang. Corrosion behavior of ultrafine grains industrial pure Al fabricated by ECAP. Transaction of Nonferrous Metals Society of China,2009, 462:1065-1070
    150 S. Toriza, A. Ohmori, SV.S. Narayana Murty, K. Nagai. Effect of strain on tha microstructure and mechanical properties of multi-pass warm calliar rolled low carbon steel. Scr. Mater.,2006, 54:563-568
    151 W.J. Kim. S.J. Yoo. Enhance ductility and mechanical properties of UFG Al-Mg-Si-V sheet alloy in sheet form at warm temperature. Scr. Mater.,2009,61:125-128
    152 K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin. Thermal stability and mechanical property of UFG low carbon steel. Mater. Sci. Eng. A,2000,293:165-172
    153王润.金属材料物理性能.北京:冶金工业出版社,1993:135-162
    154 C. Anandan, K.S. Rajam. Composition, structure and morpgology of oxide layers formed on austenitic stainless steel by oxgyen plasma immersion ion implantation. J. Appl. Surf. Sci.,2007, 253:6854-6859
    155刘国超,董俊华,韩恩厚,柯伟.耐候钢锈层研究进展.腐蚀科学与防护技术,2006,18(4):268-272
    156 Y.M. Tang, Y. Zuo, X.H. Zhao. The metastable pitting behavior of mild steel in bicarbongate and nitrite solution containing Cl-. Corro. Sci.,2008,50:989-994
    157 D.D.N. singh, S. Yadav, J.K. Saha. Role of climatic conditions on corrosion characterristics of structural steels. Corro. Sci.,2008,50:93-110
    158 C. Remazeilles, Ph. Refait. On the formation of β-FeOOH in chloride-containing eviroments. Corro. Sci.,2007,49:844-857
    159 S. Pineau, R. Sabot, L. Quillet, M. Jeanin, Ch. Caplat, Ⅰ. Dupont-Morral. Formation of the Fe (II-III) hydroxysulphate green rust during marrine corrosion of steel associeated to molecular detection of dissimilatory sulphite-reducts. Corro. Sci.,2008,50:1099-1111
    160 O.V. Rybalchenko, S.V. Dobatkin, L.M. Kaputkina, G.I. Raab, N.A. Krasilnikov. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation. Mater. Sci. Eng. A, 2004,387-389:244-2481
    161 T. Yamasaki, H. Miyamoto, T. Mimaki. Stress corrosion cracking susceptibility of ultrafine grain copper produced by ECAP. Mater. Sci. Eng. A,2001,318:122-128
    162 D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Beranger. Corrosion of iron archaeological artifacts in soil:characterization of the corrosion system. Corro. Sci.,2005,47:515-535
    163 Z.B. Bao, Q.M. Wang, W.Z. Li, J. Gong, T.Y. Xiong, C. Sun. Corrosion behavior of AIP NiCoCrAlYSiB coating in salt spray tests. Corro. Sci.,2008,50:847-855
    164 E.S. Gadelmawla, M.M. Koura, T.M. A. Maksoud, L.M. Elewa, H.H. Soliman. Roughness parameters. J. Mater. Process. Technol.,2002,123:133-145
    165 H. Itoga, K. Tokaji, M. Nakajima, H.N. Ko.. Soliman. Effect of surface roughness on step-wise S-N characteristics in high strength steel. Inter. J. Fatig.,2003,25:379-385
    166 Z. Yibas, M.S.J. Hashimi. An optical method and neural network for surface roughness measurement. Optics and Lasers in Engineering,1998,29:1-15
    167 L. He, Q. Zhao, M. Gao. Characterization of corroded Ding from the Yin Ruins of China. Corro. Sci.,2007,49:2534-2546
    168 R. Tanya, H. Yvan, M. Anne. Characterization of TRIP-assisted multiphase steel surface topography by atomic force microscopy. Mater. Character.,2001,47:93-104
    169 C.A.R.Costa,W.W. Batista, C.T. Riso, S. Milenkovic, M.C. Goncalaves, R. Caram. Eutectic alloy microstructure:Atomic force microscopy analysis. J. App.Sur. Sci.,2005,240:414-423
    170 A.T. Dutra, P.L. Ferrandini, C.A.R.Costa, M.C. Goncalaves, R. Caram. Growth and solid/solid transformation in a Ni-Si eutectic alloy. J. Alloys. Comp,2005,399:202-207
    171 Jinku Yu, Tianfu Jing, Jun Yang, Qun Li. Determination of activation energy for crystallization in Ni-Sn P amorphous alloys. J. Mater. Process. Technol.,2009,209 (1):14-17
    172 Z.Q. Sun, W.Y. Yang, J.J. Qi, A.M. Hu. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass. Mater. Sci. Eng. A, 2002,334:201-206
    173 N.D. Beynon, T.B. Jones, G. Fourlaris. Effect of high strain rate deformation on microstructure of strip steels tested under dynamic tensile conditions. Mater. Sci. Techno.,2005,25:103-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700