纤维缠绕飞轮强度分析与高效永磁轴承设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储能飞轮的发展存在追求高储能密度和追求大输入输出功率两个方向,近来此二者有融合趋势形成同时具备两项优点的更先进储能飞轮。本人在前人工作基础上,在飞轮技术以上两个发展方向,具体到转子结构与支承关键技术,展开了深入的理论研究与试验工作。
     在复合材料环向缠绕高储能密度飞轮转子的强度研究工作中:(1)引入轮体固化降温工艺应力概念。通过理论计算和实例对比分析,得出此固化应力重要性仅次于离心载荷所致应力、对复合材料飞轮成功制造及最终储能指标有重大影响的结论。提出工艺改进措施,在理论上将现有转子结构储能密度提高37%。(2)提出加力缠绕配合在线固化的轮体制造新思路。发展完善了厚壁圆筒缠绕理论方法及计算手段。确立了精确抑制飞轮径向应力所需加力缠绕张力制度的定义及计算方法。设计出的预应力飞轮在现有材料及结构尺寸下,可以达到140Wh/kg的高储能密度指标。研究中提出一种计算方法解决复材缠绕飞轮体加工及使用过程中遇到的大多数力学问题。
     针对立式20kW/1kWh储能飞轮系统,研制出上端高效永磁轴承。轴承以轴向反向充磁的内外双钕铁硼永磁环为磁源,同时配以合金钢导磁铁轭及转环形成微漏磁磁路,实现工作间隙1mm时,承载力在kN量级。此新结构永磁轴承具有结构紧凑、可超高速旋转并不受转子温升影响的优良特性。
     为提高飞轮储能密度和实现飞轮系统较大功率充放电,开展了大量的工程实际试验研究工作。对复合材料环向缠绕的高储能密度飞轮转子进行强度试验,达到实验极限转速905r/s,轮缘线速度796m/s,储能密度48Wh/kg的国内优秀指标;深入分析初步得出试验转子失效机制。建立一套20kW/1kWh储能飞轮样机,有效的力学设计计算以及大量的系统运行试验初步掌握了此新结构样机的动力学特性,为进一步的结构参数调整打下良好基础。
High energy density and high power density are two directions in flywheel energy storage systems (FESS) development. There is a trend of including these two advantages into better high-speed high-power flywheels. In-depth theoretical study and a great deal of experimental research on flywheel rotor and bearing technology has been done for improving the energy density and power rating of the tested FESS.
     Through strength analysis of composite flywheel rotors made by fiber winding: (1) The concept was introduced for thermal residual stress generated in normal curing and cooling phase of fiber winding process. Comparison of theoretical calculation with experiment result has shown that, this stress is an important factor that influences flywheel safety and performance. An improved fabrication process was proposed which could increase the rotor performance by 37%. (2) Tensioning winding with in-situ curing, which is a new rotor fabrication technology is also proposed to enhance rotor radial strength by producing radial prestress. The theory and calculation method of thick-wall cylinder winding is developed and completed. The dissertation also shows how to define and calculate a set of fiber tensioning force for certain radial prestress. With same material and structure size, the new prestressed flywheel can reach an energy density as high as 140Wh/kg. An effective calculation method that can solve most of the mechanics problems met during the manufacture and use of fiber-enforced flywheel is developed.
     An upper permanent magnetic bearing (PMB) was designed for high-power vertical energy storage flywheels. The bearing consists of a radial two PM-ring stator and an alloysteel magnetic-conducting rotor which allow it to work at super high speed and to avoid thermal impact from flywheel rotor. With minimized bearing size and magnetic leakage, the bearing has an axial unloading force of kNs at working gap of 1 mm.
     Intensive experiments have been done to improve the energy density and power rating of FESS. Spin tests of high speed flywheel rotors achieve ultimate speed 905r/s, circumferential speed 796m/s and energy density 48Wh/kg. Failure analysis was done to the rotor. A new 20kW FESS was set up. After effective finite element analysis simulation and plenty of spin tests, the rotor system behavior is fairly understood, which is helpful and necessary to improve the design.
引文
[1] INVESTIRE-NETWORK. Investigations on Storage Technologies for Intermittent Renewable Energies: Evaluation and recommended R&D strategy[R/OL]. [2008-4-15]. http://www.itpower.co.uk/investire/storage_tech.htm.
    [2] INVESTIRE-NETWORK. Investigations on Storage Technologies for Intermittent Renewable Energies: Evaluation and recommended R&D strategy: STORAGE TECHNOLOGY REPORT ST6: FLYWHEEL[R/OL]. [2008-4-15]. http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf.
    [3]张建诚,陈志业,杨以涵.飞轮储能技术在电力系统中的应用.电力情报, 1997, 3: 4-7
    [4]沈祖培,杨启述,栾竟恩,等.飞轮储能实验模块设计报告.内部资料.北京:清华大学工程物理系, 1996
    [5]李安定.飞轮贮能系统设计分析.太阳能学报, 1982, 3(1): 43-51
    [6]卫海岗.永磁悬浮-螺旋槽动压支承的储能飞轮系统研究[博士学位论文].北京:清华大学工程物理系, 2004.
    [7] UT-CEM. Advanced Locomotive Propulsion System Program Description[EB/OL]. [2008-04-14]. http://wwwhost.utexas.edu/research/cem/alps_description.html.
    [8] Thelen R F, Herbst J D, Caprio M T. A 2MW flywheel for hybrid locomotive power// Vehicular Technology Conference, IEEE 58th. Piscataway, NJ: IEEE Press, 2003, 5: 3231- 3235.
    [9] Beacon Power Corporation. Frequency Regulation and the Smart Energy Matrix?[EB/OL]. [2008-04-14]. http://www.beaconpower.com/products/EnergyStorageSystems/SmartEnergyMatrix.htm.
    [10] Active Power Corporation. Active Power Receives Megawatt Class UPS System Order for European Based Hospital[EB/OL]. 2008-04-8. [2008-04-11]. http://www.activepower.com.
    [11] Piller (UK) Limited. Powerbridge Flywheel[EB/OL]. [2008-04-11]. http://www.piller.com/.
    [12] UT-CEM. Composite Rotor Lifetime Testing[EB/OL]. [2008-04-14]. http://wwwhost.utexas.edu/research/cem/composite%20rotor%20testing.html.
    [13] R. Post and S. Post. Flywheels. Scientific American, 1973, 229.
    [14]赵韩,杨志铁.飞轮储能装置设计初探.太阳能学报, 2002, 23(4): 493-496
    [15]白金刚.储能飞轮磁轴承系统研究[博士学位论文].北京:清华大学工程物理系, 2007.
    [16]戴兴建,孟亚锋.复合材料储能飞轮结构强度技术研究进展.机械工程师, 2004(4):7-9
    [17]戴兴建,李奕良,于涵.高储能密度飞轮结构设计方法.清华大学学报(自然科学版), 2008, 48(3):379-382
    [18]丁世海,李奕良,戴兴建.复合材料飞轮结构有限元分析与旋转强度试验.机械科学与技术, 2008, 27(3).
    [19] Philip Johnson (Boeing Phantom Works). Design, Fabrication, and Testing of a 5-kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing// EESAT 2005.
    [20] LMC Corporation. Evaluation of Selected Drive Components for a Flywheel Powered Commuter Vehicle Phase I. Technical Report SAN/1164-1(EY-76-C-03-1164), 1977.
    [21] NASA Glenn Research Center. Power and Propulsion office [EB/OL].[2004-09-08]. http://space-power.grc.nasa.gov/.
    [22] Kerry Mclallin. NASA Flywheel System Development. Space Power Workshop. 2001
    [23] Kerry Mclallin, Jerry Fausz. Overview of the AFRL/NASA Flywheel Program. Space Power Workshop. 2000
    [24] James A Kirk, Gregory C Walsh, Lou P Hromada. The Open Core Composite Flywheel// Proceedings of the 33rd IECEC. 1997, 3: 1748-1753
    [25] Kevin R.Kefauver, Gregory C.Walsh, James A.Kirk. A 50 Wh open core high-speed flywheel// Proceedings of the 35th IECEC. 1999, 3: 1-6
    [26] D R Kelsall. Pulsed Power Provision By High Speed Composite Flywheel. New Products Department of Urenco Ltd. 1999
    [27] G A palin. Flywheel Energy Storage System. Urenco’s Flywheel Datasheet. 2000
    [28] Hebner R, Beno J, Walls A. Flywheel batteries come around again. Spectrum, IEEE. 2002, 39(4):46-51
    [29]张建成.用于配电网的飞轮储能系统设计.华北电力大学学报.2005,32(增刊): 38-40
    [30]房建成,孙津济.一种磁悬浮飞轮用新型永磁偏置径向磁轴承.北京航空航天大学学报. 2006, 32(11): 1304-1307
    [31]徐衍亮,赵建辉,房建成.高速储能飞轮用无铁心永磁无刷直流电动机的分析与设计.电工技术学报. 2004, 19(12): 24-28
    [32]张姝娜,房建成,韩邦成,等.磁悬浮飞轮转子组件温度场分析与研究.中国惯性技术学报. 2007,15(1): 67-71
    [33]夏旎,李红,房建成,等.磁悬浮飞轮用永磁无刷直流电动机参数的三维场计算方法.微电机. 2006, 39(1):9-12
    [34]邓智泉,孟小利,严仰光.飞轮贮能系统在未来航天器中的应用.南京航空航天大学学报, 1999, 31: 539-544
    [35]程三海,韦忠朝,王雪帆.飞轮储能技术及其应用.电机电器技术, 2000, 6: 31-33
    [36]解亚飞,程三海,王雪帆,等.飞轮储能系统中的能量转换环节及其实现.电力情报, 2001, 1: 26-28
    [37]詹三一,唐跃进,李敬东,等.超导磁悬浮飞轮储能的基本原理和发展现状.电力系统自动化, 2001, 16: 67-72
    [38]杨志轶,赵韩.飞轮储能磁轴承系统结构及其悬浮特性.机械科学与技术, 2002, 5: 738-740
    [39]赵韩,杨志轶,王忠臣.新型高效飞轮储能技术及其研究现状.中国机械工程, 2002, 17:1521-1525
    [40]鞠立华,蒋书运,飞轮储能系统机电耦合非线性动力学分析.中国科学E. 2006, 36(1): 68~83
    [41]张映坤,蒋书运.电磁悬浮储能飞轮系统的动力学分析.太阳能学报. 2004,25(2):254-258
    [42]刘怀喜,贺跃进,张恒.声发射检查复合材料飞轮损伤与断裂的结构模拟试验.材料开发与应用. 2004, 19(4):4-8
    [43] Darrelmann H. Comparison of high power short time flywheel storage systems// Telecommunications Energy Conference. Copenhagen, Denmark: IEEE Press, 1999: 485-492.
    [44]董志勇.飞轮储能系统功耗理论与实验研究[硕士学位论文].北京:清华大学工程物理系, 2005.
    [45]李文超.储能飞轮转子结构设计与实验研究[硕士学位论文].北京:清华大学工程物理系, 2001.
    [46] Lee S Y, Springer G S. Filament winding cylinder, I: process model. Journal of Composite Materials, 1990, 24(12): 1270-1298.
    [47] Madhukar M S, Kosuri R P, Bowles K J. Monitoring fiber stress during curing of single fiber glass- and graphite-epoxy composites. NASA Technical Report, 1994.
    [48] Ha S K, Kim H T, Sung T H, et al. Measurement and Prediction of Process-induced Residual Strains in Thick Wound Composite Rings. Journal of Composite Materials, 2003, 37(14): 1223.
    [49] Arnold S M, Saleeb A F, Al-zoubi N R, et al. Deformation and life analysis of composite flywheel disk systems. Composites Part B, 2002, 33(6): 433-459.
    [50] Hayes R J, Kajs J P, Thompson R C, et al. Design and Testing of a Flywheel Battery for a Transit Bus// 1999 SAE International Congress and Exposition, March 1-4, 1999, Detroit, MI.
    [51]丁保庚,杨福江.缠绕张力公式的研究.玻璃钢/复合材料, 2000(06): 3-7.
    [52]秦勇,夏源明,毛天祥.纤维束张紧力缠绕复合材料飞轮的预应力简化分析复合材料学报, 2003, 20(06): 87-91.
    [53]秦勇,夏源明,毛天祥.纤维束张紧力缠绕复合材料飞轮初应力的三维数值分析.复合材料学报, 2005, 22(04): 149-155.
    [54]郑长良,任明法,陈浩然.具有内衬缠绕式压力容器缠绕过程的有限元模拟.机械强度, 2006, 28(6): 913-918.
    [55]徐旸,沈祖陪,于溯源.多层复合材料缠绕的“单元死活”有限元计算方法.机械强度, 2005, 27(4): 526-529.
    [56]林德春,张德雄.固体发动机复合材料壳体的电子束固化.固体火箭技术, 1998, 21(3): 47-52.
    [57]陈祥宝.先进树脂基复合材料的发展和应用.航空材料学报, 2000, 20(01): 46-54.
    [58] Kulshreshtha A, Vasile C. Handbook of Polymer Blends and Composites. UK: Shropshire, 2003
    [59] Guasti F, Rosi E. Low energy electron beam curing for thick composite production. Composites Part A: Applied Science and Manufacturing, 1997,28(11):965-969
    [60] Electron Solutions. Electron Beam Equipment[EB/OL]. [2008-04-14]. http://members.aol.com/ElecSoln/Equipment.html.
    [61]王树位.复合材料缠绕张力公式建立//复合材料的现状与发展——第十一届全国复合材料学术会议论文集, 2000, 824-828.
    [62]王勖成.有限单元法.北京:清华大学出版社, 2003:1-2
    [63]宋后定.常用永磁材料及其应用基本知识讲座:第一讲常用永磁材料的特性参数.磁性材料及器件, 2007(02):59-61
    [64]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册.北京:机械工业出版社, 2003.
    [65] YONNET J P. Permanent magnet bearings and couplings. IEEE Trans on Magnetics, 1981, 17(1): 1169-1173.
    [66] YONNET J P. Passive magnetic bearings// Karl J Strnat, Proc Third Int Workshop on Rare Earth-Cobalt Permanent Magnets and their Applications. San Diego, CA: the University of California. 1978: 241-251.
    [67]丁世海.飞轮转子强度分析与结构优化设计[硕士学位论文].北京:清华大学工程物理系, 2007.
    [68]徐旸,于涵,沈祖培. Creep Analysis of Aluminum Alloy Disk Experiment for High Speed Energy Storage Flywheel. Ansys-中国会议2004.
    [69] Mark Matthew Flynn. A Methodology for Evaluating and Reducing Rotor Losses, Heating, and Operational Limitations of High-Speed Flywheel Batteries [D].US: UT-CEM, 2003.
    [70]杨启述.气体离心机技术基础.北京:原子能出版社, 1991:7
    [71] Richardson M B, Urenco Power Technologies. Flywheel energy storage system for traction applications// Power Electronics, Machines and Drives. International Conference 2002.
    [72]黄宇琪.基于飞轮储能技术的绿色不间断电源[博士学位论文].北京:清华大学电机工程与应用电子技术系, 2008.
    [73] Gent A N.橡胶工程:如何设计橡胶配件.张立群译.北京:化学工业出版社, 2002
    [74]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社, 2004:386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700