两种铌酸盐无铅压电陶瓷的制备和物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于铅对人体和环境的危害性,铅含量很高的传统的铅基压电陶瓷的应用受到极大挑战。因此,发展无铅系环境协调性压电陶瓷成为一项紧迫且具有重大实用意义的课题。本论文利用传统固相反应法制备了(K_xNa_(1-x))_(1-y)Li_yNbO_3和Sr_(2-x)Ca_xNaNb_5O_(15)(分别简写为KNLN和SCNN)两种体系的无铅压电陶瓷,系统地研究了其微观形貌、结晶结构、介电和压电等方面的物理性质。
     (K,Na)NbO_3基陶瓷(KNN)以其优异的压电性能成为目前无铅压电陶瓷材料的研究热点。近年对KNN基压电陶瓷的研究,主要集中在这两个方面:(1)探索具有更优异压电性能的KNN基陶瓷组分;(2)研究引起KNN基陶瓷呈现优异压电性能的物理机制,如准同型相界、晶体结构相变等。
     本论文中关于(K_Na_(1-x))_(1-y)Li_yNbO_3体系压电陶瓷的研究侧重于对晶体结构随组分变化的规律性和晶体结构相变对压电性能的影响方面。对于(K_(0.50)Na_(0.50))_(1-y)Li_yNbO_3(y=0-0.08)压电陶瓷的研究,证实了文献报道的晶体结构和压电性能随组分变化的结果。对于(K_xNa_(1-x))_(0.94)Li_(0.06)NbO_3(X=0.30-0.70)压电陶瓷的研究,发现了晶体结构随着组分x变化发生正交-四方-正交的变化,相界分别位于x=0.40和x=0.60处。在所研究的(K_xNa_(1-x))_(1-y)Li_yNbO_3陶瓷体系中,两种组分分别为(K_(0.50)Na_(0.50))_(0.935)Li_(0.065)NbO_3和(K_(0.45)Na_(0.55))_(0.94)Li_(0.06)NbO_3的陶瓷样品呈现出比较优异的压电性能(d_(33)>200pC/N,k_p>45%)。由介电温谱测量得到的这两种组分的陶瓷样品的正交-四方晶体结构相变温度分别为27℃和35℃。推测它们的良好压电性能应与在室温附近发生的正交-四方相变有着密切的关联性。
     本论文中制备的钨青铜结构Sr_(2-x)Ca_xNaNb_5O_(15)(x=0-0.15)无铅压电陶瓷的d_(33)为70pC/N左右,室温介电常数大于1400,室温介电损耗小于1%,相对密度大于92%。当Ca~(2+)的添加量x超过0.15时,相对密度、平均晶粒尺寸和压电性能均开始降低。组分为x=0.10的Sr_(1.9)Ca_(0.1)NaNb_5O_(15)陶瓷具有良好的压电性能(d_(33)=74pC/N,k_p=8.2%,Q_m=923),具有一定应用价值。
The application of traditional lead-based piezoelectric ceramics which contain high lead are strongly challenged because the lead can cause serious damage to human and environment. As a result, the development of lead-free and environmentally-friendly piezoelectric ceramics becomes an urgent and of great practical significance task. In this paper, two type of lead-free piezoelectric ceramics of (K_xNa_(1-x))_(1-y)Li_yNbO_3 and Sr_(2-x)Ca_x NaNb_5O_(15)(abbreviated to KNLN and SCNN, respectively) were fabricated by solid-state reaction technique. Microstructure, crystallographic stucture, dielectric and piezoelectric properties of those two type of ceramics were investigated systematically.
     The (K,Na)NbO_3 (KNN) based ceramics have been paid much attention because of their enhanced piezoelectric properties. At present, the investigation on KNN-based ceramics is concentrated on two aspects, (1) exploring the KNN-based compositions with more enhanced piezoelectric properties, and (2) researching on factors which improve the piezoelectric properties of KNN-based ceramics, such as morphotropic phase boundary (MPB) and polymorphic phase transition.
     In first part of this paper, the variety of polymorphic structural phase transition(PPT) and the influence of PPT to the piezoelectric properties were mainly discussed. In (K_(0.50)Na_(0.50))_(1-y)Li_yNbO_3 (y=0-0.08) ceramics, with the increase of Li content y the experimental result of PPT and the piezoelectric properties are generally in agreement with that in previous literature. In (K_xNa_(1-x))_(0.94)Li_(0.06)NbO_3(x=0.30-0. 70) ceramics, with the increase of K content x it exists an orthorhombic-tetragonal- orthorhombic phase transition and the phase boundaries are located at x=0.40 and x=0.60, respectively. Two ceramic samples of (K_(0.50)Na_(0.50))_(0.935)Li_(0.065)NbO_3 and (K_(0.45)Na_(0.55))_(0.94)Li_(0.06)NbO_3 show the best piezoelectric properties of d_(33)>200pC/N and k_p>45%. The orthorhombic-tetragonal phase transition temperatures of these two samples are 27℃and 35℃, respectively. It can be speculated that the nice piezoelectric properties of those two samples are mainly related to the existence of orthorhombic-tetragonal phase transition at room temperature.
     In second part of this paper, the Sr_(2-x)Ca_xNaNb_5O_(15) piezoelectric ceramics with tungsten bronze structure show the piezoelectric properties of d_(33)-70pC/N, dielectric constantε_1>1400, dielectric loss tgδ<1% and relatice densityρ>92%. For SCNN ceramics, the relative density, the average grain size and the piezoelectric properties begin to decrease when the Ca~(2+) content exceeds 0.15. The ceramic sample of Sr_(1.9)Ca_(0.1)NaNb_5O_(15) reveals the better piezoelectric properties of d_(33)=74pC/N, k_p=8.2% and Q_m=923.
引文
[1] 钟维烈.铁电体物理学[M].科学出版社,1996:22-63.
    
    [2] 张沛霖,钟维烈.压电材料与器件物理[M].济南:山东科学技术出版社, 1994:76-242.
    
    [3] Jaffe B., Cook W. R., and Jaff H., Piezoelectric Ceramics[M]. Academic PressNew York, 1971:115-200.
    
    [4] Villegas M., Jurado J. R., Moure C, et al., Processing and properties ofPb(Mg_(1/3)Nb_(2/3))O_3-PbZrO_3-PbTiO_3 ceramic relaxors[J]. Journal of MaterialsScience, 1994. 29(4): 1090-1096.
    
    [5] Roberts S., Dielectric and Piezoelectric Properties of Barium Titanate[J].Physics Review, 1947. 71(12): 890-895.
    
    [6] Elkechai O., Manier M, and Mercurio J. P., Na_(0.5)Bi_(0.5)TiO_3-K_(0.5)Bi_(0.5)TiO_3(NBT-KBT) system: A structural and electrical study[J]. Physica Status Solidi(a), 2006.157(2): 499-506.
    
    [7] Jaeger R. E. and Egerton L., Hot Pressing of Potassium-Sodium Niobates[J].Journal of the American Ceramic Society, 1962. 45(3): 209-213.
    
    [8] Guo Y., Kakimoto K.-i., and Ohsato H., Phase transitional behavior andpiezoelectric properties of (Na_(0.5)K_(0.5))NbO_3--LiNbO_3 ceramics[J]. AppliedPhysics Letters, 2004. 85(18): 4121-4123.
    
    [9] Ichikia M, Zhanga L., Tanakab M., et al., Electrical properties of piezoelectricsodium-potassium niobate[J]. Journal of the European Ceramic Society, 2004.24(6): 1693-1697.
    
    [10] Saito Y., Takao H., Tani T., et al., Lead-free piezoceramics[J]. Nature, 2004.432(7013): 84-87.
    
    [11] Hollenstein E., Davis M., Damjanovic D., et al., Piezoelectric properties of Li-and Ta-modified (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Applied Physics Letters, 2005.87(18): 182905-3.
    
    [12] Zang G-Z., Wang J.-F., Chen H.-C, et al., Perovskite(Na_(0.5)K_(0.5))_(1-x)(LiSb)_xNb_(1-x)O_3 lead-free piezoceramics[J]. Applied PhysicsLetters, 2006. 88(21): 212908-3.
    
    [13] Wu L., Zhang J., Zheng P., et al., Influnence of morphotopic phase bourdarieson physical properties in (K,Na,Li)Nb_(0.80)Ta_(0.20)O_3 ceramics[J]. Journal ofPhysics D: Applied Physics, 2007. 40: 3527-3530.
    
    [14] Wu L., Zhang J., Zheng P., et al., Phase Coexistence and High PiezoelectricProperties in (K_(0.40)Na_(0.60))_(0.96)Li_(0.04)Nb_(0.80)Ta_(0.20)O_3 Ceramics[J]. Journal ofPhysics D: Applied Physics, 2008.41: 035402-035407.
    
    [15] Tsikhotskii E. S., Zakharchenko I. N., and Dudkevich P. V., Linear Defects andFerroelectric Phase Transition in BaTiO_3 Crystals[J]. Physica Status Solidi (a),2006.121(2): 391-398.
    
    [16] Yu Z., Ang C, Guo R., et al., Piezoelectric and strain properties ofBa(Ti_(1-x)Zr_x)O_3 ceramics[J]. Journal of Applied Physics, 2002. 92(3):1489-1493.
    
    [17] Zuo R. and Ye C, Structures and piezoelectric properties of(NaKLi)_(1-x)(BiNaBa)_xNb_(1-x)Ti_xO_3 lead-free ceramics[J]. Applied Physics Letters,2007. 91(6): 062916.
    
    [18] Zuo R., Fang X., and Ye C, Phase structures and electrical properties of newlead-free (Na_(0.5)K_(0.5)NbO_3-(Bi_(0.5)Na_(0.5))TiO_3 ceramics[J]. Applied PhysicsLetters, 2007. 90(9): 092904.
    
    [19] Zhang S., Shrout T. R., Nagata H., et al., Piezoelectric properties in(K_(0.5)Bi_(0.5))TiO_3-(Na_(0.5)Bi_(0.5))TiO_3-BaTiO_3 lead-free ceramics[J]. Ultrasonics,Ferroelectrics and Frequency Control, IEEE Transactions on, 2007. 54(5):910-917.
    
    [20] Shirane G, Newnham R., and Pepinsky R., Dielectric Properties and PhaseTransitions of NaNbO_3 and (Na,K)NbO_3[J]. Physical Review, 1954. 96(3):581-588.
    
    [21] Umakantham K. and Narayana S., Effect of rare-earth ions on the properties of modified (SrBa)Nb_2O_6 ceramics[J]. Journal of materials science letters, 1987. 6(6): 565-567.
    
    [22] Matsuo K., Xie R., Akimune Y, et al., Preparation of lead-free Sr_(2-x)Ca_xNaNb_5O_(15) (x= 0.1)-based piezoceramics with tungsten bronze stucture[J]. Journal of the Ceramic Society of Japan, 2002.110(5): 491-494.
    
    [23] Xie R. and Akimune Y., Lead-free piezoelectric properties in the (1-x)Sr_2NaNb_5O_(15-x)Ca_2NaNb_5O_(15) ( 0.05    
    [24] Xie R., Akimune Y, Wang R., et al., Spark Plasma Sintering of Tungsten Bronze Sr_(2-x)Ca_xNaNb_5O_(15) (x = 0.1) Piezoelectric Ceramics: Ⅰ, Processing and Microstructure[J]. Journal of the American Ceramic Society, 2002. 85(11): 2725-2730.
    
    [25] Xie R., Akimune Y, Wang R., et al., Spark Plasma Sintering of Tungsten Bronze Sr_(2-x)Ca_xNaNb_5O_(15) (x = 0.1) Piezoelectric Ceramics: Ⅱ, Electrical Properties[J]. Journal of the American Ceramic Society, 2002. 85(11): 2731-2737.
    
    [26] Frit B. and Mercurio J. P., The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures[J]. Journal of Alloys and Compounds, 1992. 188(1-2): 27-35.
    
    [1] Shirane G, Newnham R., and Pepinsky R., Dielectric Properties and PhaseTransitions of NaNbO_3 and (Na,K)NbO_3[J]. Physical Review, 1954. 96(3):581-588.
    
    [2] Matthias B. T. and Remeika J. P., Dielectric Properties of Sodium andPotassium Niobates[J]. Physical Review, 1951. 82(5): 727-729.
    
    [3] Jaffe B., Cook W. R., and Jaff H., Piezoelectric Ceramics[M]. Academic PressNew York, 1971: 115-200.
    
    [4] Egerton L. and Dillon D. M, Piezoelectric and Dielectric Properties ofCeramics in the System Potassium-Sodium Niobate[J]. Jounal of the AmericanCeramic Society, 1959. 42(2): 438-442.
    
    [5] Du H., Tang R, Luo F., et al., Influence of sintering temperature properties of??(K_(0.5)Na_(0.5))NbO_3-LiNbO_3 lead-free piezoelectric ceramics[J]. MaterialsResearch Bulletin, 2007.42(9): 1594-1601.
    
    [6] Jaeger R. E. and Egerton L, Hot Pressing of Potassium-Sodium Niobates[J].Journal of the American Ceramic Society, 1962.45(3): 209-211.
    
    [7] Haertling G H., Properties of hot-pressed ferroelectric alkali niobateceramics[J]. Journal of the American Ceramic Society, 1967. 50(6): 329-330.
    
    [8] Zhang B.-P, Li J. i.-F., Wang K., et al., Compositional Dependence ofPiezoelectric Properties in Na_xK_(1-x)NbO_3 Lead-Free Ceramics Prepared bySpark Plasma Sintering[J]. Journal of the American Ceramic Society, 2006.89(5): 1605-1609.
    
    [9] Saito Y, Takao H., Tani T., et al., Lead-free piezoceramics[J]. Nature, 2004.432(7013): 84-87.
    
    [10] Guo Y., Kakimoto K.-i., and Ohsato H., Dielectric and piezoelectric propertiesof lead-free (Na_(0.5)K_(0.5))NbO_3-SrTiO_3 ceramics[J]. Solid State Communications,2004.129(5): 279-284.
    
    [11] Wang R., Xie R.-J., Hanada K., et al., Phase diagram and enhancedpiezoelectricity in the strontium titanate doped potassium-sodium niobate solidsolution[J]. Physica Status Solidi (a), 2005. 202(6): R57-R59.
    
    [12] Park H.-Y, Ahn C.-W., Song H.-C, et al., Microstructure and piezoelectricproperties of 0.95(Na_(0.5)K_(0.5))NbO_3-0.05BaTiO_3 ceramics[J]. Applied PhysicsLetters, 2006. 89(6): 062906-3.
    
    [13] Chang R.-C, Chu S.-Y, Lin Y.-F., et al., An investigation of(Na_(0.5)K_(0.5))NbO_3-CaTiO_3 based lead-free ceramics and surface acoustic wavedevices[J]. Journal of the European Ceramic Society, 2007. 27(16):4453-4460.
    
    [14] Chang R.-C, Chu S.-Y, Lin Y.-F., et al., The effects of sintering temperatureon the properties of (Na_(0.5)K_(0.5))NbO_3-CaTiO_3 based lead-free ceramics[J].Sensors and Actuators A: Physical, 2007.138(2): 355-360.
    
    [15] Zuo R., Fang X., and Ye C, Phase structures and electrical properties of newlead-free (Na_(0.5)K_(0.5))NbO_3--(Bi_(0.5)Na_(0.5))TiO_3 ceramics[J]. Applied Physics??Letters, 2007. 90(9): 092904-3.
    
    [16] Takao H., Saito Y., Aoki Y., et al., Microstructural Evolution ofCrystalline-Oriented (K_(0.5)Na_(0.5))NbO_3 Piezoelectric Ceramics with a SinteringAid of CuO[J]. Journal of the American Ceramic Society, 2006. 89(6):1951-1956.
    
    [17] Matsubara M., Yamaguchi T., Kikuta K., et al., Sinterability and PiezoelectricProperties of (K,Na)NbO_3 Ceramics with Novel Sintering Aid[J]. JapaneseJournal of Applied Physics, 2004. 43(10): 7159-7163.
    
    [18] Matsubara M., Kikuta K., and Hirano S., Piezoelectric properties of(K_(0.5)Na_(0.5))(Nb_(1-x)Ta_x)O_3 - K_(5.4)CuTa_(10)O_(29) ceramics[J]. Journal of AppliedPhysics, 2005. 97(11): 114105-7.
    
    [19] Tennery V. J. and Hang K. W., Thermal and X-Ray Diffraction studies of theNaNbO_3-KNbO_3 System[J]. Journal of Applied Physics, 1968.39:4749.
    
    [20] Wu L., Zhang J., Wang C, et al., Influence of Compositional Ratio K/Na onPhysical Properties in (K_xNa_(1-x))NbO_3 Ceramics[J]. Journal of Applied Physics,2008.103: in press.
    
    [21] Guo Y, Kakimoto K.-i., and Ohsato H., Phase transitional behavior andpiezoelectric properties of (Na_(0.5)K_(0.5))NbO_3--LiNbO_3 ceramics[J]. AppliedPhysics Letters, 2004. 85(18): 4121-4123.
    
    [22] Saito Y. and Takao H., High performance lead-free piezoelectric ceramics inthe (K,Na)NbO_3-LiTaO_3 solid solution system[J]. Ferroelectrics, 2006. 338:17-32.
    
    [23] Zang G-Z., Wang J.-F., Chen H.-C, et al., Perovskite(Na_(0.5)K_(0.5))_(1-x)(LiSb)_xNb_(1-x)O_3 lead-free piezoceramics[J]. Applied PhysicsLetters, 2006. 88(21): 212908-3.
    
    [24] Zhang S., Xia R., Shrout T. R., et al., Piezoelectric properties in perovskite0.948(K_(0.5)Na_(0.5))NbO_3--0.052LiSbO_3 lead-free ceramics[J]. Journal of AppliedPhysics, 2006.100(10): 104108-6.
    
    [25] Zhang S., Xia R., Shrout T. R., et al., Characterization of lead free(K_(0.5)Na_(0.5))NbO_3-LiSbO_3 piezoceramics[J]. Solid State Communications, 2007.??141(12): 675-679.
    
    [26] Wu L., Zhang J., Zheng P., et al., Influnence of morphotopic phase bourdarieson physical properties in (K,Na,Li)Nb_(0.80)Ta_(0.20)O_3 ceramics[J]. Journal ofPhysics D: Applied Physics, 2007.40: 3527-3530.
    
    [27] Hollenstein E., Davis M., Damjanovic D., et al., Piezoelectric properties of Li-and Ta-modified (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Applied Physics Letters, 2005.87(18): 182905-3.
    
    [28] Matsubara M., Yamaguchi T., Kikuta K., et al., Effect of Li substitution on thepiezoelectric properties of potassium sodium niobate ceramics[J]. JapaneseJournal of Applied Physics, 2005. 44(8): 6136-6142.
    
    [29] Du H., Tang R, Luo R, et al., The microstructure and ferroelectric propertiesof (K_(0.5)Na_(0.5))NbO_3-LiNbO_3 lead-free piezoelectric ceramics[J]. MaterialsScience and Engineering: B, 2007.136(2-3): 165-169.
    
    [30] Wu J., Xiao D., Wang Y., et al., Effect of K content on the dielectric,piezoelectric, and ferroelectric properties of 0.95(K_xNa_(1-x))NbO_3-0.05LiSbO_3lead-free ceramics[J]. Journal of Applied Physics, 2008.103: 024102.
    
    [1] Neurgaonkar R. R., Oliver J. R., Cory W. K., et al., Piezoelectricity inTungsten Bronze Crystals[J]. Ferroelectrics, 1994.160: 265-276.
    
    [2] Garci' a-Gonza'lez E., Torres-Pardo A., Jime'nez R., et al., StructuralSingularities in Ferroelectric Sr_2NaNb_5O_(15)[J]. Chemical Materials, 2007. 19:3575.
    
    [3] Xie R., Akimune Y., Matsuo K., et al., Dielectric and ferroelectric properties oftetragonal tungsten bronze Sr_(2-x)Ca_xNaNb_5O_(15) (x= 0.05-0.35) ceramics[J].Applied Physics Letters, 2002. 80(5): 835-837.
    
    [4] Xie R. and Akimune Y., Lead-free piezoelectric properties in the(1-x)Sr_2NaNb_5O_(15)-xCa_2NaNb_5O_(15) ( 0.05    
    [5] Xie R., Akimune Y, Wang R., et al., Spark Plasma Sintering of TungstenBronze Sr_(2-x)Ca_xNaNb_5O_(15) (x = 0.1) Piezoelectric Ceramics: Ⅰ, Processing andMicrostructure[J]. Journal of the American Ceramic Society, 2002. 85(11):2725-2730.
    
    [6] Neurgaonkar R. R., Cory W. K., and Oliver J. R., Growth and ferroelectricproperties of tungsten bronze Sr_(2-x)Ca_xNaNb_5O_(15) single crystals[J]. MaterialsResearch Bulletin, 1988. 23(10): 1459-1467.
    
    [7] Jimenez R., Castro A., and Jimenez B., Evidence of ferroelastic-ferroelasticphase transition in BiMo_xW_(1-x)O_6 compounds[J]. Applied Physics Letters, 2003.83(16): 3350-3352.
    
    [8] Xie R., Akimune Y, Wang R., et al., Spark Plasma Sintering of TungstenBronze Sr_(2-x)Ca_xNaNb_5O_(15) (x = 0.1) Piezoelectric Ceramics: Ⅱ, ElectricalProperties[J]. Journal of the American Ceramic Society, 2002. 85(11): p.2731-2737.
    
    [9] Xie R., Akimune Y, Wang R., et al., Dielectric and piezoelectric properties of??Barium-substituted Sr_(1.9)Ca_(0.1)NaNb_5O_(15) ceramics[J]. Japanese Journal of Applied Physics, 2003. 42(12): 7404-7409.
    
    [10] Matsuo K., Xie R., Akimune Y., et al., Preparation of lead-free Sr_(2-x)Ca_xNaNb_5O_(15) (x=0.1)-based piezoceramics with tungsten bronze stucture[J]. Journal of the Ceramic Society of Japan, 2002.110(5): 491494.
    
    [1] Hollenstein E., Davis M., Damjanovic D., et al., Piezoelectric properties of Li-and Ta-modified (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Applied Physics Letters, 2005. 87(18): 182905-3.
    
    [2] Saito Y., Takao H., Tani T., et al., Lead-free piezoceramics[J]. Nature, 2004. 432(7013): 84-87.
    
    [3] Park H.-Y., Ahn C.-W., Song H.-C, et al., Microstructure and piezoelectric??properties of 0.95(Na_(0.5)K_(0.5))NbO_3-0.05BaTi03 ceramics[J]. Applied PhysicsLetters, 2006. 89(6): 062906-3.
    
    [4] Zang G-Z., Wang J.-R, Chen H.-C, et al., Perovskite(Na_(0.5)K_(0.5))_(1-x)(LiSb)_xNb_(1-x)O_3 lead-free piezoceramics[J]. Applied PhysicsLetters, 2006. 88(21): 212908-3.
    
    [5] Du H., Tang F., Luo F., et al., Effect of poling condition on piezoelectricproperties of (K_(0.5)Na_(0.5))NbO_3-LiNbO_3 lead-free piezoelectric ceramics[J].Materials Science and Engineering: B. 2007. 175-179.
    
    [6] Saito Y. and Takao H., High performance lead-free piezoelectric ceramics inthe (K,Na)NbO_3-LiTaO_3 solid solution system[J]. Ferroelectrics, 2006. 338:17-32.
    
    [7] Wu J., Xiao D., Wang Y., et al., Effect of K content on the dielectric,piezoelectric, and ferroelectric properties of 0.95(K_xNa_(1-x))NbO_3-0.05LiSbO_3lead-free ceramics[J]. Journal of Applied Physics, 2008.103: 024102.
    
    [8] Wu L., Zhang J., Zheng P., et al., Phase Coexistence and High PiezoelectricProperties in (K_(0.40)Na_(0.60))_(0.96)Li_(0.04)Nb_(0.80)Ta_(0.20)O_3 Ceramics[J]. Journal ofPhysics D: Applied Physics, 2008.41: 035402-035407.
    
    [9] Wu L., Zhang J., Zheng P., et al., Influnence of morphotopic phase bourdarieson physical properties in (K,Na,Li)Nb_(0.80)Ta_(0.20)O_3 ceramics[J]. Journal ofPhysics D: Applied Physics, 2007. 40: 3527-3530.
    
    [10] Klein N., Hollenstein E., Damjanovic D., et al., A study of the phase diagramof (K,Na,Li)NbO_3 determined by dielectric and piezoelectric measurements,and Raman spectroscopy[J]. Journal of Applied Physics, 2007. 102(1):014112-8.
    
    [11] Chang Y, Yang Z., Hou Y, et al., Effects of Li content on the phase structureand electrical properties of lead-free (K_(0.46-x/2)Na_(0.54-x/2)Li_x)(Nb_(0.76)Ta_(0.20)Sb_(0.04))O_3ceramics[J]. Applied Physics Letters, 2007. 90(23): 232905-3.
    
    [12] Guo Y, Kakimoto K.-i., and Ohsato H., Phase transitional behavior andpiezoelectric properties of (Na_(0.5)K_(0.5))NbO_3-LiNbO_3 ceramics[J]. AppliedPhysics Letters, 2004. 85(18): 4121-4123.
    
    [13] Lin D., Kwok K. W., Lam K. H., et al., Structure, piezoelectric and ferroelectric properties of Li- and Sb-modified K_(0.5)Na_(0.5)NbO_3 lead-free ceramics[J], Journal of Physics D: Applied Physics, 2007.40: 3500-35305.
    
    [14] Zhang S., Xia R., and Shrout T. R., Modified (K_(0.5)Na_(0.5))NbO_3 based lead-free piezoelectrics with broad temperature usage range[J]. Applied Physics Letters, 2007. 91(13): 132913-3.
    
    [15] Du H., Zhou W., Luo F., et al., Perovskite lithium and bismuth modified potassium-sodium niobium lead-free ceramics for high temperature applications[J]. Applied Physics Letters, 2007. 91: 182909.
    
    [16] Matsuo K., Xie R., Akimune Y., et al., Preparation of lead-free Sr_(2-x)Ca_xNaNb_5O_(15) (x=0.1)-based piezoceramics with tungsten bronze stucture[J]. Journal of the Ceramic Society of Japan, 2002.110(5): 491-494.
    
    [17] Xie R., Akimune Y., Wang R., et al., Dielectric and piezoelectric properties of Barium-substituted Sr_(1.9)Ca_(0.1)NaNb_5O_(15) ceramics[J]. Japanese Journal of Applied Physics, 2003. 42(12): 7404-7409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700