2-芳甲酰亚胺基-3-芳基-1,3-噻唑啉衍生物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,大部分有机反应是在有机溶剂中进行的,而大多数有机溶剂易燃、易挥发、有毒,且废液无论是回收还是排放都会对环境造成一定的污染。随着人们对生存环境的日益重视,以水作为溶剂的有机反应的研究越来越受到人们的关注,这是由于水作为反应介质,具有价廉、易得、不可燃、无污染等优点,具有有机溶剂无可取代的优越性。
     另外,对微波辐射无溶剂有机反应的研究也具有重要的理论和实践意义。微波辐射无溶剂反应,由于反应中没有溶剂分子的参与,反应在固态下进行,反应物的局部浓度提高和反应分子的有序排列增加了反应速率,提高了反应的选择性和收率。同时,微波辐射下的无溶剂有机反应具有操作简单、无有机溶剂污染等优点,是一种较理想的合成方法。
     综上所述,在水介质中合成和微波辐射无溶剂合成目标化合物,是绿色化学的思路,符合绿色合成的要求,基本解决了合成中使用有机溶剂对环境造成的污染问题。
     本论文共分两大部分:
     第一部分:2-芳甲酰亚胺基-3-芳基-4-甲基/苯基-1,3-噻唑啉衍生物的合成。
     系列Ⅰ:首先合成关键中间体N-芳基-N’-苯甲酰基硫脲,以此中间体为原料,回流条件下分别与α-溴代丙酮、α-溴代苯乙酮反应,合成了12种新型的2-苯甲酰亚胺基-3-芳基-4-甲基/苯基-1,3-噻唑啉化合物(2a~21)。
     系列Ⅱ:以5-芳基-2-呋喃甲酰氯为原料,在水溶液中与硫氰酸铵、芳胺在苄基三乙基氯化铵(TEBA)存在条件下反应,合成中间体N-芳基-N’-(5-芳基-2-呋喃甲酰基)硫脲,此中间体不经分离直接与α-溴代丙酮或α-溴代苯乙酮反应,合成了22种新型的2-(5-芳基-2-呋喃甲酰亚胺基)-3-芳基-4-甲基/苯基-1,3-噻唑啉化合物(Ⅳ~Ⅴ)。此法与传统方法相比较具有反应条件温和、反应时间短、操作简单、无污染等诸多优点。
     系列Ⅲ:首先合成关键中间体N-芳基-N’-(2-苯并呋喃甲酰基)硫脲,以此中间体为原料,在微波辐射Al_2O_3支载条件下分别与α-溴代丙酮、α-溴代苯乙酮反应,合成了20种新型2-(2-苯并呋喃甲酰亚胺基)-3-芳基-4-甲基/苯基-1,3-噻唑啉化合物(4a~4t),产物的结构和反应机理得到了单晶X射线衍射实验的证实。并分别考察了原料配比、微波辐射功率和辐射时间等多种因素对反应的影响,从而优选出了最佳反应条件。
     第二部分:N-芳基-2-苯并呋喃甲酰胺和N,N’-二芳基-2-硝基-1,4-苯二氧基二乙酰胺的绿色合成。
     系列Ⅲ_1~Ⅲ_(13):在无溶剂微波辐射条件下,2-苯并呋喃甲酰氯和等当量的各种芳胺快速定量地反应得到N-芳基-2-苯并呋喃甲酰胺。系列Ⅳ_1~Ⅳ_(12):在无溶剂条件下,2-硝基-1,4-苯二氧基二乙酰氯与两倍当量的各种芳胺在室温下研磨反应得到N,N’-二芳基-2-硝基-1,4-苯二氧基二乙酰胺。这些方法与传统溶液法相比具有无有机溶剂污染、反应速度快、产率高和后处理简单等诸多优点。
     用元素分析、红外光谱、核磁共振氢谱和碳谱表征了以上几个系列化合物的结构,并对波谱数据进行了分析。
It is well known that the typical organic synthesis has been carried out in organic solvents. However, most of organic solvents are flammable, volatile and toxic. Recently years, with the increasing concern on the environmental of human being lived, the use of water as a medium in organic reaction has received considerable attention due to its several advantages, for example, it is cheaper, nonflammable, nontoxic and easily available on the earth, and had incommutable advantages relative to organic solvents.
     Combination of microwave irradiation and solvent-free strategy in organic reaction has attracted many interests in chemical industry. Indeed, most of solvent-free organic reactions occurred in solid state, the tightly and regularly arranged structures of solids made the reactions proceed more efficiently and selectively than solution ones. Furthermore, organic reactions promoted by microwave under solvent-free condition have advantages of avoiding the use of organic solvents, is clean, effective and economical, in which the safety is largely increased, workup procedure is considerably simplified and the cost is greatly reduced.
     In summary, the aqueous media route and the microwave irradiation solvent-free design were all based on the green-chemistry and avoided the pollution of environment.
     Part I: Green synthesis of 2-acylimino-3-aryl-4-methyl/phenyl-1,3-thiazoline derivatives.
     Series I: 12 New 2-benzoylimino-3-aryl-4-methyl/phenyl-1,3-thiazoline derivatives 2a~2I were synthesized by condensation reaction of N-aryl-N'-benzoyl thioureas withα-bromoacetone andα-bromoacetophenone under refluxing.
     Series II: The one-pot two-step synthesis for 22 new 2-(5-aryl-2-furoylimino)-3-aryl -4-methyl/phenyl-1,3-thiazoline derivatives IV~V by treatment of N-aryl-N'(5-aryl-2-furoyl) thiourea withα-bromoacetone andα-bromoacetophenone under aqueous media. The intermediate thiourea obtained from reactions of 5-aryl-2-furoyl chloride with ammonium thiocyanate and arylamines in the presence of benzyltriethylammonium chloride (TEBA) as catalyst in H_2O at room temperature and without isolation. Compared to classical reaction in organic solvents, this method consistently has the advantage of short reaction times, simple work-up procedure and environmentally friendly.
     Series III: 20 New 2-(2-benzofuroylimino)-3-aryl-4-methyl/phenyl-1,3-thiazoline derivatives 4a~4t were synthesized by condensation reaction of N-aryl-N'-(2-benzofuroyl) thiourea withα-bromoacetone andα-bromoacetophenone on alumina using microwave irradiation. The structure of the compounds and the reaction mechanism were supported by X-ray crystal structure analysis. We studied different affects of varies conditions (such as, ratios, irradiation power and time) on the reactions.
     Part II: Green synthesis of N-aryl-2-benzofuran amides and N, N -diaryl-2-nitro-1,4-phenylenedioxydiacetamides.
     The reactions of 2-benzofurancarbonyl chloride with equivalent of various arylamines under the condition of solventless and microwave irradiation expeditiously gained seriesⅢ_1-Ⅲ_(13). The reactions of N,N'-diaryl-2-nitro-1,4-phenylenedioxydiacetyl chloride with 2 eq. of various arylamines by grinding under solventless and room-temperature conditions expeditiously afforded series IV_1~IV_(12). These synthetic strategies compared with traditional solution protocol have the advantages of no organic solvent pollution, elevated reaction rate, high yield and simple work-up procedure.
     The structures of all compounds were confirmed by elemental analysis, IR, ~1H NMR and ~(13)C NMR.
引文
[1] Anastas P., Warner J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford 1998.
    [2] Li D. M., Shi F., Guo S. Deng Y. Q. One-pot synthesis of silica gel confined functional ionic liquids: effective catalysts for deoximation under mild conditions. Tetrahedron Lett. 2004, 45(2): 265-268.
    [3] Rideout D.C., Breslow R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc. 1980, 102: 7816.
    [4] Breslow R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 1991, 24: 159.
    [5] Li C. J. Organic reactions in aqueous media with a focus on carbon-carbon bond formation. Chem. Rev. 1993, 93: 2023-2035.
    [6] Jayachandran J. P., Balakrishnan J., Wang M. L. Phase-transfer-catalyzed Darzens condensation of chloroacetonitrile with cyclohexanone using aqueous sodium hydroxide and a new phase transfer catalyst. J. Mol. Cat. A: Chem. 2000, 152(1): 91.
    [7] Shi D. Q., Zhang S., Zhuang Q. Y., et al. Clean synthesis in water: Darzens condensation reaction of aromatic aldehydes with phenacylochloride. Chin. J. Chem. 2003, 21: 680.
    [8] 史达清,张姝,庄启亚,等.水溶剂中反-2,3-环氧-1-苯基-3-(2’-硝基-5’-氯苯基)-1-丙酮的合成及产物的晶体结构.结构化学 2004,23(12):1436-1439.
    [9] Bigi F., Chesini L., Maggi R., et al. Montmorillonite KSF as an inorganic, water stable and reusable catalyst for the Knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem. 1999, 64: 1033.
    [10] Bigi F., Carloni S., Ferrari L., et al. Clean synthesis in water (Part2): uncatalysed condensation reaction of Meldrumc's acid and aldehydes. Tetrahedron Lett. 2001, 42(31): 5203-5205.
    [11] Shoichi. S, Seiji S., Takashi S., et al. Water-soluble calixarenes as new inverse phase-transfer catalysts: Their application to aldol-type condensation and Michael addition reactions in water. Tetrahedron 2001, 57(29): 6169-6173.
    [12] Therapia K., Panagiotis K., Nikitas R., et al. A new protocol for a regioselective Aldol condensation as an alternative convenient synthesis of β-ketols and α, β-unsaturated ketones. J. Org. Chem. 2002, 67(13): 4615.
    [13] Kool E. T., Breslow R. Dichotomous salt effects in the hydrophobic acceleration of the Benzoin condensation. J. Am. Chem. Soc. 1988, 110: 1596.
    [14] Breslow R., Maitra U., Rideout D. Selective Diels-Alder reactions in aqueous solutions and suspensions. Tetrahedron Lett. 1983, 24: 1901.
    [15] Breslow R., Maitra U., Rideout D. On the origin of product selectivity in aqueous Diels-Alder reactions. Tetrahedron Lett. 1984, 25: 1239.
    [16] Schneider H. J., Sangwan N. K. Diels-Alder reactions in hydrophobic cavities: aquantitative correlation with solvophobicity and rate enhancements by macrocycles. J. Chem. Soc., Chem. Commun. 1986, (24): 1787.
    [17] Royen L. A. V., Mijngheer R., Declercq P. J. Intramolecular Diels-Alder reaction with furan-diene: total synthesis of (±)-11-ketotestosterone and (±)-adrenosterone. Tetrahedron 1985, 41: 4670.
    [18] Yu L. B., Chen D. P., Wang P. G. Aqueous Aza Diels-Alder reactions catalyzed by lanthanide (Ⅲ) trifluoromethane sulfonates. Tetrahedron Lett. 1996, 37(13): 2169-2172.
    [19] Akiyama T., Takaya J., Kagoshima H. Bronsted acid-catalyzed Aza Diels-Alder reaction of Danishefskyc's diene with aldimine generated in situ from aldehyde and amine in aqueous media. Tetrahedron Lett. 1999, 40(44): 7831-7834.
    [20] Inoue Y., Araki K., Shiraishi S. Unusual solvent effect on the cycloidditions of aromatic nitrile N-oxide with alkylsubstituted p-benzoquinones in ethanol-water systems. Bull. Chem. Soc. Jpn. 1991, 64: 3029.
    [21] Wijnen J. W., Steiner R. A., Engberts J. B. F. N. 1,3-Dipolar cycloaddition of phenyl azide to norbornene in aqueous solutions. Tetrahedron Lett. 1995, 36(30): 5389-5392.
    [22] Lubineau A., Auge J. Water-promoted organic reactions: Michael addition of nitroalkanes to methyl vinyl ketone under neutral conditions. Tetrahedron Lett. 1992, 33: 8073.
    [23] Ballini R., Bosica G. The Michael reaction of nitroalkanes with conjugated enones in aqueous media. Tetrahedron Lett. 1996, 37(40): 8027-8030.
    [24] Wang X. C., Zhang Z., Quan Z. J., Wang M. G., Wang F., Li Z. Expeditious One-step method to 5-aryl-2-furoyl substituted thioureas and thiosemicarbazides in aqueous media. Synth. Commun. 2006, 36: 843-847.
    [25] Shi D. Q., Mou J., Zhuang Q. Y., et al. One-pot synthesis of 2-amino-4-aryl-5-oxo-5,6,7,8- tetrahydro-4H-1-benzopyran-3-carbonitriles in aqueous media. J. Chem. Res. (s) 2004, (12): 821.
    [26] Wang X. C., Wang M. G., Yang Z., Quan Z. J., Wang F. A practical and rapid synthesis of 2-aryloxymethylene-6-arylimidazo [2,1-b][1,3,4]thiadiazole in aqueous media. J. Chem. Res. (s) 2005, (11):744-746.
    [27] Villemin D., Gomez-Escalonilla M. J., Saint-Clair J. F. Palladium-catalysed phenylation of heteroaromatics in water or methylformamide under microwave irradiation. Tetrahedron Lett. 2001, 42(4): 635-637.
    [28] (a) Leadbeater N. E., Marco M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett. 2002, 4(17): 2973-2976. (b) Leadbeater N. E., Marco M. Rapid and amenable Suzuki coupling reaction in water using microwave and conventional heating. J Org. Chem. 2003, 68(3): 888-892.
    [29] Loupy A. Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C. R. Chimie. 2004, 7(2): 103-112.
    [30] Willging E. M. Microwave digestion techniques in the sequential extraction of calcium, manganese, lead and zinc in sediments. Anal. Chem. 1987, 59(7): 938-945.
    [31] Vanderhoff J. W. Carrying out chemical reactions using microwave, US 3432413, 1969.
    [32] Gedye R., Simth F., Westaway K., Ali H. et al. The uses of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27(3): 279-282.
    [33] Bose A. K., Banik B. K., Mathur C., Wagle D. R., Manhas M. S. Polyhydroxy amino acid derivatives via β-Lactams using enantiospecific approaches and microwave techniques Tetrahedron 2000, 56(31): 5603-5619.
    [34] 罗军,蔡春,吕春绪.微波有机化学最新进展.合成化学 2002,10(1):17-24.
    [35] 金钦汉,戴树珊,黄卡玛.微波化学 北京:科学出版社 1999,4.
    [36] Takechi H., Kamade S., Machida M. 3-[4-Dromomethyl phenyl]-7-2H-1-benzopyran-2-one (MPAC-Br): a highly sensitive fluorcscent derivatization reagent for carboxylic acids in high-performance liquid chromatography. Chem. Pharm. Bull. 1996, 44(4): 793-799.
    [37] Rajender S. V., Rajender D. Lodobenzene diacetate on alumina rapid oxidation of alcohols to carbonyl compounds in solventless. Tetrahedron Lett. 1997, 38(45): 7029-7032.
    [38] Wang X. C., Quan Z. J., Wang M. G., Li Z. Microwave-prompted rapid and efficient synthesis of diacyl thiosemicarbazides and semicarbazides in solvent free without catalyst. Chin.Chem.Lett. 2005, 16(8): 1027-1030.
    [39] Wang X. C., Quan Z. J., Li Z. Microwave-assisted efficient synthesis of 1,4-disubstituted thiosemicarbazides and semicarbazides under solvent-free, no catalyst conditions. J. Chem. Res. (s) 2005, 11: 71-72.
    [40] Ravi K. S., Venkat R. G. A simple and convenient method for the reduction of nitorarenes. Synth. Commun. 2002, 32(18): 2849-2853.
    [41] Rajender S. V., Rajender K. Microwave assisted reduction of carbonyl compounds in solid state using sodiumboro hydride supported on alumina. Tetrahedron Lett. 1997, 38(25): 4337-4338.
    [42] Rajender S. V., Dalip K. Microwave-accelerated three component condensation reaction on clay: Solvent-free synthesis of imidazo [1,2-α] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett. 1999, 40(43): 7665-7669.
    [43] Aydogana F., Demira A. S. Clean and efficient microwave-solvent-free conversion of homochiral amines, α-amino alcohols and α-amino acids to their chiral 2-substituted pyrrole derivatives. Tetrahedron 2005, 61 (12): 3019-3023.
    [44] Yadav L. D. S., Dubey S., Yadav B. S. Solvent-free one-pot reactions for annulating a pyrimidine ring on thiazoles under microwave irradiation. Tetrahedron 2003, 59(29): 5411-5415.
    [45] 黄志真,吴露玲,黄宪.微波作用下2-烃基-4-喹啉酮的简便合成法.高等学校化学学报 2002,23(2):88-90.
    [46] 屠树江,邓旭,周建峰,等.微波辐射下芳醛与活性亚甲基化合物的反应.有机化学 2001,23(2):222-225.
    [47] 屠树江,高原,于晨侠,史达清.应用微波辐射技术一步合成4-芳基-1,4-二氢吡啶衍生物.有机化学 2002,22(4):269-271.
    [48] Li Z., Yu J. L., Yang J. Y., Shi S. Y., Wang X. C. Polymer-suuported dichlorophosphate: a recoverable new reagent for synthesis of 2-amino-1,3,4-thiadiazoles. J. Chem. Res. (s) 2005, 341-343.
    [49] Li Z., Yu J. L., Ding R. B., Wang Z. Y., Wang X. C. Microwave accelerated solvent-free synthesis of 1,3,4-oxadiazoles using polymer supported dehydration reagent. Synth. Commun. 2004, 34(16): 2981-2986.
    [50] Smith M. B., March J. Advanced organic chemistry reactions, mechanisms and structure, John Wiley & Sons, New York, 5th ed., 2001, chapter 13, p. 8502893.
    [51] Lee J. C., Park J. Y., Yoon S. Y., Ba Y. H., Lee S. J. Efficient microwave induced direct α-halogenation of carbonyl compounds. Tetrahedron Lett. 2004, 45(1): 191-193.
    [52] Ranu B. C., Hajra A., Jana U. Microwave-assisted synthesis of substituted pyrroles by a three-component coupling of alpha, beta-unsaturated carbonyl compounds, amines and nitroalkanes on the surface of silica gel. Synlett 2000, (1):75-76.
    [53] Ranu B. C., Hajra A. Synthesis of alkyl-substituted pyrroles by three-component coupling of carbonyl compound, amine and nitro-alkane/alkene on a solid surface of silica gel/alumina under microwave irradiation Tetrahedron 2001, 57(22): 4767-4773.
    [54] Correc O., Guillou K., Hamelin J., Paquin L., Texier-Boulleta F., Toupet L. Microwave solvent-free synthesis of nitrocyclohexanols. Tetrahedron Lett. 2004, 45(2): 391-395.
    [55] Li Z., Quan Z. J., Wang X. C. Microwave-assisted o-aikylation of carboylic acids in dry media: expeditious synthesis of 2-oxo-2-arylethyl carboxylates. Chem. pap. 2004, 58(4): 256-259.
    [56] Zhang X. H., Gao P. B., Guo M., Yah S. Z. Synthesis of α, β-unsaturated ketones using potassium fluorides-alumina catalyst by microwave irradiation. Chin. Chem. Lett. 1998, 9(6): 521-522.
    [57] Saxena I., Borah D. C., Sarma J. C. Three component condensations catalyzed by iodinealumina for the synthesis of substituted 3, 4-dihydropyrimidin-2(1H)-ones under microwave irradiation and solvent-free conditions. Tetrahedron Lett. 2005, 46(7): 1159-1160.
    [58] Strikishna A., Kumar P. P. Naphthalenes via microwave irradiation induced rearrangement on montmorillonite K-10. Tetrahedron Lett. 1995, 36(35): 6313-6315.
    [59] Kotha S., Mandal K., Deb A. C., Banerjee S. Microwave-assisted Claisen rearrangement on a silica gel support. Tetrahedron Lett. 2004, 45(52): 9603-9605.
    [60] Khadilkar B. M., Madyar V. R. Fries rearrangement at atomospheric pressure using microwave irradiation. Synth. Commun. 1999, 29(7): 1195-1200.
    [61] Moghaddam F. M., Dakamin M. G. Thia-fries rearrangement of aryl sulfonates in dry media under microwave activation. Tetrahedron Lett. 2000, 42(I 8): 3479-3481.
    [62] Wu J. L., Wu H. F., Wei S. Y., Dai W. M. Highly regioselective Wittig reactions of cyclic ketones with a stabilized phosphorus ylide under controlled microwave heating. Tetrahedron Lett. 2004, 45(22): 4401-4404.
    [63] Loupy A., Maurel E, Sabatié-Gogová A. Improvements in Diels-Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches. Tetrahedron 2004, 60(7): 1683-1691.
    [64] Mojtahedi M. M., Sharih A., Mohsenzadeh F., Saidi M. R. Microwave-assisted aminomethylation of electron-rich compounds under solvent-free condition. Synth. Commun. 2000, 30(1): 69-72.
    [65] Garmaise D. L., Chambers C. H., Macrae R. C. Anthelmintic quaternary salts Ⅱ thiazolium salts. J. Med. Chem. 1968, 11: 1205-1208.
    [66] Mohsen A., Omar E., Eshba N. H. Novel thiazolidine-2,4-dione-4-thiosemicarbazone and 4-[(3,4-diary-3H-thiazol-2yl)azo]thiazolidin-2-one derivatives: synthesis and evaluation for antimicrobial and anticancer properties. J. Pharm. Sci. 1984, 73:1166.
    [67] Nagasaki F., Yamada T., Takahashi E., Kitagaya Y., Hatano R. Preparation of thiazoline derivatives as acaricides and insecticides. Jpn. Kokai Tokkyo Koho JP 63,250,371 (88,250,371) (C1. CO7D277/42), 18 Oct. 1988. Appl. 87/82,455.03 Apr. 1987. CA. 1989, 110, 192810y.
    [68] Boyce R. J., Mulqueen G. C., Pattenden G. Total synthesis of thiangazole, a novel inhibitor of HIV-1 from polyangiumsp. Tetrahedron Lett. 1994, 35: 5705-5708.
    [69] Wipf P., Fritch P. C. Synthesis of peptide thiazolines from β-hydroxythioamides, an investigation of racemization in cyclodehydration protocols. Tetrahedron Lett. 1994, 35: 5397-5400.
    [70] Lai J. Y., Yu J., Mekonnen B., Falck J. R. Synthesis of curacin an antimitotic cyclopropanethiazoline from the marine cyanobacterium lyngbya majuscule. Tetrahedron Lett. 1996, 37: 7167-7170.
    [71] Chandra U., Sharma R. C. Synthesis and antimicrobial studies of some 2-(2-thienylcarbonyl)-3-aryl-4-thiazolidinonews. J. Med. Chem. 1994, 37(19): 3071-3078.
    [72] Cox J. M., Clough J. M., Barnes N. J. Preparation of substituted pyrolidones, thiazolidones, or oxazolidones as herbicides. PCT. Int. Appl.: WO 33 719, 1995.
    [73] Hirashima A., Eiraku T., Watanabe Y., et al. Identification of novel inhibitors of calling and in vitro [C-14]acetate incorporation by pheromone glands of Plodia interpunctella. Pest. Manag. Sci. 2001, 57(8): 713-720.
    [74] Fernandez X., Dunach, E., Fellous R., et al. Thiazolidines and their oxidation products as flavouring compounds. Flavour. Fragr. J. 2002, 17(6): 432-439.
    [75] 毛杰,陈建宇,李如兴,王海英,李健,韩嘉祥.噻唑啉类化合物的合成和抑菌活性.应用化学 2004,21(12):1265-1268.
    [76] 文丽荣,李明,景淑霞,曹玮,杨华铮.2-(1-苯基/取代苯基-3-甲基-5-氯-1H-4-吡唑基)-3-芳酰胺-4-噻唑啉酮的合成及生物活性.有机化学 2005,25(2):197-200.
    [77] Schoberl A., Hansen G.Chem.Ber.1958,91: 1239.
    [78] 左正忠,左超,杨江成,吕志,王志军.2-巯基噻唑啉和咪唑在无氰碱性镀锌中的作用.武汉大学学报(自然科学版) 1999,45(2):153-156.
    [79] 刘庆安,孟祥春,孙艳松.2-异丁基-4,5-二甲基噻唑啉的合成.安徽大学学报(自然科学版) 1996,20(2):76-78.
    [80] Shuster E. D., Withycombe D. A., et al. US 4, 040, 987.
    [81] Withycombe D. A., Mookherjee B. D., et al. US 4, 255, 583.
    [82] Suni M. M., Nair V. A., Joshua C. P. Heterocyclization of 1-alkyl-2-thiobiureas with α-haloketones. Tetrahedron Lett. 2001, 42(1): 97-99.
    [83] Karali N., Kocabalkanli A., Gursoy A., Ares O. Synthesis and antitubercular activity of 4-(3-coumarinyl)-3-cyclohexyl-4-thiazoline-2-one benzylidenehydrazones. IL. Farmaco. 2002, 57: 589-593.
    [84] Chandrakant G. B., Naresh J. G. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem. 2004, 12: 2151-2161.
    [85] Akira M., Takaaki I., Keiko T., Masakazu S. 2-Acylimino-3-alkyl-3H-thiazoline derivatives: one-pot, three-component condensation synthesis of novel b-turn mimics. Tetrahedron Lett. 2005, 46:419-422.
    [86] Souad K., Jack H., Hadj B. Microwave-assisted solvent-free synthesis of iminothiazolines. Tetrahedron Lett. 1998, 39(44): 8093-8096.
    [1] 陈文彬,金桂玉.含稠杂环新农药的研究进展.农药学学报 2000,2(4):1-10.
    [2] 韩嘉祥,李健,李树正,李如兴.2-取代苯胺基-5-甲基噻唑啉类化合物的合成和杀菌活性研究.浙江化工 2000,31:30-31.
    [3] Otto B., Wilhelm S. US 3 993 766. 1976.
    [4] Russell J. B., Boyd L. H. US 4 788 209. 1988.
    [5] Hirashima A., Eiraku T., Watanabe Y., et al. Identification of novel inhibitors of calling and in vitro [C-14]acetate incorporation by pheromone glands of Plodia interpunctella. Pest. Manag. Sci. 2001, 57(8): 713-720.
    [6] Fernandez X., Dunach, E., Fellous R., et al. Thiazolidines and their oxidation products as flavouring compounds. Flavour. Fragr. J. 2002, 17(6): 432-439.
    [7] 刘庆安,孟祥春,孙艳松.2-异丁基-4,5-二甲基噻唑啉的合成.安徽大学学报(自然科学版) 1996,20(2):76-78.
    [8] Shuster E. D.,Withycombe D. A.,et al. USP 4, 040, 987.
    [9] Withycombe D. A., Mookherjee, B. D., et al. USP 4, 255, 583.
    [10] Wang X. C., Zhang Z., Quan Z. J., Wang M. G., Wang F., Li Z. Expeditious one-step method to 5-aryl-2-furoyl substituted thioureas and thiosemicarbazides in aqueous media. Synth. Commun. 2006, 36: 843-847.
    [11] Rasmassen R., Villani F. J., Weaner L. E., Reynolds B. E., Hood A. R., Hecker L. R., Nortey S.O., Hanslin A., Costanzo J., Powell E. T., Molinari A. J. Improved procedures for the preparation of cycloalkyl-, arylalkyl-, and arylthioureas. Synthesis 1988, 456-459.
    [1] Garmaise D. L., Chambers C. H., MaCrae R. C. Anthelmintic quaternary salts Ⅱ thiazolium salts. J. Med Chem. 1968, 11: 1205-1208.
    [2] Mohsen A., Omar E., Eshba N. H. Novel thiazolidine-2, 4-dione-4-thiosemicarbazone and 4-[(3,4-diary-3H-thiazol-2yl) azo]thiazolidin-2-one derivatives: synthesis and evaluation for antimicrobial and anticancer properties. J. Pharm. Sci. 1984, 73: 1166.
    [3] Nagasaki E, Yamada T., Takahashi E., Kitagaya Y., Hatano R. Preparation of thiazoline derivatives as acaricides and insecticides. Jpn. Kokai Tokkyo Koho JP 63,250,371 (88,250,371) (C1. CO7D277/42), 18 Oct. 1988.
    [4] Boyce R. J., Mulqueen G. C., Pattenden G. Total synthesis of thiangazole, a novel inhibitor of HIV-1 from polyangiumsp. Tetrahedron Lett. 1994, 35: 5705-5708.
    [5] Wipf P., Fritch P. C. Synthesis of peptide thiazolines from β-hydroxythioamides, an investigation of racemization in cyclodehydration protocols. Tetrahedron Lett. 1994, 35: 5397-5400.
    [6] Lai J. Y., Yu J., Mekonnen B., Falck J. R. Synthesis of curacin an antimitotic cyclopropanethiazoline from the marine cyanobacterium lyngbya majuscule. Tetrahedron Lett. 1996, 37: 7167-7170.
    [7] Bigi F., Carloni S., Ferrari L., et al. Clean synthesis in water (Part2): uncatalysed condensation reaction of Meldrumc's acid and aldehydes. Tetrahedron Lett. 2001, 42(31): 5203-5205.
    [8] Kobayashi S., Nagayama S., Busujima T. Catalytic asymmetric mukaiyama Aldol reactions in aqueous media. Tetrahedron 1999, 55(29): 8739-8746.
    [9] Shoichi. S, Seiji S., Takashi S., et al. Water-soluble calixarenes as new inverse phase-transfer catalysts: Their application to aldol-type condensation and Michael addition reactions in water. Tetrahedron 2001, 57(29): 6169-6173.
    [10] 魏太保,芳酰基硫脲衍生物的合成及其生理活性.西北师范大学硕士学位论文 1991.
    [11] Wang X. C., Zhang Z., Quan Z. J., Wang M. G., Wang F., Li Z. Expeditious one-step method to 5-aryl-2-furoyl substituted thioureas and thiosemicarbazides in aqueous media. Synth. Commun. 2006, 36: 843-847.
    [12] Wei, T. B., Chen, J. C., Wang, X. C., Yang X. Y. Studies on the synthesis and biological activity of N-aryl-N'-(5-aryl-2-furoyl) thiourea derivatives. Chem. J. Chin. Univ. 1992, 13(9): 1217-1221. (in Chinese).
    [13] Dack M. R. J. Importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 1975, 4(2): 211-229.
    [14] Andre L. Water-promoted organic reactions: Aldol reaction under neutral conditions. J. Org. Chem. 1986, 51(11): 2142-2144.
    [1] Kundu N. G., Pal M., Mahanty J. S., Dasgupta S. K. Palladium-catalyzed heteroannulation of acetylenic compounds: a facile method for the synthesis of benzofurans. J Chem. Soc., Chem. Commun. 1992, (1)41-42.
    [2] Cagniant P., Carniant D. Synthesis hegmning with 2-chloromethylbenzo[b]furan. Adv. Hetercycl. Chem. 1975, 18: 337.
    [3] Felder C. C., Joyce K. E., Briley E. M., et al. A novel cannabinoid CB_1 receptor antagonist unmasks coupling of the CB_1 receptor to stimulation of CAMP accumulation, J. Pharmacol. Exp. Ther. 1998, 284, 291-297.
    [4] Yang Z., Hon P. M., Chui K. Y., Chang H. M., Lee C. M., Cui Y. X., Wong H. N. C., Poon C. D., Fung B. M. Naturally occurring benzofuran: isolation, structure elucidation and total synthesis of 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b] furancarbaldehyde, a novel adenosine A_1 receptor ligand isolated from salvia miltiorrhiza bunge (danshen). Tetrahedron Lett. 1991, 32:2061-2064.
    [5] Carter G. A., Chamberlain K., Wain R. L. The fungitivicity of analogs of the phylation 2-(2'-methoxy-4'-hydroxyl-phenyl-6-methoxylbenzofuran. Ann. Appl. Biol. 1978, 88: 57-64.
    [6] Ingham J. L., Dewick P. M. 6-Demethylvignafuran as a phytoalexin of Tetragonolobus maritimus. Phytochemistry 1978, 17: 535-538.
    [7] Takasugi M., Nagao S., Masamune T. Structures of moracins E, F, G, and H, new phytoalexins from diseased mulberry. Tetrahedron Lett. 1979, 4675-4678.
    [8] Takeuchi N., Kasama T., Ikeda R., Shimizu K., Hatakeyama K. Synthesis and anti-histaminic and anti-allergic activities of hexahydro-4-hydroxy-1-benzofuran-2-ones. Chem. Pharm. Bull. 1984, 32(6): 2249.
    [9] Qiao R. Z., Hui X. P., Xu P. F., Zhang Z. Y., Cheng D. L. Microwave induced synthesis of 3-aryl-6-(6,8-substituted 4-chloroquinoline-3-yl)-s-triazolo[3,4-b]-1,3,4-thiadiazoles. Chin. J. Chem. 2001, 19: 800-806.
    [10] Kritsanida M., Mouroutsou A., Marakos P., Pouli N., Papakonstantinou G. S., Pannecouque C., Witvrouw M. Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b] [1,3,4] thiadiazoles. IL Farmaco. 2002, 57: 253-257.
    [11] 张自义,陈新.稠杂环化合物研究—1,3-(4’-吡啶基)-6-芳基均三唑并[3,4-b]-1,3,4-噻二唑 的合成及其抗菌性能.化学学报 1991,49:513-520.
    [12] 张自义,赵岚,李明.3-烷基-6-芳氧亚甲基均三唑并[3,4-b]-1,3,4-噻二唑的合成.有机化学 1994,14(1):74-80.
    [13] Hui X. P., Xu P. F., Wang P., Zhang Q., Zhang Z. Y. Synthesis and antibacterial activity of 3-(5-methylisoxazol-3-yl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. Chin. J Chem. 2001, 19: 991-995.
    [14] Caddic S. Microwave assisted organic reactions. Tetrahedron Lett. 1995, 51(38): 10403-10432.
    [15] Wang X. C., Li Z., Quan Z. J., Lu X. S., Gou R. H. Solvent-Free Synthesis of 2-Furyl-5-aryloxyacetylamino-1,3,4-thiadiadiazoles Under Microwave Irradiation. Synth. Commun. 2003, 33(16): 2891-2897.
    [16] Wang X. C., Li Z., Zhang Z. H., Da Y. X. Synthesis of 2-(4-chlorobenzoylamido)-5-aryloxymethyl-1,3,4-oxadiazoles under the microwave irradiation. Synth. Commun. 2001, 31(12): 1907-1911.
    [17] 李政,权正军,王喜存.微波促进下1-芳甲酰基-4-(2′-苯并呋喃甲酰基)氨基硫脲及其衍生物的合成.有机化学 2003,23(8):822-826.
    [18] Tanaka S. Coumarones from o-hydroxyaldehydes and bromomalonic ester. J. Am. Chem. Soc. 1951, 73: 872-874.
    [19] 王喜存,张彰,权正军,王满刚,王芳,李政.水介质中N-芳基-N'-(2-苯并呋喃甲酰基)硫脲及1-芳甲酰基-4-(2′-苯并呋喃甲酰基)氨基硫脲的合成.有机化学 2006,26:(in press).
    [1] Gedye R., Smith F., Westaway K., et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27(3): 279-282.
    [2] Oussaid A., Loupy A. Selective oxidation of arenes in dry media under focused microwaves. J. Chem. Res. Synop. 1997, (9): 342-343.
    [3] Varma R. S. Solvent-free organic syntheses using microwave irradiation. Tetrohedron Lett. 1997, 38(24): 4337-4340.
    [4] Kidwai M., Venkataramanan K. S. Alumina supported synthesis of β-lactams using microwave. Synth. Conmmun. 2000, 30(6): 989-1002.
    [5] Savudi A., Hamelim J., Bemhaoua H. Elimination reaction over solid supports under alkenes. Tetrahedron Lett. 1998, 39(23): 4035-4038.
    [6] Balalair S., Nemati N. Ammonium acetate-basic alumina catalyzed Knoevenagel condensation under microwave irradiation under solvent-free condition. Synth. Conmmun. 2000, 30(5): 869-815.
    [7] Varma R. S. Solvent-free organic synthesis using supported reagents and microwave irradiation. Green. Chem. 1999, 1: 43-45.
    [8] 王喜存,陈继畴,王秀春.N-芳基-5-芳基-2-呋喃甲酰胺和N-5-芳基-2-呋喃甲酰基-N'-芳氧基乙酰基肼的合成及生物活性的研究.高等学校化学学报 1998,19(8):1274-1276.
    [9] Takeuchi N., Kasama T., Ikeda R., et al. Synthesis and anti-histaminic and anti-allergic activities of hexahydro-4-hydroxy-1-benzofran-2-ones. Chem. Pharm. Bull. 1984, 32(6): 2249-2253.
    [10] 李复信,张树奎,谭惠芬,等.二苯醚酰胺类化合物的合成及其除草活性.农药1986,(1):5-6.
    [11] 王喜存,陈继畴,魏太保.液.液相转移催化法合成5-邻氯苯基-2-呋喃甲酰芳胺.西北师范大学学报(自然科学版)1997,33(2):115-116.
    [12] 李政,于金兰,王喜存.无溶剂室温研磨法快速定量合成N-芳基-香豆素-3-酰胺.西北师范大学学报(自然科学版) 2004,40(1):42-44.
    [13] 罗君涛,黄文强.N-2-氯苄基苯甲酰胺的固相合成及其晶体结构分析.高等学校化学学报.2004,25(1):56-59.
    [14] Tanaka S. Coumarones from o-hydroxyaldehydes and bromomalonic ester. J. Am. Chem. Soc. 1951, 73: 872-874.
    [1] Tanaka K., Toda F., Solvent-free organic synthesis, Chem. Rev. 2000, 100(3): 1025-1074.
    [2] 耿丽君,王书香,李记太,等.研磨法制备5-芳叉巴比妥酸.有机化学 2002,22(12):1047-1049.
    [3] 李晓陆,王永梅,孟继本,等.固态有机反应新进展.有机化学 1998,18(1):20-28.
    [4] Kitagawa M., Yamamoto K., Katakura S., et al. Aryloxyacetic acid diuretics with uricosuric activity, ⅱ. Substituted (4-oxo-4H-1-benzopyran-7-yl) oxyacetic acids and related compounds. Chem. Pharm. Bull. 1991, 39(10): 2681-2690.
    [5] 李英俊,戴瑜嘉,陈继畴.相转移催化合成芳氧基乙酸芳酯及硫赶酸苯酯.高等学校化学学报 1988,9(6):584-589.
    [6] 陈继畴,赵文芝,杨素铀,等.液-液相转移催化法合成羰基苯氧基乙酸衍生物的研究.高等学校化学学报 1991,12(9):1195-1199.
    [7] 陈继畴,白俊峰,刘宏仁,等.液-液相转移催化法合成二酰基苯二酚酯.农药 1993,32(3):4-6.
    [8] 陈继畴,朱自贤,苟和平,等.液-液相转移催化法合成N,N’-二芳基乙酰基芳二胺.应用化学 1992,9(6):103-106.
    [9] 许先芳,达玉霞,李政,等.1,3-苯二氧基二乙酸二芳酯的合成及植物生长调节活性.西北师范大学学报(自然科学版)2003,39(1):39-41.
    [10] 魏太保,王喜存,陈继畴.相转移催化法合成1,4-苯二氧基二乙酸及其衍生物.西北师范大学学报(自然科学版)1995,31(2):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700