高强度硼钢板热冲压成形过程及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进高强度钢板在汽车制造领域的应用是有效地实现汽车轻量化和提高整车被动安全性的有效途征之一。热冲压成形是一种专门用于制造复杂形状的先进高强度钢零件的新技术,且零件的回弹很小。此技术的工艺过程是先将板料的温度升至再结晶温度以上某一温度值,然后将加热后的板料移至模具上,成形和淬火处理同时进行,得到了拥有高强度的零部件的成形工艺。此过程是一个涉及到了模具与板料的传热、成形以及板料微观组织的转变,故对工艺参数对板料的流变行为的影响规律进行探讨,对热冲压零件的成形过程进行分析,从而制定热冲压成形的工艺,对热冲压成形技术的理论和实际应用具有重要指导意义。
     本文以先进高强度硼钢板Mn22B5作为研究对象,采用了实验研究、理论分析以及数值模拟相结合的方法,在对高强度硼钢板热冲压成形工艺进行了分析的基础上,制定了物理热模拟实验方案,即板料处于完全奥氏体化后,再将板料的温度降至不同的温度,以不同的应变速率对板料进行等温单向拉伸实验,得到了在不同的条件下,材料的真实应力-应变曲线,并在此基础上对变形温度与变形速率对板料的流变行为的影响及规律性进行了分析。在实验结果的基础上,建立了高强度硼钢板的热冲压流变应力数学模型。
     以汽车防撞梁的典型特征件U形件作为研究对象,在分析了成形时的受力和高强度硼钢板热冲压成形的流变应力数学模型基础上,建立了与材料性能参数、工艺参数以及几何参数有关的热冲压U形件侧壁的最大应变解析模型。
     采用有限元数值模拟技术,对高强度硼钢板U形件的热冲压成形过程进行了数值模拟,在有限元软件ABAQUS上建立了热成形件的热冲压成形过程的模型。数值模拟主要对压边力和模具间隙在热冲压成形过程中的对成形的零件质量的影响进行了探讨。从数值模拟的结果来看,本文所建立的有限元模型在对模拟热冲压成形过程是很有效的。在压边力较大时,零件的回弹较小,有利于改善法兰与模具的接触作用,同时可以避免成形零件发生开裂现象。模具间隙对侧壁上的温度分布有较大的影响,模具间隙越大,成形件侧壁的温度就越高。
Application of advanced high strength steel in the automotive manufacturing field is an effective vehicle to achieve light weight and improve vehicle passive safety.Hot stamping is a advanced new technology with specialized manufacture for complex shapes of high-strength steel components, and a very small back spring. Process of this technology is sheet of the temperature rose to a temperature above the recrystallization temperature, and then moved the heated sheet to the mold, forming and quenching, and get the parts with high strength. This process is related to the mold and the sheet metal heat transfer, sheet metal forming and microstructure change, so the process parameters on the rheological behavior of sheet discusses the impact of law, forming part of the hot stamping process of analysis, to develop hot stamping process. Hot stamping technology that will better applied to the actual production is great significance.
     In this paper, high-strength boron steel Mn22B5 advanced is the research object. Using the experimental research, theoretical analysis and numerical simulation method of combining, high-strength boron steel in the hot stamping process is analyzed based on the physical development of thermal simulation experiment Program, the sheet is fully austenitized, then the temperature dropped to different temperature, different strain rate on the isothermal sheet tensile test obtained the true stress-strain curves. Based on this curves, deformation temperature and strain rate on the rheological behavior of sheet metal and the regularity are analyzed. Based on the experimental results, flow stress model of high-strength boron steel in hot stamping is established.
     The high strength boron steel U shaped piece of hot stamping process was simulated by finite element numerical simulation. Based on explicit ABAQUS software environment, several key issues, such as sheet metal contact between the treatment and die, determination of material properties and mesh division of finite element software ABAQUS to establish the heat of hot forming parts forming process model.
引文
[1]龚正.王国荣.汽车轻量化的现状与趋势[J].环球漫游-汽车维修,1998(2):42-43
    [2]郑晖,李国峰.汽车用钢板的现状和发展趋势[J].沈阳航空工业学院学报,2006,23(2)
    [3]由剑.法国汽车用钢技术介绍[J].汽车工艺与材料,1997,6:42-44
    [4]Roben E Browr.53rd Annual world magnesium conference[J].Light Metal Age,1996, (8): 50-60.
    [5]康永林,国内外汽车板的现状、需求和发展趋势[J],中国冶金,2003年6月.
    [6]王利,朱晓东等,汽车轻量化与先进的高强度钢板[J],宝钢技术,2003年第6期.
    [7]刘波,张朝声,国外汽车用高强度钢板的发展[J],国外冶金动态,1998年第7期.
    [8]MEGA Tetsuya, et al. Ultra High-Strength Steel Sheets for Bodies, Reinforcement Parts, and Seat Frame Parts of Automobile·-Ultra High-Strength Steel Sheets Leading to Great Improvement ion Crashworthiness[J], JFE Technical Report No.4, Nov.2004.
    [9]范军锋,陈铭.中国汽车轻量化之路初探[J].铸造,2006,vol.55(10):995-998,1003.
    [10]ULSAB-AVC-PES Engineering Report.2001,10.
    [11]朱文英.汽车轻量化与高强度钢板的开发进展[J].上海金属.2003,25(4):11-15.
    [12]陈和清,彭成允,魏良庆.高强度钢板及其在汽车制造中的应用[J],模具工程,2007(8):88-91.
    [13]王利,杨雄飞,陆匠心.汽车轻量化川高强度钢板的发展[J].钢铁.2006,41(9):1-8.
    [14]http://www.gaindab.se/uk/producer.asp#Kallvalsat.
    [15]P. Akerstrom, M. Oldenburg. Studies of the thermo-mechanical material response of a boron Steel by inverse modeling[J], J. Phys. IV France,2004, Vol.120:625-633.
    [16]J.X.Lu and L.Wang. Production and Usage of High Strength Sheet Metal Used in Automotive Industry[J],Automob.Technol.Mater.,2004,2,p 1-6(in Chinese)
    [17].P.Chen and M.Koc. Simulation of Springback Variation in Forming of Advanced High Strength Steels,J.Mater.Process[J].Technol.,2007,190,p 189-198
    [18].T.B.Hilditch,J.G.Speer,and D.K.Matlock. Influence of Low-Strain Deformation Characteristics of High Strength Sheet Steel on Curl and Springback in Bend-Under-Tension Tests [J], J.Mater.Process.Technol.,2007,182,p 84-94
    [19].A.D.Santos and P.Teixeirab. A Study on Experimental Benchmarks and Simulation Results in Sheet Metal Forming[J],J.Mater.Process.Technol.,2008,199(3),p 327-336
    [20].K.Mori,S.Maki,and Y.Tanaka. Warm and Hot Stamping of Ultra High Tensile Strength Steel Sheets Using Resistance Heating[J], Ann. CIRP,2005,54,p 209-212
    [21].S.H.Choi and K.G.Chin. Prediction of Spring-Back Behavior in High Strength Low Carbon Steel Sheets[J],J.Mater.Process.Technol.,2006,171,p 385-392
    [22]J.Yanagimoto,K.Oyamada,and T.Nakagawa. Springback of High-Strength Steel After Hot and Warm Sheet Forming,CIRP Ann[J].Manuf.Technol.,2005,54(1),p 213-216
    [23]J.Yanagimoto and K.Oyamada. Mechanism of Springback-Free Bending of High-Strength Steel Sheets Under Warm Forming Conditions,Ann.CIRP,2007,56(1)
    [24]T.Klikuma and K.Nakazima. Effect of Deforming Conditions and Mechanical Properties on The stretch forming limits of sheer,IDDRG,Tokyo Proceeding of ICSTIS, Trans.1971, p827-831
    [25]A.Turetta,S.Bruschi,and A.Ghiotti. Investigation of 22MnB5 Formability in Hot Stamping Operations[J],J.Mater.Process.Technol.,2006,177,p 396-400
    [26]kerstrom P A, Oldenburg. Studies of the thermo-mechanical material response of a boron steel by inverse modeling [J]. J.Phys. IVFrance,2004, (120):625-633.
    [27]Akerstrom P, Wikman B, Oldenburg M. Material parameter estimation for boron steel from simultaneous cooling and compression experiments [J]. Modeling and Simulation in Materials Science and Engineering,2005, (13):1291-1308.
    [28]Akerstrom P, Oldenburg M. Austenite decomposition during press hardening of a boron steel-computer simulation and test [J]. Journal of Materials Processing Technology 2006, 174:399-406.
    [29]Akerstrom P, Oldenburg M. Numerical simulation of a thermo-mechanical sheet metal forming experiment [J]. Thermo-mechanical sheet metal forming,2006:1-15.
    [30]MerkleinlM, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels [J]. Journal of Materials Processing Technology,2006, (177)452-455.
    [31]Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations [J]. Journal of Materials Processing Technology,2006, (177)396-400.
    [32]NaderiM, Saeed-AkbariA, BleckW. The effects of non-isotherm-mal deformation on martensitic transformation in 22MnB5 steel[J]. Materials Science and Engineering, 2007:1-11.
    [33]谭志耀,田浩彬,倪峰,等.硼钢板高温拉伸性能研究[J].理化检验-物理分册,2006,(42):63-65,108.
    [34]朱巧红,鲍文华,倪峰等USIBOR1500超高强度板热成形模具冷却系统设计[J].机械设计,2006:106-108.
    [35]朱巧红,林建平,张健,等.汽车用U型件热成形模具散热的瞬态计算与分析[J].模具工程,2007:80-83.,
    [36]S. Kobayashi, T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, New York,1989.
    [37]陈欣如,胡忠民.塑性有限元及其在金属成形领域中的应用[M],重庆:重庆大学出版社,1989.
    [38]乔端,钱银根.非线性有限元及其在塑性加工中的应用[M],北京:冶金工业出版社,1990.
    [39]D. Ravikiran. Design of Forging Dies for Forming Flashes Ring Gear Blanks Using Finite Element Methods[J], J. of Material ShapingTechnology,7(1989)33-47.
    [40]k Boewsoo, K Naksoo, S. Kobayashi. Computer-aided Perform Design in Forging of an Airfoil Section Blade. Int. J. Machine Tools Manufacture,30(1990)43-52.
    [41]熊光楞,王克明.计算机仿真技术在轿车工业中的应用与发展[J].系统仿真学报,2004(6):73-78.
    [42]龚红英,何丹农,张质良.计算机仿真技术在现代冲压成形过程中的应用[J].锻压技术,2003(5):35-38.
    [43]J.L. Chenot, E. Massoni. Finite dement modeling and control of new metal forming processes[J]. International Journal of Machine Tools & Manufacture 46(2006)1194-1200.
    [44]H. Grass, C. Krempaszky,T. Reip, E. Werner.3-D Simulation of hot forming and Microstructure evolution[J]. Computational Materials Science 28(2003)469-477.
    [45]J. C Gelin, B. V Nguegang. Modeling of the thermo mechanical coupling during hot forming Of viscoplastic materials[J]. Journal of Materials Processing Technology 60(1996)441-446.
    [46]I. Papatriantafillou, M. Agoras, N. Aravas, etal. Constitutive modeling and finite element methods for TRIP steels. Comput. Methods Appl. Mech. Engrg.195(2006)5094-5114.
    [47]刘建生.大型曲轴弯曲镦锻过程的热力耦合分析[J].锻压机械.2001,36(02):31-33.
    [48]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京理工大学出版社.1998.
    [49]李晓星.板材成形模拟的研究和应用[J].金属成形工艺.2003,21(02):6-9.
    [50]郊莹等.板料成形数值模拟进展[J].塑性工程学报.1996,3(4):34-47.
    [51]Z. Gronostajski. The constitutive equations for FEM analysis[J]. Journal of Materials Processing Technology 106.2006:40-44.
    [52]Keum Y T'Ghoo B Y, Wagoner R H. Simulation of Materials Processing:Theory Methods and Applications,2001,12:813.
    [53]Takuda H, Moti K, Masuda I, et al. Finite element simulation of warm deep drawing of Aluminum alloy sheet when accounting for heat conduction J Mater. Proc. Techn.,2002, 120(1-3)412.
    [54]HTakuda, TYoshii,NHatta. Finite-element analysis of the formability of magnesium-based alloy AZ31 sheet[J]. Journal of Materials Processing Technology 89"90,1999,1356-.140.
    [55]苌群峰,李大永,彭颖红等.AZ31镁合金板材温热冲压数值模拟与实验研究[J],中国有色金属学报.2006,16(4):580-585.
    [56]Hu Zhong, Zhua Lihua, Wang nen yi, et al. Computer simulation of the deep extrusion of a Thin-walled up using the thermo-mechanically couple elastic-plastic FEM[J].Mater. Proc. Techno,2000,102(1-3):128.
    [57]R. Neugebauer,T. Altan, M. Geiger,et al. Sheet Metal Forming at Elevated Temperatures. STC F,55/2/2006.
    [58]杨慧,张质良.温热精密成形微观组织模拟研究[J].热处理.2003,18(4):1-4.
    [59]陈明和,朱知寿.热成形过程微观组织模拟研究进展[J].塑形工程学报.2005,12(2):1-6.
    [60]耿世奇,江五贵,鲁世强.材料热加工微观组织模拟的研究进展[J].国外金属加工2005,26(2):19-25.
    [61]李萍.热塑性变形显微组织演变的模拟机可视化:[博士后学位论文].浙江:浙江大学,20030601.
    [62]J. Lin, T. A. Dean. Modeling of microstructure evolution in hot forming using unified Constitutive equations[J]. Journal of Materials Processing Technology 167.2005:354-362.
    [63]M. Pietrayk. Through-process modeling of microstructure evolution in hot forming of steels[J]. Journal of Materials Processing Technology 125-129(2002)53-62.
    [64]王祖唐.金属塑性成形理论[M].北京:机械工业出版社,1989.
    [65]王祖唐,关延栋,肖景容.金属塑性成形原理[M].机械工业出版社,1989.
    [66]Hill R.A theory of the yielding and plastic flow of anisotropic materials[J]. In:Proceedings of the Royal Society of London, Series A,1948,193:281-297.
    [67]Hill R.Theoretical plasticity of textured aggregates[J].Mathematical Proceedings Camb Philosophical Society,1979,85:179.
    [68]F.Barlat,J.Lian.Plasticity behavior and stretch ability of sheet metals[J], Int.J. Plasticity,1989, 51:51-66.
    [69]柳玉起.板材成形塑性流动规律及起皱破裂回弹的数值模拟,吉林工业大学博士学位论文[D],1995.
    [70]王祖唐,关延栋,肖景容.金属塑性成形原理[M].机械工业出版社,1989.
    [71]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社,1990
    [72]Chu E,Shah K N,Pourboghrat F,et al. The development application of sheet metal forming technology at Alcoa[J].SAE Trans of Materials&Manufacturing,1993,No.930523:743-755
    [73]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982
    [74]谭志耀.超高强度硼钢板热冲压成形基础研究:[硕士学位论文].上海:同济大学机械工程学院,2006.
    [75]Europaische Norm EN485-2.
    [76]R. D. Doherty,D. A. Hughes, E J. Humphreys, et al. Current issues in recystallization:a review[J],Mater. SCI. and EngA,238(1997)217-274.
    [77]Chung, S. Y., Swift, H. W:,1952b. Cup-drawing formability at blank. Part I: Experimental investigation. In:Proceedings of the Institution of Mechanical Engineers, v01. 165, lap.199-211.
    [78]Takuda,H., Mori,K.2002.finite dement simulation of warm deep drawing of aluminum alloy sheet when accounting for heat conduction.J.mater.Process.Techn.120,414-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700