车门防撞梁热冲压试验研究与材料性能梯度优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国汽车保有量的增加以及道路交通的迅猛发展,汽车在各种交通状况下发生的碰撞事故也呈上升趋势。其中侧面碰撞是发生频率最高和造成人员伤亡最多的交通事故形态之一。汽车侧面是车门,强度较为薄弱。在碰撞过程中,车门内板的侵入速度和侵入距离是造成乘员伤害的主要原因,如何减小车门内板的侵入速度和侵入距离是提高汽车侧面碰撞安全性的重要途径。车门防撞梁作为车门的加强件来抵御侧面碰撞,它能够大大减轻侧门的变形程度,从而能减少汽车撞击对车内乘员的伤害。因此对车门内部的车门防撞梁进行优化设计,提高车门刚度,进而提高汽车侧面碰撞安全性,对提高乘员的安全防护和改善道路交通安全有着非常重要的意义。
     为了提高车门防撞梁的抗撞能力,改善其吸能性能,进而提升汽车侧面安全,本文提出利用超高强钢定制热成形技术制造强度不均一分布的单一厚度车门防撞梁。为了使定制热成形车门防撞梁的材料梯度分布趋于合理,利用LS-OPT及LS-DYNA对其进行了基于仿真的优化设计。基于响应面数值优化方法,采用部件碰撞仿真分析,对定制热成形车门防撞梁的材料性能梯度分布进行优化设计。
     首先,本文在热冲压成形工艺分析的基础上,以热冲压后强度级别分别为1.5GPa、1.7GPa、1.9GPa、2.2GPa的热成形马氏体钢板为原料,设计制造热冲压模具,进行了小批量热冲压零件制备。通过调节各工艺参数优化热冲压工艺,成功试制出满足性能要求的热冲压车门防撞梁。采用金相显微镜、显微硬度仪和万能拉伸试验机等分析测试手段对成形件的组织和力学性能进行了分析。然后,本文参照GB15743和美国FMVSS214等车门强度检测试验标准对制得的热成形防撞梁进行了静压强度检测。基于上述实验,利用Hypermesh和LS-DYNA进行有限元建模和边界条件设置,对静压强度检测过程进行有限元模拟分析,通过将仿真分析结果与实验结果进行对比分析,验证了有限元模型的正确性和可靠性。最后,将防撞粱仿真分析结果作为优化设计的基础,采用部件碰撞仿真分析,以此进行单一厚度车门防撞粱材料性能梯度优化设计。根据零件的碰撞安全要求确定优化设计模型的目标、设计变量和约束条件等;采用拉丁超立方抽样在变量设计空间里选取样本点试验;根据结果基于响应面法建立车门防撞梁的二次多项式响应面模型;通过遗传优化算法得到了车门防撞梁材料性能的最优化分布。结果表明,优化后的变强度车门防撞梁在保证抗撞性能的前提下,改善了车门防撞梁的吸能效果,能在事故发生时对乘员提供更有效的保护。
     本文对汽车车门防撞梁进行材料性能梯度优化设计,在一定范围内得到一种材料最优分布的防撞梁,提高了汽车车门乃至整车侧面的耐碰撞性能。本文的研究方法具有通用性,可广泛应用于各种车型的车门防撞梁。
With the increasing number of automobile, the trend of impact accidents caused by automobile in all kinds of traffic status is raising. Side-impact collisions are the second leading cause of death and injury in the traffic accidents after frontal crashes. Side impact beam are developed to reduce the velocity and depth of door intrusion into the passenger compartment in side impact crashes. Assessing the effectiveness of side impact beam is significant for reducing occupant fatalities and serious injuries.
     In order to impove its side crashworthiness, a method using the hot formed side impact beam was proposed. The method produces the side impact beam with uniform thickness and varying yield strength by different cooling rate at hot forming. To make the distribution of the yield strength in the hot formed side impact beam reasonable, an optimization design was performed by the finite element analysis.
     Ultra high strength steel was successfully produced by using hot stamping process. The microstructure of the samples was analyzed by microscope, and the tension strength and the hardness distribution of the samples were tested. The static character of side impact beam is analyzed by LS-DYNA through the interface of Hypermesh and LS-Prepost. The finite element model was built up according to FMVSS-214 and validated by the test data.
     Based on the above results, an optimal distribution of the yield strength in the side impact beam material was obtained using the numerical optimization method of response surface and component collision simulation analysis. Before and after improvement simulation results show that the displacement, crashworthiness force and the effect of energy absorption are increase. The obtained results indicate that the crashworthiness of the front door and the whole car’s side can be improved by optimizing the side impact beam and finding the best distribution of material strength in certain range.
引文
[1]钟志华等.汽车碰撞安全技术[M].北京:机械工业出版社, 2003
    [2]胡安生,冯夏勇.世界汽车工业发展变化趋势[J].中国机电工业, 2004, 9(2): 33-35
    [3]公安部交通管理局.中华人民共和国道路交通事故统计年报(2003-2007)[N]
    [4]葛树文.轿车侧面碰撞安全性能计算机仿真及试验研究[D].长春:吉林大学, 2007
    [5]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报, 2008, 44(6): 27-35
    [6]李淑慧,林忠钦,倪军等.拼焊板在车身覆盖件冲压成形中的研究进展[J].机械工程学报, 2002, 38(2): 1-7
    [7] Hoffmann H, So H, Steinbeiss H. Design of hot stamping tools with cooling system[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 269-272
    [8] Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels[J]. Journal of Materials Processing Technology, 2006, 177(1): 452-455
    [9] Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology, 2006, 177(1): 396-400
    [10] Geiger M, Merklein M, Hoff C. Basic investigations on the hot stamping steel 22MnB5[J]. Advanced Material Research, 2005(6-8): 795-802
    [11] Mori K, Saito S, Maki S. Warm and hot punching of ultra high strength steel sheet[J]. CRIP Annals-Manufacturing Technology, 2008, 57(1): 321-324
    [12] Barcellona A, Palmeri D. Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel[J]. Metallurgical and Material Transactions A, 2009, 40(5): 1160-1174
    [13]林建平,王立影,田浩彬等.超高强度钢热流变行为[J].塑性工程学报, 2009, 16(2): 180-183
    [14] Hardell J, Kassfeldt E, Prakash B. Friction and wear behavior of high strength boron steel at elevated temperatures of up to 800℃[J]. Wear, 2008, 264(9-10): 788-799
    [15] Jang JH, Lee JH, Joo BD, et al. Flow characteristics of alumimum coated boron steel in hot press forming[J]. Transactions of Nonferrous Metals Socity of China, 2009, 19(4): 913-916
    [16] Merklein M, Lechler J, Geiger M. Characterization of the flow properties of the quenchenable ultra high strength steel 22MnB5[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1): 229-232
    [17]王立影,林建平,朱巧红等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计, 2008, 25(4): 15-17
    [18]邢忠文,包军,杨玉英等.可淬火硼钢板热冲压成形实验研究[J].材料科学与工艺, 2008, 16(2): 172-175
    [19]谢水生,王祖唐.金属塑形成形工步的有限元数值模拟[M].北京:冶金工业出版社, 1997
    [20]陈欣如,胡忠民.塑性有限元及其在金属成形领域中的应用[M].重庆:重庆大学出版社, 1989
    [21] Belytschko T, Welch RE, Bruce RW. Finite element analysis of automotive structures under crash loadings[C]. Proceedings of IIT Research Institute. Chicago: America, 1975, 37-46.
    [22] Benson DJ, Hallquist JO. The application of DYNA3D in large scale crashworthiness calculations[C]. Proceedings of ASME International Computers in Engineering Conference. Chicago, 1986, 8-12
    [23] Karim H, Kazuhiro S, Ashraf N. Design optimization of a vehiele B-Pillar subjected to roof crush using mixed reactive taboo search[J]. DETC2003/DAC-48750, 2003: 449-457
    [24] Brown JK, Jing Y, Wang S, et al. Patterns of severe injury in Pediatric car crash victims: crash injury research engineering network database[J]. Journal of Pediatric Surgery, 2006, 41(2): 362-367
    [25] Erzen S, Ren Z, Anzel I. Analysis of FRP Side-Door Impact Beam[J]. Total Vehicle Technology, 2002, 10(1): 1-12
    [26] Magee CL, Thornton PH. Design considerations in energy absorption by structural collapse[J]. Transaction SAE, 1978, 87(2): 2401-2055
    [27] Mahmood HF, Paluszny A. Design of Thin Walled Columns for Crash Energy Management-Their Strength and Mode of Collapse[J]. SAE Paper 811302.1981
    [28]游国忠,陈晓东,程勇等.汽车侧面碰撞有限元仿真建模[J].江苏大学学报(自然科学版), 2005, 26(6): 454-457
    [29]张君媛,王海,马迅.轿车侧面抗撞性简化参数化模型的建立与应用[J].吉林大学学报(工学版), 2009, 39(2): 300-304
    [30]张君媛,丁如芳,邱少波等.汽车侧面碰撞中内板参数与乘员伤害值的相关性分析[J].汽车工程, 2007, 29(6): 462-464
    [31]侯飞.轿车侧面碰撞新车评价程序及提高轿车侧面碰撞性能的措施[J].汽车工程, 2000, 22 (6): 413-417
    [32]陈晓东,尹同耀,朱西产.汽车侧面碰撞计算机仿真方法[J].汽车工程, 2004, 6(l): 65-69
    [33]赤琪,曹淑安,吴胜军等.轿车侧门防撞杆对车门侧碰性能影响的数值模拟研究[J].轻型汽车技术, 2008, 2(1): 4-5
    [34] Fang H. A comparative study of metamodeling methods for multi-objective crashworthiness optimization[J]. Computers & Structures, 2005, 83(25-26): 2121-2136
    [35] Sheriffa N, Gupta NK. Optimization of thin conical frusta for impact energy absorption[J]. Thin-Walled Structures, 2008, 46(2): 653-666
    [36] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems[J]. Structural and Multidisciplinary Optimization, 2002, 24(3): 185-194
    [37] Chiandussi G, Avalle M. Maximization of the crushing performance of a tubular device by shape optimization[J]. Computers & Structures, 2002, 80(4): 2425-2432
    [38] Forsberg J, Nilsson L. On polynomial response surface and Kriging for use in structural optimization of crashworthiness[J]. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243
    [39] Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering, 2006, 32(5): 759-777
    [40]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件抗撞性优化设计[J].应用力学学报, 2003, 20(3): 61-66
    [41]张立新,隋允康,杜家政.基于响应面方法的结构耐撞性优化[J].北京工业大学学报, 2007, 33(2): 129-133
    [42]钟志华,张维刚,廖兴涛.响应面法在薄壁构件耐撞性优化设计中的应用研究[J].工程设计学报, 2006, 13(5): 299-302
    [43]张勇,李光耀,钟志华.基于移动最小二乘法响应面方法的整车轻量化设计优化[J].机械工程学报, 2008, 44(11): 192-196
    [44]侯淑鹃.薄壁构件的抗撞性优化设计[D].长沙:湖南大学, 2007
    [45]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J].汽车与配件, 2009, 45(5): 28-30
    [46]徐伟力,管曙荣,艾健等.钢板热冲压新技术关键装备和核心技术[J],世界钢铁, 2009, 12(2): 30-33
    [47]谷诤巍,单忠德,徐虹.汽车高强度钢板冲压件热成型技术研究[J].模具工业, 2009, 35(4): 27-29
    [48]朱超.超高强度钢板的热冲压成形模具设计及优化[D].长春:吉林大学, 2010
    [49] Koistinen DP, Marburger RE. A general equation prescribing the extent of the austensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 50-60
    [50]叶平,沈剑平,王光耀等.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料, 2006, 30(3): 4-7
    [51]林建平,王立影,田浩彬等.超高强度钢板热冲压成形研究与进展[J].热加工工艺, 2008, 37(21): 140-144
    [52]中国汽车工程学会.汽车安全技术[M].北京:人民交通出版社, 2004
    [53] Bathe KJ. Finite Element Procedures[M]. New Jersey: Prentice Hall, 1996
    [54]张雄.轻质薄壁结构耐撞性分析与设计优化[D].大连:大连理工大学, 2008
    [55] Kim HS. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures, 2002, 40(4): 311-327
    [56]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 2002
    [57]王福军.冲击接触问题有限元法并行计算及其工程应用[D].北京:清华大学, 2000
    [58]颜燕,张龙,朱西产.汽车侧面碰撞法规的研究与分析[J].上海汽车, 2005, 12(2): 36-39
    [59]中国汽车技术研究中心编.汽车侧面碰撞的乘员保护(GB20071-2006).天津:中国汽车技术研究中心, 2006
    [60]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报, 2007, 14(5): 359-363
    [61] Myers RH, Montgomery DC. Response Surface Methodology[M]. NewYork: Wiley and Sons, 1995
    [62] Mckay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245
    [63] Keramat M, Kielbasa R. Modified latin hypercube sampling Monte Carlo (MLHSC) estimation for average quality index[J]. International Journal of Analog Integrated Circuits Signal Process, 1999, 19(1): 87-98
    [64] Goldberg DE. Genetic Algorithm in Search, Optimization and Machine Learning[M]. New York: Addison-Wesley, 1989
    [65]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700