汽车防撞梁热冲压成形实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热冲压成形技术是最近几年发展起来的新型板料成形技术,主要应用于汽车车身高强度结构件的生产。基本原理是通过模具对加热到奥氏体化温度的板料,进行冲压成形及冷却淬火,使预加工零件的微观组织由原来的珠光体和铁素体混合物转化为马氏体,以满足对零件高强度和高硬度的要求,使成形后零件的形状和尺寸精度得到大幅提高,解决高强度钢零件在成形过程中容易出现的回弹、起皱、开裂等问题。
     本文开展了汽车防撞梁的热冲压成形工艺数值模拟、模具设计以及成形实验的相关研究,为热冲压成形的实际生产提供指导。主要的研究工作有以下几点:
     1.防撞梁热冲压成形数值模拟。使用Pam-Stamp_2G2011软件对防撞梁热冲压成形工艺进行了数值模拟,基于热冲压成形数值模拟的理论基础,建立了有限元模型。主要分析了压边力大小、模具间隙、摩擦系数等因素对热冲压成形过程及微观组织的影响。根据模拟结果,优化出了合理的成形工艺参数。结果表明:压边力在很大程度上影响成形效果,压边力越大使板料减薄越明显;摩擦系数影响板料流动,其值越大,板料的减薄情况越明显;模具间隙越大板料的减薄越小,但是间隙过大会影响成形精度;淬火结束后零件的组织均为马氏体,且分布较均匀。
     2.防撞梁热冲压成形模具设计。根据热冲压成形工艺特点,提出了冷却系统设计原则,设计了热冲压成形模具结构和循环冷却水路,探讨了密封方式。研究表明:冷却系统必须确保有效性、均匀性、密封性,避免冷却盲区;模具结构包括:凸、凹模、模块安装板、压边圈、导板等,循环水路以并联方式连接,但模块密封方式有待改进。
     3.防撞梁热冲压成形试验研究。加工制作了热冲压成形试验模具,分别进行了直接热成形和间接热成形的试验,介绍了热冲压成形模具材料;对两种成形方法零件的宏观形貌、微观组织、显微硬度和抗拉强度进行了比较、分析。结果如下:
     1)宏观形貌。通过热成形得到的零件轮廓尺寸精确、无回弹,但是由于板料高温氧化,使得表面质量不佳,所以控制氧化皮的产生成为亟待解决的问题。当压边力增大时,减薄现象在零件圆角处更加明显。
     2)微观组织。经过直接热成形和间接热成形得到的零件,其微观组织均为马氏体,且沿着防撞梁的几何轮廓分布十分均匀。
     3)显微硬度。在防撞梁零件上五个不同位置进行取样,进行显微硬度测试,其硬度分布均匀,都在450HV以上,直接热成形得到的零件平均硬度值是491HV,间接热成形得到的零件平均硬度值是485HV。
     4)抗拉强度。对零件进行拉伸试验,两种工艺得到的零件强度大幅提升,都达到了1500MPa以上,延伸率下降,抵抗变形的能力增强,完全满足实际生产所需要的抗冲击性能。
A new technology of metal sheet forming called hot stamping technology is developed inrecent years, which mainly is used to produce high strength pieces of automobile body. Thebasic principle is that the blank which is heated to austenitizing temperature is stamped andquenched to make the metallurgical organization of processing components change from theoriginal mixture of ferrite and pearlite into martensite and meet the requirements of highstrength and high hardness. Improve the precision of shapes and sizes greatly, solve the issuesthat the high strength steel parts springback, wrinkling and crack in the forming process.
     In this paper take the automobile anti-collision beam parts for example, carry through thenumerical simulation of hot stamping forming technology, design mould, analyze the experi-mental results and provide guidance for hot stamping actual production, the main research workhas a few points:
     1. The numerical simulation for hot stamping of anti-collision beam. Through the use ofPam-Stamp_2G2011software the numerical simulation of process of hot stamping is carriedout. Set up the finite element model based on the theory of the numerical simulation of hotstamping. The paper mainly analyzes the influence of BHF, mould clearance, friction coefficienton the hot forming process and the microstructure after forming. Optimize reasonable parame-ters of forming process. The results indicate that: the BHF influence the forming effect in a largeextent. BHF is larger, sheet is more thinner obviously; the friction coefficient affects the flow ofthe sheet and it is greater, more obvious metal sheet thins; the mould clearance is greater, thethickness is bigger, but it affects the shaping accuracy if it’s too great; the microstructure aremartensite after quenching and are uniformly distributed.
     2. Design hot stamping mould of anti-collision beam. According to the hot stamping processcharacteristics, puts forward the cooling system design principle, design the hot stamping mouldstructure and cycling cooling water, discuss the way to seal. Research shows that the coolingsystem must ensure effectiveness, uniformity, sealing and avoid cooling blind area; the mouldstructure includes: convex, concave die, module installed board, blank holders, guide plate, etc.and water circulation is connected in parallel. But module seal way needs to be improved.
     3. Hot-stamping experiment of anti-collision beam is operated. Produce the actualhot-stamping mould and carry through experiments of direct hot forming and indirect hot form-ing respectively. Introduce the material of hot-forming mould in detail. Compare and analyze themacro-morphology, microstructure, micro-hardness, tensile strength of parts which are producedthrough two kinds of forming methods. The results show:
     1) Macro-morphology. The parts got through hot forming have no springback and the preciseof contour profile is accurate. But the sheet in high temperature is seriously oxidized, whichmake the surface quality not good. It is to be a problem that the appearance of oxide skin is con-trolled in hot-forming process. When the BHF increases, thinning phenomenon in the round thepart is more evident.
     2) Microstructure. The microstructure of parts got through direct and indirect hot forming ismartensite. And it is homogeneous along the sample geometry.
     3) Micro-hardness. Get the samples from the five different positions of beam. Go on the mi-cro-hardness test. Its hardness distribution is homogeneous, and more than450HV. The averagehardness value of parts obtained from direct hot forming is491HV and the one from indirecthot forming is485HV.
     4) Tensile strength. Carry out tensile test of parts. The strength of parts from the two pro-cesses promotes dramatically and reaches1500MPa above. The elongation drops and the abilityof deformation resistance strengthen. It fully meets the requirement of shock resistance neededby practical production.
引文
[1] CORNETTE D, GALTIER A. Influence of the forming processing on crashing and fatigueperformance of high strength steels for automobile components[R]. SAE Paper2002–01-0642.
    [2]杜继涛,甘屹,齐从谦等. TRB及其轧制应用关键技术[J].汽车技术,2007,7:45-48.
    [3] Manabu TAKAHASHI. Development of High Strength Steels for Automobiles[R]. NIPPONSTEEL TECHNICAL REPORT No.88, July2003.
    [4] Senuma T. Physical Metallurgy of Modern High Strength Steel Sheets[J]. ISIJ International,2001,41(6):520-532.
    [5] Eveertt C Oren. Automotive Materials and Technologies for the21st Century[C]//39. Me-chanical Working and Steel Processing Conference, ISS,1998:639-643.
    [6] KURIYAMA YUKIHISA, TAKAHASHI MANABU, OHASHI HIROSHI. Trend of CarWeight Reduction Using High-strength Steel[J]. Journal of the Society of Automotive Engi-neers of Japan,2001,55(4):51-57.
    [7]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008-6,44(6):27-35.
    [8]蒋浩民,陈新平,石磊等.先进高强度钢板的冲压成形特性及其应用[J].塑性工程学报,2009,16(4):183-186.
    [9] K.Mori, S.Maki, Y.Tanaka. Warm and Hot Stamping of Ultra High Tensile Strength SteelSheets Using Resistance Heating[J]. CIRP Annals-Manufacturing Technology,2005,54(1):209-212.
    [10]王洪俊,范海雁.轿车车身零件制造中的热成形技术[J].冲模技术,2005,4:32-34.
    [11] Heinz Steinbeiss, Hyunwoo So, Thomas Michelitsch, Hartmut Hoffmann. Method for opti-mizing the cooling design of hot stamping tools[J]. Production Process,2007,1:149–155.
    [12]朱超.超高强度钢板的热冲压成形模具设计及优化[D].吉林大学硕士学位论文,2010.
    [13]朱晓东,马朝晖,王利.汽车用先进高强钢的现状及其在宝钢的发展[J].2001,55(4):51-57.
    [14]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].2006,41(9):1-8.
    [15] M. Kleiner, M. Geiger, A. Klaus. Manufacturing of light weight components by metal form-ing[J]. CIRP Annals-Manufacturing Technology,2003,52(2):521–542.
    [16] P. Groche, R. Huber, J. Dorr, and D. Schmoeckel. Hydro mechanical deep drawing of al-minium alloys at elevated temperatures[J]. CIRP Annals-Manufacturing Technology,2002,51(1),215-218.
    [17] H. Hoffmann, H. So, H. Steinbeiss. Design of hot stamping tools with cooling system[J].CIRP Annals-Manufacturing Technology,2007,56(1):269-272.
    [18] M. Merklein, J. Lecher. Investigation of the thermo-mechanical properties of hot stampingsteels[J]. Journal of Materials Processing Technology,2006,177(1):452-455.
    [19] A. Turetta, S. Bruschi, A. Ghiotti. Investigation of22MnB5formability in hot stamping op-erations[J]. Journal of Materials Processing Technology,2006,177:396-400.
    [20] Akerstrom P, Wikman B, Oldenburg M. Material parameter estimation for boron steel fromsimultancous cooling and compression experiments[J]. Modeling and Simulation in Materi-als Science and Engineering,2005,13:1291-1308.
    [21] Paul kerstr m, Mats Oldenburg. Numerical simulation of a thermo-mechanical sheet met-al forming experiment[C]. Numisheet2008,2008:569-574.
    [22] High Strength Steel (HSS) Stamping Design Manual, Auto/Steel Partnership(2000).
    [23] American Iron and Steel Institute,“Advanced High-Strength Steel Repairability Studies:Phase I Final Report and Phase II Final Report,” www.autosteel.org.
    [24] RAEX B–Boron steels, Rautaruukki steel company.
    [25] H. Hein. Numerical simulation of the hot stamping of automotive components with USI-BOR1500P[J]. Arcelor Flat Steel Europe, Euro PAM,2005.
    [26] J. C. Kopchick. Automotive application of ultrahigh strength sheet steel[J]. ASM,1984:523-530.
    [27] E. Lamm. Advanced steel solutions for automotive light weighting. USINOR auto, Windsorworkshop,5June2001.
    [28] Porsche engineering: Great designs in steel, advanced high strength technology in the Por-sche Cayenne.
    [29] M. Jonsson. Products in hot stamped boron steel, GESTAMP, www.autosteel.org
    [30] J. Wilsius, P. Hein, R. Kefferstein. Status and future trends of hot stamping of USIBOR1500P. Proc.1st, Erlangener Workshop Warm blechum for mung,2006:82-101.
    [31] M. Kahl. Some like it hot. Automotive Manufacturing Solutions,2004:49-52.
    [32] L.G.Aranda, P. Ravier, and Y. Chastel. Hot Stamping of Quenchable Steels: Material Dataand process Simulations(C). IDDRG2003Conf., Proc,2003:166-164.
    [33] P. Akerstrom, M. Oldenburg. Austenite decomposition during press hardening of a boronsteel-Computer simulation test[J]. Journal of Materials Processing Technology,2006,174:399-406.
    [34] D.Lorenz and K. Roll. Simulation of Hot Stamping and Quenching of Boron alloyedSteel[C].7th Int. ESAFORM Conf. on Mat. Forming, Trondheim, Norway,2004.
    [35] A. Erman, Tekkaya, Hossein Karbasian, Werner Homberg, Matthias Kleiner. Ther-mo-mechanical coupled simulation of hot stamping components for process design[J].Computer Aided Engineering,2007,1:85-89.
    [36] P. Akerstrom, G. Bergman, M. Oldenburg. Numerical implementation of a constitutivemodel for simulation of hot stamping[J]. Modelling and Simulation in Materials Science andEngineering,2007,15(2):105-119.
    [37] J.B. Leblond, G. Mottet, J.C. Devaux. A theoretical and numerical approach to the plasticbehaviour of steels during phase transformations-i. derivation of general relations. J. Mech.Phys. Solids,1986,34(4):395–409.
    [38] J.B. Leblond, G. Mottet, J.C. Devaux. A theoretical and numerical approach to the plasticbehaviour of steels during phase transformations-ii. study of classical plasticity for ide-al-plastic phases. J. Mech. Phys. Solids,1986,34(4):411–432,.
    [39]徐勇.超高强度可淬火钢板热成形工艺数值模拟研究[D].吉林大学硕士学位论文,2010.
    [40]朱成实,于传昊,闫为秋,路杰.塑料注射模具冷却系统设计[J].沈阳化工学院学报,1999-3,13(1):46-50.
    [41]谷诤巍,朱超,徐虹,沈永波.超高强度钢板热冲压成形模具板料定位装置[P].中国,2009:200910218128.4,2010-07-14.
    [42]徐虹,沈永波,孟佳,李欣,谷诤巍.热冲压成形车门防撞梁组织和性能研究[J].锻压技术,2011,36(6):25-28.
    [43]李辉平,赵国群,张雷,贺连芳.超高强度钢板热冲压及模内淬火工艺的发展现状[J].山东大学学报(工学版),2010-6,40(3):69-74.
    [44] Makel Naderi. Hot stamping of utra high strength steels[D]. AmirKabir University ofTechnology,2007.
    [45] J. E. Morral, J.B. Cameron. Boron hardenability mechanisms[J]. Metallurgical Society ofthe A.I.M.E.,1980.
    [46]易红亮,董杰吉.热成型钢及热成型技术[J].山东冶金,2009,31(5):17-19.
    [47]王立影,王芝斌.热冲压成形零件质量控制因素分析[J].锻压技术,2010,35(2):117-119.
    [48] Alberto Turetta. Investigation of thermal, mechanical and microstructural properties ofquenchenable high strength steels in hot stamping operations[D]. Universitàdegli Studi diPadova,2007.
    [49] SOH, HOFFMANNH. Design of hot stamping tools and blanking strategies of ultrahighstrength steels[C]. Springer Proceedings in Physics: EKC2008Proceedings of the EU-KoreaConference on Science and Technology. Heidelberg: Springer,(2008).
    [50]谷诤巍,姜超,单忠德,徐虹.超高强度钢板冲压件热成形工艺[J].汽车工艺与材料,2009,4:15-17.
    [51]林建平,王立影,田浩彬,孙国华,王芝斌.超高强度钢板热冲压成形研究与进展[J].金属铸锻焊技术,2008,37(21):140-144.
    [52] KHAN S H, SAEED AHMED M, ALIF, et al. Investigation of high strength steel bend-ing[J]. Engineering Failure Analysis,2009, Vol.16(1):128-135.
    [53]徐虹,沈永波,谷诤巍,孟佳,于思彬,李欣.汽车超高强钢防撞梁热成形试验[J].吉林大学学报(工学版),2011,41(1):111-114.
    [54] Malek Naderi, Vitoon Uthaisangsuk, Ulrich Prahl, Wolfgang Bleck. A numerical and ex-perimental investigation into hot stamping of boron alloyed heat treated steels[J]. MetalForming79(2008):77-84.
    [55] Alexander Bardelcik, Christopher P. Salisbury, Sooky Winkler, Mary A. Wells, Michael J.Worswick. Effect of cooling rate on the high strain rate properties of boron steel[J]. Interna-tional Journal of Impact Engineering,2010,37:694-702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700