TPO与TSHR基因序列多态性与遗传性甲状腺疾病的连锁与关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传性甲状腺疾病是一种由多基因、多因素相互作用引起的复杂疾病,被认为是研究人类肿瘤发生和疾病异质性的有用模型。全基因组扫描策略先后定位了多个易感位点,但在不同的样本中,这些位点的显著性也不同。为澄清遗传因素对甲状腺疾病的影响,本文利用中国家系样本及群体样本,一方面研究多结节性甲状腺肿及乳头状甲状腺癌的遗传易感性; 另一方面筛选甲状腺功能相关基因中能解释甲状腺疾病表型变异的遗传多态性位点及其单倍型。
    利用基于荧光标记微卫星引物的全基因组扫描策略,我们在3个甲状腺疾病家系中扫描了九条染色体共119个位点。连锁分析结果表明:其中5个区域可能与遗传性甲状腺疾病相连锁(P<0.05,最大NPL值为4.6)。这些区域分别位于8p23,10p,14q32.33,15q26.2-26.3和22q12等染色体区段上,均不同于此前报道的在高加索人群中定位的易感区域。这表明在不同的群体中,疾病的易感位点也可能不同。而在同一家系中扫描得出多个易感区域,也说明甲状腺疾病由多个基因相互作用所导致。
    另外,在甲状腺过氧化物酶基因和促甲状腺激素受体基因编码序列及其旁侧序列中,我们检测到十二个单核苷酸多态位点,并在由114名患者及142名不相关的正常对照构成的群体中进行基因分型。基于连锁不平衡的关联分析表明,由TPO基因中多态位点G859T和G1207T上突变型等位基因组合成的单倍型(22)与甲状腺疾病在各种疾病模型下都有强而稳定的显著关联,且不受群体分层的影响。此外,通过大量的模拟实验我们发现:关联分析显著性水平的分布的众数主要受到对照样本量大小的影响;而分布的方差则主要取决于患病者样本量大小。
    我们的研究结果表明:中国人群中存在多个多结节性甲状腺肿及乳头状甲状腺癌的易感位点;而位于TPO基因编码序列中的某些单核苷酸多态性位点所组成的单倍型则与甲状腺肿瘤的形成显著相关。对于这些位点及单倍型在功能和临床方面的显著相关性还需要做进一步的研究。这一领域的研究将为在中国人群中实现甲状腺疾病致病基因的精细定位与克隆奠定基础。
Inherited thyroid diseases, which result from an interaction between predisposing genes and environmental triggers, provide an informative model for dissecting the molecular genetics of multi-stage human tumorigenesis and heterogeneity. Genome scans have identified many genomic regions that may harbor putative susceptibility genes for thyroid diseases. Evidence for most regions, however, varies in different datasets. The aim of this study was 1) to dissect the genetic predisposition to these diseases in Chinese populations and families with multiple members affected with MNG, PTC, FTA and GD and 2) to identify and characterize genetic polymorphisms, which could explain phenotypic variation of the thyroid diseases.
    Adopting a set of 119 microsatellite markers, we performed a genome-wide GeneScan in three Chinese pedigrees. After conducting linkage analysis, we identified that two candidate regions, which were on chromosome 10 and 15 respectively, show significant linkage to MNG with P values of 0.015; while another three candidate regions on chromosome 8, 14 and 22 respectively, show significant linkage to MNG/PTC with P values of 0.03, 0.007 and 0.03, respectively. These findings indicated that the Chinese families harbored susceptibility loci for MNG and PTC, which were distinct from those previously found in the Caucasian population. Our result suggested that different susceptibility loci existed between different ethnic groups. Furthermore, even within a single family from a genetically homogenous population, more than one gene was involved in the genetic susceptibility to thyroid diseases, supporting the notion that thyroid diseases were caused by multiple genes of varying influences.
    Meanwhile, a systematic polymorphism screening was performed in the coding regions of thyroid peroxidase (TPO) and thyroid stimulating hormone receptor (TSHR) genes. Association between the detected polymorphisms and thyroid diseases was analyzed in 256 Chinese including 142 unrelated normal individuals and 114 patients affected with thyroid diseases using case-control approach. Ten single nucleotide polymorphisms (SNPs) in coding sequences and two SNPs around the exons were detected. Haplotypes based on all or parts of the SNPs were predicted and were evaluated for their association with the assumed disease allele. The analysis showed diverse degree of association of haplotypes based on various combinations of these polymorphic sites. Among them, the haplotype constructed from the mutant sites G859T and G1207T within TPO gene displayed highly and consistently significant
    
    association over various models in regarding to genetic control of the disease. To investigate the effect of case and control size on statistical power of the haplotype-based association study, distribution of the significance level was explored. The mode of the distribution was found to be mainly related with the control sample size while the variance of the distribution largely determined by the case sample size.
    Our results suggested that some chromosome regions might be susceptibility to MNG/PTC diseases, and that variants of TPO gene and the specific haplotype may act as low penetrance alleles in the predisposition to thyroid tumors. These findings laid a foundation for further fine mapping and finally positional cloning the associated genes for thyroid diseases. Characterizing the functional and clinical significance of the haplotypes requires further study.
引文
1. Abecasis GR, Noguchi E, Heinzmann A, et al. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet. 68: 191-197.
    2. Ardlie KG, Lunetta KL and Seielstad M. (2002). Testing for population subdivision and association in four case-control studies. Am J Hum Genet. 71: 304-311.
    3. Baas F, Bikker H, van Ommen GJB, et al. (1984). Unusual scarcity of restriction site polymorphism in the human thyroglobulin gene: a linkage study suggesting autosomal dominance of a defective thyroglobulin allele. Hum Genet. 67: 301-305.
    4. Barbesino G, Tomer Y, Concepcion ES, et al. (1998a). Linkage analysis of candidate genes in autoimmune thyroid disease. I. Selected immunoregulatory genes. International Consortium for the Genetics of Autoimmune Thyroid Disease. J Clin Endocr Metab. 83(5): 1580-1584.
    5. Barbesino G, Tomer Y, Concepcion ES, et al. (1998b). Linkage analysis of candidate genes in autoimmune thyroid disease. II. Selected gender-related genes and the X chromosome. J Clin Endocr Metab. 83: 3290-3295.
    6. Beimfohr C, Klugbauer S, Demidchik EP, et al. (1999). NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 80(6): 842-847.
    7. Bevan S, Pal T, Greenberg CR, et al. (2001). A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial nonmedullary thyroid cancer: confirmation of linkage to TCO1. J Clin Endocr Metab. 86: 3701-3704.
    8. Bignell GR, Canzian F, Shayeghi M, et al. (1997). Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet. 61: 1123-1130.
    9. Bikker H, Vulsma T, Baas F, et al. (1995). Identification of five novel inactivating mutations in the human thyroid peroxidase gene by denaturing gradient gel electrophoresis. Hum Mutat. 6: 9-16.
    10. Boehnke M and Langefeld GD. (1998). Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am J Hum Genet. 62: 950-961.
    11. Botstein D, White RL, Skilnich M, et al. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32: 314-331.
    12. Canzian F, Amati P, Harach HR, et al. (1998). A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet. 63: 1743-1748.
    13. Capon F, Tacconelli A, Giardina E, et al. (2000). Mapping a dominant form of multinodular goiter to chromosome Xp22. Am J Hum Genet. 67(4): 1004-1007.
    14. Cardon LR and Bell JI. (2001). Association study designs for complex disease. Nat Rev Genet. 2: 91-99.
    15. Cargill M, Altshuler D, Ireland J, et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 22: 231-238.
    16. Chakraborty R and Weiss KM. (1988). Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci USA. 85: 9119-9123.
    17. Collins A, Lonjou C and Morton NE. (1999). Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci USA. 96: 15173-15177.
    18. Collins FS, Guyer MS and Charkravarti A. (1997). Variations on a theme: cataloging human DNA sequence variation. Science. 278: 1580-1581.
    
    
    19. Couch RM, Hughes IA, DeSa DJ, et al. (1986). An autosomal dominant form of adolescent multinodular goiter. Am J Hum Genet. 39: 811-816.
    20. Degroot LJ and Niepomniszcze H. (1977). Biosynthesis of thyroid hormone: basic and clinical aspects. Metabolism. 26(6): 665-718.
    21. Devlin B and Risch N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics. 29: 311-322.
    22. Dunning AM, Durocher F, Healey CS, et al. (2000). The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Hum Genet. 67: 1544-1554.
    23. Eaves IA, Merriman TR, Barber RA, et al. (2000). The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat Genet. 25(3): 320-323.
    24. Elston RC. (1998). Linkage and association. Genet Epidemiol. 15: 565-576.
    25. Gemma R, Suda T and Nakamura H. (1999). Immunoregulatory genes in autoimmune thyroid disease. Nippon Rinsho. 57(8): 1737-1742. [Abstract]
    26. Goddard KA, Hopkins PJ, Hall JM, et al. (2000). Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet. 66: 216-234.
    27. Halushka MK, Fan JB, Bentley K, et al. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet. 22: 239-247.
    28. Heward JM, Allahabadia, Daykin J, et al. (1998). Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves disease: replication using a population case control and family-based study. J Clin Endocrinol Metab. 83: 3394-3397.
    29. Heward JM, Nithiyananthan R, Allahabadia A, et al. (2001) No association of an interleukin 4 gene promoter polymorphism with Graves' disease in the United Kingdom. J Clin Endocrinol Metab. 86: 3861-3863.
    30. Houwen RH, Baharloo S, Blankenship K, et al. (1994). Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat Genet. 8(4): 380-386.
    31. Huttley GA, Smith MW, Carrington M, et al. (1999). A scan for linkage disequilibrium across the human genome. Genetics. 152: 1711-1722.
    32. Imrie H, Vaidya B, Perros P, et al. (2001). Evidence for a Graves' disease susceptibility locus at chromosome Xp11 in a United Kingdom population. J Clin Endocr Metab. 86: 626-630.
    33. Fagin MD. (1994). Molecular genetics of human thyroid neoplasms. Annu Rev Med. 45: 45-52.
    34. Jankovic SM, Radosavljevic VR and Marinkovic JM. (1997). Risk factors for Graves' disease. Eur J Epidemiol. 13(1): 15-18.
    35. Jorde LB. (1995). Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet. 56: 11-14.
    36. Jorde LB. (2000). Linkage disequilibrium and the search for complex disease Genes. Genome Res. 10: 1435-1444.
    37. Kerem B, Rommens JM, Buchanan JA, et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science. 245: 1073-1080.
    38. Kohrle J. (2000). The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci. 57: 1853-1863.
    39. Kruglyak L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 22: 139-144.
    
    
    40. Lander ES and Schork NJ. (1994). Genetic dissection of complex traits. Science. 265: 2037-2048.
    41. Lazzeroni LC and Lange K. (1998). A conditional inference framework for extending the transmission/disequilibrium test. Hum Hered. 48: 67-81.
    42. Lernmark A and Ott J. (1998). Sometimes it's hot; sometimes it's not. Nat Genet. 19: 213-214.
    43. Lesueur F, Corbex M, McKay JD, et al. (2002). Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. J Med Genet. 39(4): 260-265.
    44. Lesueur F, Stark M, Tocco T, et al. (1999). Genetic heterogeneity in familial nonmedullary thyroid carcinoma: exclusion of linkage to RET, MNG1, and TCO in 56 families. J Clin Endocr Metab. 84: 2157-2162.
    45. Li Y, Li C and Yin H. (2000). A large-scale epidemiological survey of Graves' disease in Daqing area. Chin Med J (Engl). 113(1): 31-34.
    46. Luo ZW. (1998). Detecting linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Heredity. 80: 198-208.
    47. Maalej A, Bougacha N, Rebai A, et al. (2001) Lack of linkage and association between autoimmune thyroid diseases and the CTLA-4 gene in a large Tunisian family. Hum Immunol. 62: 1245-1250.
    48. McKay JD, Lesueur F, Jonard L, et al. (2001). Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21.Am J Hum Genet. 69: 440-446.
    49. McKeigue RM. (1998). Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet. 63: 241-251.
    50. Meier CA. (1995). Molecular endocrinology of thyroid diseases. Schweiz Med Wochenschr. 125(49): 2367-2378. [Abstract]
    51. Morris AP, Whittaker JC and Balding DJ. (2000). Bayesian fine-scale mapping of disease loci, by hidden markov models. Am J Hum Genet. 67: 155-169.
    52. Morton NE. (1955). Sequential tests for the detection of linkage. Am J Hum Genet. 7: 277-318.
    53. Neumann S, Willgerodt H, Ackermann F, et al. (1999). Linkage of familial euthyroid goiter to the multinodular goiter-1 locus and exclusion of the candidate genes thyroglobulin, thyroperoxidase, and Na+/I- symporter. J Clin Endocr Metab. 84: 3750-3756.
    54. Nithiyananthan R, Heward JM, Allahabadia A, et al. (2002). Polymorphism of the CTLA-4 gene is associated with autoimmune hypothyroidism in the United Kingdom. Thyroid. 12(1): 3-6.
    55. Pal T, Vogl FD, Chappuis PO, et al. (2001). Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: a hospital-based study. J Clin Endocrinol Metab. 86(11): 5307-5312.
    56. Pearce SHS, Vaidya B, Imrie H, et al. (1999). Further evidence for a susceptibility locus on chromosome 20q13.11 in families with dominant transmission of Graves disease. Am J Hum Genet. 65: 1462-1465. [Letter]
    57. Pfaff CL, Parra EJ, Bonilla C, et al. (2001). Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium. Am J Hum Genet. 68: 198-207.
    58. Pritchard JK and Przeworski M. (2001). Linkage disequilibrium in humans: models and data. Am J Hum Genet. 69: 1-14.
    59. Pritchard JK and Rosenberg NA. (1999). Use of unlinked genetic markers to detect populations stratification in association studies. Am J Hum Genet. 65(1): 220-228.
    
    
    60. Rannala B and Reeve JP. (2001). High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am J Hum Genet. 69: 159-178.
    61. Rannala B. (2001). Finding genes influencing susceptibility to complex diseases in the post-genome era. Am J Pharmacogenomics. 1(3): 203-221. [Abstract]
    62. Risch N and Merikangas K. (1996). The future of genetic studies of complex human diseases. Science. 273: 1516-1517.
    63. Risch NJ. (2000). Searching for genetic determinants in the new millennium. Nature. 405: 847-856.
    64. Schlumberger MJ. (1998). Papillary and follicular thyroid carcinoma. N Engl J Med. 338: 297–306.
    65. Shibusawa N, Yamada M, Hirato J, et al. (2000). Requirement of thyrotropin-releasing hormone for the postnatal functions of pituitary thyrotrophs: ontogeny study of congenital tertiary hypothyroidism in mice. Mol Endocrinol. 14(1): 137-146.
    66. Spielman RS and Ewens WJ. (1998). A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet. 62: 450-458.
    67. Spielman RS, McGinnis RE and Ewens WJ. (1993). Transmission test for linkage disequilibrium; the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 52: 506-513.
    68. Sugg SL, Ezzat S, Zheng L, et al. (1999). Oncogene profile of papillary thyroid carcinoma. Surgery. 125(1): 46-52. [Abstract]
    69. Suzuki K, Lavaroni S, Mori A, et al. (1998). Autoregulation of thyroid-specific gene transcription by thyroglobulin. Proc Natl Acad Sci USA. 95(14): 8251-8256.
    70. Taillon-Miller P, Bauer-Sardina I, Saccone NL, et al. (2000). Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 25(3): 324-328.
    71. Takahashi T, Nozaki J, Komatsu M, et al. (2001). A new locus for a dominant form of multinodular goiter on 3q26.1-q26.3. Biochem Biophys Res Commun. 284(3): 650-654. [Abstract]
    72. Tassi V, Scarnecchia L, Di Cerbo A, et al. (1995). A thyroid hormone receptor beta gene polymorphism associated with Graves' disease. J Mol Endocrinol. 15: 267-272.
    73. Terwilliger J. (1995). A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 56: 777-787.
    74. Terwilliger JD and Weiss KM. (1998). Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol. 9: 578-594.
    75. Thomson G. (1995). Mapping disease genes: family based association studies. Am J Hum Genet. 57: 487-498.
    76. Toivonen HT, Onkamo P, Vasko K, et al. (2000). Data mining applied to linkage disequilibrium mapping. Am J Hum Genet. 67(1): 133-145.
    77. Tomer Y, Barbesino G, Greenberg DA, et al. (1998). International consortium for the genetics of autoimmune thyroid disease: a new Graves disease-susceptibility locus maps to chromosome 20q11.2. Am J Hum Genet. 63: 1749-1756.
    78. Tomer Y, Barbesino G, Keddache M, et al. (1997). Mapping of a major susceptibility locus for Graves disease (GD-1) to chromosome 14q31. J Clin Endocr Metab. 82: 1645-1648.
    79. Tomer Y, Greenberg DA, Barbesino G, et al. (2001). CTLA-4 and not CD28 is a susceptibility gene for thyroid autoantibody production. J Clin Endocrinol Metab. 86: 1687-1693.
    80. Tomer Y, Greenberg DA, Concepcion E, et al. (2002). Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 87(1): 404-407.
    
    
    81. Vaessen N, Heutink P, Houwing-Duistermaat JJ, et al. (2002). A genome-wide search for linkage-disequilibrium with type 1 diabetes in a recent genetically isolated population from the Netherlands. Diabetes. 51: 856-859.
    82. Wang C and Crapo LM. (1997). The epidemiology of thyroid disease and implications for screening. Endocrinol Metab Clin North Am. 26(1): 189-218.
    83. Wang DG, Fan JB, Siao CJ, et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 280: 1077-1082.
    84. Weinzimer SA. (2001). Endocrine aspects of the 22q11.2 deletion syndrome. Genet Med. 3(1): 19-22.
    85. Wright AF, Carothers AD and Pirastu M. (1999). Population choice in mapping genes for complex diseases. Nat Genet. 23: 397-403.
    86. Wynford-Thomas D. (1997). Origin and progression of thyroid epithelial tumors: cellular and molecular mechanisms. Horm Res. 47(4-6): 145-157.
    87. Xiong M and Guo SW. (1997). Fine-scale genetic mapping based on linkage disequilibrium: Theory and Applications. Am J Hum Genet. 60: 1513-1531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700