p300/HDAC介导的可逆的乙酰化修饰参与Th1细胞因子IL-12和IL-18基因转录水平的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞因子Interleukin 12(IL-12)在抗原提呈细胞中的调控表达在病原体感染和炎症疾病中至关重要,Interleukin 18(IL-18)是调节先天性免疫和获得性免疫的重要细胞因子。IL-12和IL-18在Th1的发育中起着重要作用。阐明IL-12和IL-18基因表达调控机制对于治疗IL-12和IL-18相关疾病至关重要。
     由组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)催化的乙酰化反应在基因的转录调节中起着重要作用,这两种酶通过对核心组蛋白进行可逆修饰来调节核心组蛋白的乙酰化水平,从而调控转录的起始,并由此介导基因的激活或沉默。p300是一种重要的组蛋白乙酰化酶,在转录调控中起着重要作用,它参与了许多基因的表达调控。组蛋白去乙酰化酶(HDACs)同组蛋白乙酰转移酶(HATs)共同作用使乙酰化状态达到平衡。组蛋白的高乙酰化通常与基因活化有关,而组蛋白的低乙酰化往往与基因活性的抑制密切相关。
     尽管IL-12/IL-18作为两个重要的Th1细胞因子在免疫中的重要性越来越受到重视,尽管乙酰化修饰在基因转录中的重要地位早已众所周知,但是乙酰化是否参与IL-12/IL-18的基因表达调控至今为止未见报道。本文旨在证实是否p300/HDACs介导的可逆的乙酰化作用参与了IL-12/IL-18的转录调控,探讨乙酰化调控IL-12/IL-18的机制,为IL-12 p40/IL-18相关疾病的研究奠定理论基础。
     本文通过一系列共转染实验证实,p300/HDACs参与了IL-12p40/IL-18 p1启动子荧光素酶报告基因表达调控。野生型p300wt增强IL-12 p40/IL-18 p1启动子荧光素酶报告基因的活性,而HAT区缺失突变体p300△HAT不具有同样的激活效果。野生型E1A 12Swt能够抑制这种激活作用。这些结果证明p300的乙酰转移酶活性在调控TL-12 p40/IL-18 p1启动子荧光素酶报告基因的过程中是必需的。同时,我们的实验结果表明p300与IL-12 p40/IL-18 p1的相关转录因子(Ets、c-Rel、C/EBP、Spl和c-Fos)有协同作用,而转录因子与
    
    p300么郎T没有协同作用,EIA 12Swt能够抑制这种协同作用,证明
    p300叫乙酞转移酶活性对于协同作用是必需的。多种HDAC能够抑制
    p300与转录因子对工L一1 2 p4o/IL一18 pl启动子荧光素酶报告基因的
    协同作相。RT一PCR实验证实p3OO对于内源工L一12 p40/IL,18基因mRNA
    的丰度有增强作用。染色质免疫沉淀(chIP)实验证实p30o能够提高
    内源IL二12 p40启动子处的组蛋白乙酞化水平。
     通过以上研究,阐明可逆的乙酞化在IL一12 p40/IL一18基因调控
    中的作角,探讨乙酞化调控工L一1:p40/IL一18基因的作用机制,为IL一12
    p40/工L十18相关疾病的研究奠定理论基础。
Interleukin-12 (IL-12) is a heterodimeric cytokine produced by macrophages in response to intracellular pathogens, and provides an obligatory signal for the differentiation of T-helper-1 cells. Interleukin-18 (IL-18) is a pleiotropic cytokine involved in the development of T helper type 1 (Thl) cells, and it plays important roles in regulation of both the innate and acquired immune responses.
    It is now clear that the reversible acetylation/deacetylation modification of core histone tails is involved in the modulation of chromatin structure and function that leads to the activation/suppression of gene expression. This reversible modification is accomplished by two categories of enzymes, i.e., histone acetyltransferases (HATs) and histone deacetylases (HDACs). p300 is an important HAT and has implicated in the regulation of gene expression, including many cytokine genes. HDACs play the opposite role in the gene regulation. HDACs remove acetyl moieties from specific lysine residues of core histones to keep the levels of histone acetylation at a steady state.
    Although it has long been known that acetylation modification plays an important role in gene transcription, whether it is involved in the regulation of IL-12/IL-18 expression had not been investigated up to this study. The aim of this study was to elucidate whether the reversible histone acetylation/deacetylation modification mediated by p300/HDACs participates in the regulation of IL-12/IL-18 transcription expression and whether the HAT activity of p300 is necessary for its function.
    In this study, we analyzed the roles of p300/HDACs in the regulation of IL-12/IL-18 by using RT-PCR, ChIP and a series of co-transfection studies. The results demonstrate that p300 stimulated the activation of IL-12 p40/IL-18 pi promoter and the HAT activity of p300 was essential to its function. In addition, p300 was shown to be able to work synergistically with the transcription factors on activation of IL-12 p40/IL-18 p1 promoter and this effect could be impaired by HDACs.
    
    
    
    Furtherajiore, p300 promoted the endogenous IL-12 p40/IL-18 mRNA synthesis and enhanced the acetylation of the histone H3 at IL-12 p40 promotejr. Results presented in this paper indicate that the reversible histone cetylation/deacetylation modification plays an important role in the trans|criptional regulation of IL-12 p40/IL-18. All these original results will be (helpful in establishing theoretical bases for the cure of diseases associated with IL-12/IL-18.
引文
1.郑国锠.细胞生物学.高等教育出版社.1992,第2版,375-376.
    2.沈珝琲,方福德.真核基因表达调控.高等教育出版社·施普林格出版社,1997,修订版.1-14.
    3.黄百渠,曾庆华等.组蛋白和核小体在基因转录中的作用.科学通报,2000,45:2033-2040.
    4. Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 1999, 13:2339-2352.
    5. Imbalzano AN. SWI/SNF complexes and facilitation of TATA-binding protein: nucleosome interactions. Methods. 1998, 15:303-314.
    6. Moreira JM, Homberg S. Transcriptional repression of the yeast CHA1 gene requires chromatin-remodeling complexes RSC. EMBO J. 1999, 18:2836-2844.
    7. Tsukiyama T, Daniel C, Tamkun J, Wu C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140Kda subunit of the nucleosome remodeling factor. Cell. 1995, 83:1021-1026.
    8. Peterson CL. Multiple Switches to turn on chromatin? Curr Opin Genet Dev. 1996, 6:171-175.
    9. Langst G, Bonte EJ, Corona DF, Becker P B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell. 1999, 97:843-852.
    10. Whitehouse I, Flaus A, Cairns B R., White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SW1/SNF complex. Nature. 1999, 400:784-787.
    11. Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev. 2000, 14:1058-1071.
    12. Okada M, Hirose S. Chromatin remodeling mediated by Drosophila
    
    GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell Biol. 1998, 18:2455-2461.
    13. Armstrong JA, Bicker JJ, Emerson BM. A SWI/SNF- related chromatin-remodeling complex, E-RC 1, is required for tissue- specific transcriptional regulation by EKLF in vitro. Cell. 1998, 95:93-104.
    14. Cote J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci. USA. 1998, 95:4947-52.
    15. Spencer VA, Davie JR. Role of covalent modification of histones in regulating gene expression. Gene. 1999, 240:1-12.
    16. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000, 403:41-45.
    17. Allfrey VG, Faulkner RM, Misky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci. USA. 1964, 51:786-793.
    18. Berger SL. Gene activation by histone and factor acetyltransferases. Curr Opin Cell Biol. 1999, 11:336-341.
    19. Cress WD, Seto E. Histone Deacetylases, transcriptional control and cancer. J Cell Physiol. 2000, 184:1-16.
    20. Wu C. Chromatin remodeling and the control of gene expression. J Biol Chem. 1997, 272:28171-4.
    21. Peterson CL. HDAC's at work: everyone doing their part. Mol Cell. 2002, 9:921-2.
    22. Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000, 22:836-45.
    23. Peterson CL, Logie C. Recruitment of chromatin remodeling machines. J Cell Biochem. 2000, 78:179-85.
    24. Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin.
    
    EMBO J. 1988, 7:1395-1402.
    25. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997, 389:349-352.
    26. Fletcher TM, Hansen JC. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryote Gene Expr. 1996, 6:149-188.
    27. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996, 84: 843-851.
    28. Smith ER, Allis CD, Lucchesi JC. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol Chem. 2001, 276:31483-31466.
    29. Lusser A, Kolle D, Loidl P. Histone acetylation: lessons from the plant kingdom. Trends Plant Sci. 2001, 6:59-65.
    30. Allis CD, Chicoine LG, Richman R, Schulman IG. Deposition-related histone acetylation in micromuclei of conjugating Tetrahymena. Proc Natl Acad Sci. USA. 1985, 82:8048-8052.
    31. Howe L, Brown CE, Lechner T, Workman JL. Histone acetyltransferase complexes and their link to transcription. Cri Rev Eukaryot. Gene Expr. 1999, 9:231-243.
    32. Chen HW, Tini M, Evans RM. HATs on and beyond chromatin. Curr Opin Cell Biol. 2001, 13:218-224.
    33. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12:599-606.
    34. Brown CE, Lechner T, Howe L, Workman JL. The many HATs of transcription coactivators. Trends Biochem Sci. 2000, 25:15-19.
    35. Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem.1999, 274:1189-1192.
    
    
    36. Schiltz RL, Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor. Biochim Biophys Acta. 2000, 1470:37-53.
    37. Krumm A, Madisen L, Yang XJ, Goodman R, Nakatani Y, Groudine M. Long-distance transcriptional enhancement by the histone acetyltransferase PCAF. Proc Natl Acad Sci. USA. 1998, 95:13501-13506.
    38. Giles RH, Peters DJ, Breuning MH. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998, 14:178-183.
    39. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferase. Cell. 1996, 87:953-959.
    40. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen TM, Glass CK, Rosenfeld MG. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science. 1998, 279:703-707.
    41. Bannister AJ, Miska EA. Regulation of gene expression by transcription factor acetylation. CMLS Cell. Mol Life Sci. 2000, 57:1184-1192.
    42. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Elongator, a multisubunit component of a novel RNA polymerase Ⅱ holoenzyme for transcriptional elongation. Mol Cell. 1999, 3:109-118.
    43. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase Ⅱ holoenzyme. Mol Cell. 1999, 4:123-128.
    44. Orphanides G., Reinberg D. RNA polymerase Ⅱ elongation through chromatin. Nature. 2000, 407:471-475.
    45. Ramanathan B, Smerdon MJ. Enhanced DNA repair synthesis in
    
    hyperacetylated nucleosomes. J Biol Chem. 1989, 264:11026 -11034.
    46. Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol. 2001, 21:6782-6795.
    47. Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. 2002, 21:1704-1712.
    48. Kimura A, Horikoshi M. Tip60 acetylate six lysines of a specific class in core histones in vitro. Genes Cells. 1998, 3:789-800.
    49. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y. Involvement of the Tip60 histone acetyltransferase complex in DNA repair and apoptosis. Cell. 2000, 102:463-473.
    50. Golding A, Chandler S, Ballestar E, Wolffe AP, Schlissel MS. Nucleosome structure completely inhibits in vitro cleavage by the V (D) J recombinase. EMBO J. 1999, 18:3712-3723.
    51. McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of V (D) J recombination. Science. 2000, 287:495-498.
    52. McBlane F, Boyes J. Stimulation of V (D) J recombination by histone acetylation. Curr Biol. 2000, 10:482-486.
    53. Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem. 1999, 274:23027-23034.
    54. Fox CA, Loo S, Dillin, Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev. 1995, 9:911-924.
    
    
    55. Verreault A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev. 2000, 14:1430-1438.
    56. Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell. 1996, 87:85-94.
    57. Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. Conservation of deposition -related acetylation sites in newly synthesized histone H3 and H4. Proc Natl Acad Sci. USA. 1995, 92:1237-1241.
    58. Ruiz-Garcia AB, Sendra R, Galiana M, Pamblanco M, Perez-Ortin JE, Tordera V. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyl- transferase enzyme specific for free histone H4. J Biol Chem. 1998, 273:12599-12605.
    59. Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics. 1997, 145:923-934.
    60. Reifsnyder C, Lowell J, Clarke A, Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1Tat interactions are homologous with acetyltransferase. Nat Genet. 1996, 14:42-49.
    61. Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun. 1999, 266:405-410.
    62. Burley SK, Roeder RG. Biochemsitry and structural biology of transcription factor ⅡD (TFⅡD). Annu Rev Biochem. 1996. 65:769- 799.
    63. Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD. The TAFⅡ250 subunit of TFⅡD has histone acetyltransferase activity. Cell. 1996, 87:1261-1270.
    64. O'Brien T, Tjian R. Funtional analysis of the human TAFⅡ250
    
    N-terminal kinase domain. Mol Cell. 1998, 1:905-911.
    65. O'Brien T, Tjian R. Different functional domains of TAFⅡ250 modulate expression of distinct subsets of mammalian genes. Proc Natl Acad Sci.USA. 2000, 7:2456-2461.
    66. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000, 64:435-459.
    67. Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Cote J. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp. EMBO J. 1999, 18:5108-5119.
    68. Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD. ESA1 is a histone acetyltransferon. Mol Cell Biol. 1999, 19:2515-2526.
    69. Clarke AS, Lowell JE, Jacobson SJ, Pillus L. Esalp is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol. 1999, 19:2515-26.
    70. Mahlknecht U, Hoelzer D. Histone acetylation modifies in the pathogenesis of malignant disease. Molecular Medicine. 2000, 6:623-644.
    71. Champagne N, Pelletier N, Yang XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene. 2001, 20:404-9.
    72. Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube Ⅰ, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE. The translocation t (8; 16)(p11; 13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996, 14:33-41.
    73. Carapeti M, Aguiar RC, Goldman JM, Cross NC. A novel fusion
    
    between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998, 91:3127-3133.
    74. Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t (8; 22)(p11; q13) chromosome translocation. Leukemia. 2001, 15:89-94.
    75. Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995, 270:1354-1357.
    76. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997, 389:194-198.
    77. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of acetylase. Cell. 1999, 98:675-686.
    78. Vogelauer M., Wu J., Suka N. and Grunstein M: Global histone acetylation and deacetylation in yeast. Nature. 2000, 408: 495-498.
    79. Berger S L: Local or Global? Nature. 2000, 408:412-414.
    80. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996, 272:408-411.
    81. Johnson CA, Turner BM. histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol. 1999, 10:179-188.
    82. Khochbin S, Verdel A, Lemercier C, Seigneurin-Bemv D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11:162-166.
    83. Gray SG, Ekstrom TJ. The human historic deacetylase family. Exp Cell Res. 2001, 262:75-83.
    84. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional
    
    repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci. USA. 1996, 93:12845-12850.
    85. Emiliani S, Fischle W, Van Lint C, A1-Abed Y, Verdin E. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci. USA. 1998, 95:2795-2800.
    86. Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J. 2000, 350:199-205.
    87. Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell. 1999, 99:447-450.
    88. Takami Y, Kikuchi H, Nakayama T. Chicken histone deacetylase-2 controls the amount of the lgM H-chain at the steps of both transcription of its gene and alternative processing of its pre-mRNA in the DT40 cell line. J Biol Chem. 1999, 274:23977 -23990.
    89. Li J, Wang J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J. Both corepressor proteins SMRT and N-CoR exist in large protein complexs containing HDAC3. EMBO J. 2000, 19:4342-4350.
    90. Takami Y, Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem. 2000, 275:16191-16201.
    91. Grozinger CM, Hassig CA, Sehreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci. USA. 1999, 96:4868-4873.
    92. Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3- dependent cellular localization. Proc Natl Acad Sci. USA. 2000, 97:7835-7840.
    93. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2
    
    transcription factor. EMBO J 1999, 18:5099-5107.
    94. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem.2000, 275:15594-15599.
    95. Guarente L. Sir2 links chromatin silencing, metabolism and aging. Genes Dev. 2000, 14:1021- 1026.
    96. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase, Nature. 2000, 403:795-800.
    97. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci. USA. 2000, 97:5807-5811.
    98. Fry RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999, 260:273-279.
    99. Christina M, Grozinger CM, Stuart L Schreiber. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002, 9:3-16.
    100. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NURD subtmits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, 13:1924-1935.
    101. Ayer DE. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 1999, 9:193-198.
    102. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. Chromatin deacetylation by ATP-dependent nucleosome remodeling complex. Nature. 1998, 395:917-921.
    103. Zhang Y, LeRoy G, Sellig HP, Lane WS, Reinberg D. The
    
    dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998, 95:279-289.
    104. Aasland R, Stewart AF, Gibson T. The SANT domain: a putative DNA-binding domain in the SWI/SNF and ADA complex, the transcriptional co-repressor N-CoR and TFⅡB. Trends Biochem Sci. 1996, 21:87-88.
    105. You A, Tong JK, Grozinger CM, and Screiber SL. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci. USA. 2001, 98:1454-1458.
    106. Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, Howard BH. Stable histone deacetylase complex distinguished by the presence of SANT dimain protein CoREST/kiaa0071 and Mta-L1. J Biol Chem. 2001,276:6817-6824.
    107. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 2000, 14:1048-1057.
    108. Huang EY, Zhang J, Miska EA, Guenther MG, Kiuzarides T, Lazar MA. Nuclear receptor corepressors partner with class Ⅱ histone deacetylase in a Sin3-independent repression pathway. Genes Dev. 2000, 14:45-54.
    109. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class Ⅰ and class Ⅱ deacetylases promote SMRT-mediated repression. Genes Dev. 2000, 14:55-66.
    110. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci. USA. 2000, 97:7202-7207.
    111. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE.
    
    A dynamic role for HDAC-7 in MEF2 mediated muscle differentiation. J Biol Chem.2001,276:17007-17013.
    112. Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th'ng J, Han J, Yang XJ. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol. 1999, 19:7816-7827.
    113. Hassig CA, Schreiber S. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol. 1997, 1:300-308.
    114. Kuo MH, Allis CD. Roles of histone acetyltranseferases and deacetylaseS in gene regulation. Bio Essays. 1998, 20:615 -626.
    115. Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol. 1996, 16:4349-4356.
    116. Turner BM, Birley AJ, Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992, 69:375-384.
    117. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst, 2000, 92:1210-1216.
    118. Carducci MA, Gilbert J, Bowling MK, Noe D, Eisenberger MA, Sinibaldi V, Zabelina Y, Chen TL, Grochow LB, Donehower RC. A Phase Ⅰ clinical and pharmacological evaluation of sodium phenylbutyrate on a120-h infusion schedule. Clin Cancer Res. 2001, 7:3047-3055.
    119. Roediger WE. The colonic epithelium in ulcerative colitis-an energy deficiency disease? Lancet. 1980, 2:712-715.
    120. Archer SY, Hodin R. Histone acetylafion and cancer. Curr Opin Genet Dev. 1999, 9:171-174.
    
    
    121. Gibson PR. The intracellular target of butyrate's actions: HDAC or HDON'T. Gut. 2000, 46:447-451.
    122. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990, 265:17174-17179.
    123. Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Nal Aca Sci. USA. 2001, 98:87-92.
    124. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bio Essays. 1995, 17:423-430.
    125. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks P A, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitor. Nature. 1999, 401:188-193.
    126. Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differenitiation. J Med Chem. 1999, 42:4669-4679.
    127. Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev. 2002, 12:142-148.
    128. Iizuka M, Smith MM. Functional consequences of histone modifications. Curr Opin Genet Dev. 2003, 13:154-160.
    129. Jenuwein T, Allis CD. Translating the histone code. Science. 2001, 293:1074-1080.
    130. Turner BM. Cellular memory and the histone code. Cell. 2002, 111:285-291.
    131. Edmondson DG, Smith MM, Roth SY. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4.
    
    Genes Dev. 1996, 10:1247-1259.
    132. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999, 399:491-496.
    133. Winston F, Allis CD. The bromodomain: a chromatin-targeting module? Nat Struct Biol. 1999, 6:601-604.
    134. Pawson T. Protein-tyrosine kinases. Getting down to specifics. Nature. 1995, 373:477-478.
    135. Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle and developmentally regulated promoter. Cell. 1999, 97:299-311.
    136. Krebs JE, Kuo MH, Allis CD, Peterson CL. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 1999, 13:1412-1421.
    137. Oligny LL. Cancer and epigenesis: a developmental perspective. Adv Pediatr. 2003, 50:59-80.
    138. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-KD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994, 8:869-884.
    139. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993, 365:855-859.
    140. Chen X, Korenberg JR. Localisation of human CREBBP to 16p13.3 by fluorescence in situ hybridisation. Cytogenet. Cell Genet. 1995, 71:56-57.
    141. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ. Rubinstein-Taybi syndrome caused by mutations in the transcriotional
    
    co-activator CBP. Nature. 1995, 376:348-351.
    142. Giles, R. H., Dauwerse, H. G., Van Ommen, G. B. and Breuning, M. H. Do human chromosomal bands 16p13 and 22q11-13 share ancestral origins? Am J Hum Genet. 1997, 63:1240-1242.
    143. Arany, Z., Sellers, W. R., Livingston, D. M. and Eckner, R. E1A associated p300 and CREB-associated CBP belong to a conserved family of co-activators. Cell. 1994, 77:799-800.
    144. Chan HM, Nicholas B, La Thangue. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci. 2001, 114:2363-2373.
    145. Li M, Damania B, Alvarez X, Ogryzko V, Ozato K, Jung JU. Inhibition of p300 histone acetyltransferase by viral interferon regulatory factor. Mol Cell Biol. 2000, 20:8254-8263.
    146. Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature. 1995, 374:81-84.
    147. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995, 11:211-219.
    148. Banerjee AC, Recupero AJ, Mal A, Piotrkowski AM, Wang DM, Harter ML. The adenovirus E1A 289R and 243R proteins inhibit the phosphorylation of p300. Oncogene. 1994, 9:1733-1737.
    149. Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science. 1997, 275:523-527.
    150. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998, 12:2245-2262.
    151. Roth JF, Shikama N, Henzen C, Desbaillets I, Lutz W, Marino S, Wittwer J, Schorle H, Gassmann M, Eckner R Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of
    
    MyoD and Myf5. EMBO J. 2003, 22:5186-5196.
    152. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998, 93:361-372.
    153. Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH, Kedes L, Wang JY, Graessmann A, Nakatani Y, Levrero M. Differential roles of p300 and pCAF acetyltransferase in muscle differentiation. Mol Cell. 1997, 1:35-45.
    154. Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, Verma IM. Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell. 1992, 68:507-519.
    155. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996, 382:319-324.
    156. Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM, Dot-to GP. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sei. U S A. 1995, 92:5451-5455.
    157. Kung AL, Rebel Ⅵ, Bronson RT, Ch'ng L, Sieff CA, Livingston DM, Yao T. Gene dosage-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 1999, 14:272-277.
    158. Shi Y, Mello C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev.1998, 12:943-955.
    159. Stein R.W, Corrigan M, Yaciul P, Whelan J, Moran E. Analysis of E1A-mediated growth regulation functions: binding of the p300- kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol. 1990,
    
    64:4421-4427.
    160. Avantaggiati ML, Ogrykko V, Garner K, Giordano A, Levin AS, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell.1997, 89:1175-1184.
    161. Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston DM, Yokoyama KK. Distinct role of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature. 1998, 393:284- 289.
    162. Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP co-activators. Nature 1997, 387:823-827.
    163. Lee CW, Sφrensen TS, Shikama N, La Thangue NB. Functional interplay between p53 and E2F through co-activator p300. Oncogene 1998, 16:2695-2710.
    164. Yuan W, Condorelli G, Caruso M, Felsani A, Giordano A. Human p300 protein is a co-activator for the transcription factor MyoD. J Biol Chem. 1996, 271:9009-9013.
    165. Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M., La Thangue NB. A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999, 4:365-376.
    166. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg M. A, Bunn HF, Livingston DM. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci. USA. 1996, 93:12969-12973.
    167. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell. 1998, 2:405-415.
    168. Eid JE, Kung AL, Scully R, Livingston DM. p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell
    
    adhesion. Cell. 2000, 102:839-848.
    169. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J Biol Chem.2000, 275:10887-10892.
    170. Morris L, Allen KE, La Thangue NB. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol. 2000, 2:232-239.
    171. Dornan D, Shimizu H, Burch L, Smith AJ, Hupp TR The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol Cell Biol. 2003, 23:8846-8861.
    172. Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC. Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem.2003, 278:25568-25576.
    173. Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroshi T, Ishii S. Abnormal Skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci. US. 1997, 94:10215-10220.
    174. Muraoka M, Konishi M, Kikuchi R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M. p300 gene alterations in colorectal and gastric carcinomas. Oncogene. 1996, 12:1565-1569.
    175. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000, 24:300-303.
    176. Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE. The translocation t (8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996,
    
    14:33-41.
    177. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t (11; 16)(q23; q13.3). Proc Natl Acad Sci. USA. 1997, 94:8732-8737.
    178. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t (11; 22)(q23; q13). Blood. 1997, 90:4699-4704.
    179. Kitabayashi I, Eckner R, Arany Z, Chiu R, Gachelin G, Livingston DM, Yokoyama KK. Phosphorylation of the adenovirus E1A-associated 300KDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 1995, 14:33496-33509
    180. Hamamori Y, Sartorelli V, Ogryzko V. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell. 1999, 96:405-413.
    181. Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell. 1999, 96:393-403.
    182. Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol. 1993, 67:476-488.
    183. Cho S, Tian Y, Benjamin TL. Binding of p300/CBP co-activators by polyoma large T antigen. J Biol Chem. 2001, 276:33533-33539.
    184. Georges SA, Giebler HA, Cole PA, Luger K, Laybourn PJ, Nyborg JK. Tax recruitment of CBP/p300, via the KⅨ domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent. Mol Cell Biol. 2003, 23:3392-3404.
    
    
    185. Evert BO, Wullner U, Klockgether T. Cell death in polyglutamine diseases. Cell Tissue Res. 2000, 301:189-204.
    186. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM. The Huntington'S disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci. U S A. 2000, 97:6763-6768.
    187. Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science. 2001, 291:2423-2428.
    188. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM. Histone deacetylase inhibitors arrest polyglutamine dependent neurodegeneration in Drosophila. Nature. 2001, 413:739-743.
    189. Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature. 1998, 396:594-598.
    190. Dai YS, Markham BE. p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem. 2001, 276:37178-37185.
    191. Erickson RL, Hemati N, Ross SE, MacDougald OA. p300 coactivates the adipogenic transcription factor CCAAT/enhancer-binding protein alpha. J Biol Chem. 2001,276:16348-16355.
    192. Polesskaya A, Duquet A, Naguibneva I, Weise C, Vervisch A, Bengal E, Hucho F, Robin P, Harel-Bellan A. CREB-binding protein/p300 activates MyoD by acetylation. J Biol Chem. 2000, 275:34359-34364.
    193. Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA,
    
    Lopez GN, Kushner PJ, Pestell RG. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001, 276:18375-18383.
    194. Semenza GL Physiology meets biophysics: visualizing the interaction of hypoxia-inducible factor 1 alpha with p300 and CBP. Proc Natl Acad Sci. U S A. 2002, 99:11570-11572.
    195. Kumar BR, Swaminathan V, Banerjee S, Kundu TKp300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J Biol Chem. 2001, 276:16804-16809.
    196. Lucas W, Mariann B. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature (London). 1998, 395:521-525.
    197. Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D. Acetylation of HMG Ⅰ (Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell. 1998, 2:457-467.
    198. Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nueifora G. Interaction of EⅥ1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EⅥ1 and in co-localization in nuclear speckles. J Biol Chem. 2001,276:44936-44943.
    199. Hasan S, Hassa PO, Imhof R, Hottiger MO. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature. 2001, 410:387-391.
    200. Rossow KL, Janknecht R. The Ewing's sarcoma gene product functions as a transcriptional activator. Cancer Res. 2001, 61:2690-2695.
    201. Yaciuk P, Moran E.Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa products is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol Cell Biol. 1991, 11:5389-5397.
    
    
    202. Gregory DJ, Garcia-Wilson E, Poole JC, Snowden AW, Roninson IB, Perkins ND. Induction of transcription through the p300 CRD1 motif by p21WAF1/CIP1 is core promoter specific and cyclin dependent kinase independent. Cell Cycle. 2002, 1:343-350.
    203. See RH, Calvo D, Shi Y, Kawa H, Luke MP, Yuan Z, and Shi Y. Stimulation of p300-mediated transcription by the kinase MEKK1. J Biol Chem. 2001,276:16310-16317.
    204. Xu L, Lavinsky RM, Dasen JS, Flynn SE, McInerney EM, Mullen TM, Heinzel T, Szeto D, Korzus E, Kurokawa R, Aggarwal AK, Rose DW, Glass CK, Rosenfeld MG. Signal-specific co-activator domain requirements for Pit-1 activation. Nature. 1998, 395:301-306.
    205. Ait-Si-Ali S, Carlisi D, Ramirez S, Upegui-Gonzalez LC, Duquet A, Robin P, Rudkin B, Harel-Bellan A, Trouche D. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem Biophys Res Commun. 1999, 262:157-162.
    206. Chawla S, Hardingham GE, Quinn DR, Bading H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase Ⅳ. Science. 1998, 281:1505-1509
    207. Shikama N, Lyon J, La Thangue NB. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 1997, 7:230-236.
    208. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14:1553-1577.
    209. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996, 85:403-414.
    210. Eckner R, Yao TP, Oldread E, Arany Z, Modjtahedi N, DeCaprio JA, Livingston DM. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev.
    
    1996, 10:2478-2490.
    211. Kraus VB, Moran E, Nevins JR. Promoter-specific transactivation by the adenovirus E1A12S product involves separate E1A domains. Mol Cell Biol. 1992, 12:4391-4399.
    212. Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard LL, Cole P, Harel-Bellan A. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J. 2001, 20:6816-6825.
    213. Nakajima T, Fukamizu A, Takahashi J, Gage FH, Fisher T, Blenis J, Montminy MR. The signal-dependent co-activator CBP is a nuclear target for pp90RSK. Cell. 1996, 86:465-474.
    214. Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem.2001, 276:13505-13508.
    215. Westin S, Kurokowa R, Nolte RT, Wisely GB, McInerney EM, Rose DW, Milbum MV, Rosenfeld MG, Glass CK. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature. 1998, 305:199-202.
    216. Xu L, Glass CK, Rosenfeld MG. Co-activator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999, 9:140-147.
    217. Bevilacqua MA, Faniello MC, Russo T, Cimino F, Costanzo F. P/CAF/p300 complex binds the promoter for the heavy subunit of ferritin and contributes to its tissue-specific expression. Biochem J. 1998, 335:521-525.
    218. Yi M, Tong GX, Murry B, Mendelson CR. Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1). J Biol Chem.2002, 277:2997-3005.
    219. Chen H, Lin RJ, Schlitz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor co-activator
    
    ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997, 90:569- 580.
    220. Carey M. The enhanceosome and transcriptional synergy. Cell.1998, 92:5-8
    221. Kim TK, Kim TH, Maniatis T. Efficient recruitment of TFIIB and CBP-RNA polymerase Ⅱ holoenzyme by an interferon-beta enhanceosome in vitro. Proc Natl Acad Sci. USA. 1998, 95:12191-12196.
    222. Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev. 1996, 6:176-184
    223. Wade PA, Pruss D, Wolffe AP. Histone acetylation: chromatin in action. Trends Biochem. Sci. 1997, 22:128-32.
    224. Armstrong JA, Emerson BM. Transcription of chromatin: these are complex times. Curr Opin Genet Dev. 1998, 8:165-172.
    225. Turner BM. Histone acetylation and control of gene expression. J. Cell Sci. 1991, 99:13-20.
    226. Wolffe AP, Pruss D. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell. 1996, 84:817-819.
    227. Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993, 72:73-84.
    228. Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 1996, 15:2508-2518.
    229. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature. 1997, 389:251-260.
    
    
    230. Garcia-Rameriez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995,270:17923-17928.
    231. Tse C, Fletcher TM, Hansen JC. Enhanced transcription factor access to arrays of histone H3/H4 tetramer. DNA complexes in vitro: implications for replication and transcription. Proc Natl Acad Sci. USA. 1998, 21:12169-121673.
    232. Tse C, Sera T, Wolffe AP, Hansen JC. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase Ⅲ. Mol Cell Biol. 1998, 18:4629-4638.
    233. Ura K, Kurumizaka H, Dimitrov S, Almouzni G, Wolffe AP. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 1997, 16:2096-2107.
    234. Nightingale KP, Wellinger RE, Sogo JM, Becker PB. Histone acetylation facilitates RNA polymerase Ⅱ transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 1998, 17:2865-2875.
    235. Edmondson DG, Zhang W, Watson A, Xu W, Bone JR, Yu Y, Stillman D, Roth SY. In vivo functions of histone acetylation/deacetylation in Tuplp repression and Gcn5p activation. Cold Spring Harbor Syrup. Quant Biol. 1998, 63:459-468.
    236. Schwarz PM, Felthauser A, Fletcher TM, Hansen JC. Reversible oligonucleotide self-association: dependence on divalent cations and core histone tail domains. Biochemistry 1996, 35:4009-4015.
    237. Durrin LK, Mann RK, Kayne PS, Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell. 1991, 65:1023-1031.
    238. Mizzen C, Kuo MH, Smith E, Brownell J, Zhou J, Ohba R, Wei Y, Monaco L, Sassone-Corsi P, Allis CD. Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harbor
    
    Symp Quant Biol. 1998, 63:469-481.
    239. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996, 384:641-643.
    240. Martinez-Balbas MA, Bannister AJ, Martin K, Haus-Seuffert P, MeisteremSt M, Kouzarides T. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 1998, 17:2886-2893.
    241. Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 1998, 17:6300-6315.
    242. Li Q, Imhof A, Collingwood TN, Umov FD, Wolffe AP. p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption. EMBO J. 1999, 18:5634-5652.
    243. Ito T, Ikehara T, Nakagawa T, Lee Kraus W, Muramatsu M. p300-mediated acetylation facilitates the transfer of histone H2AH2B dimers from nucleosomes to a histone chaperone. Genes Dev. 2000, 14:1899-1907
    244. Shikama N, Chan H, Smith L, Krstic-Demonacos M, Lee C, Cairns W, Thangue N. Functional interaction between nucleosome assembly proteins and p300/CBP co-activators. Mol Cell Biol. 2000, 20:8933-8943.
    245. Bulger M, Ito T, Kamakaka RT, Kadonaga JT. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein. Proc Natl Acad Sci. USA 1995, 92:11726-11730.
    246. Hansen JC, Wolffe AP. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc Natl Acad Sci. USA 1994, 91:2339-2343.
    247. Gubler U, Chua AO, Schoenhaut DS, Dwyer CM, McComas W,
    
    Motyka R, Nabavi N, Wolitzky AG, Quinn PM, Familletti PC, et al. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci. U S A. 1991, 88:4143-4147.
    248. Schoenhaut DS, Chua AO, Wolitzky AG, Quinn PM, Dwyer CM, McComas W, Familletti PC, Gately MK, Gubler U. Cloning and expression of murine IL- 12. J Immunol. 1992, 148:3433-3440.
    249. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L, Dzialo R, Fitz L, Ferenz C, Hewick RM, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol. 1991, 146:3074-3081.
    250. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 1995, 13:251-276.
    251. Trinchieri G. Interleukin-12 and its role in the generation of Th1 cells. Immunol.Today. 1993, 14:335-338.
    252. Sieling PA, Modlin RL. Cytokine patterns at the site of mycobacterial infection. Immunobiology. 1994, 191:378-387.
    253. Zhang M, Gately MK, Wang E, Gong J, Wolf SF, Lu S, Modlin RL, Barnes PF. Interleukin 12 at the site of disease in tuberculosis. J Clin Invest. 1994, 93:1733-1739.
    254. Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL. Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest. 1993, 91:1390-1395.
    255. Seder RA, Kelsall BL, Jankovic D. Differential roles for IL-12 in the maintenance of immune responses in infectious versus autoimmune disease. J Immunol. 1996, 157:2745-1748.
    256. Zhu C, Gagnidze K, Gemberling JH, Plevy SE. Characterization of an
    
    activation protein-1-binding site in the murine interleukin-12 p40 promoter. J Biol Chem.2001,276:18519-18528.
    257. Ma X, Neurath M, Gri G., Trinchieri G. Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter. J Biol Chem. 1997, 272:10389-10395.
    258. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM. Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol Cell Biol. 1995, 15:5258-5267.
    259. Plevy SE, Gemberling JH, Hsu S, Dorner AJ, Smale ST. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol Cell Biol. 1997, 17:4572-4588.
    260. Liu J, Cao S, Herman LM, Ma X. Differential regulation of interleukin (IL)- 12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1. J Exp Med. 2003, 198:1265-1276.
    261. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 1995, 78:88-91.
    262. Stoll S, Muller G, Kurimoto M, Saloga J, Tanimoto T, Yamauchi H, Okamura H, Knop J, Enk AH. Production of IL-18 (IFN-g-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol. 1997, 159:298-302.
    263. Udagawa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT. Interleukin-18 (IFN-g-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-γ to inhibit osteoblast formation. J Exp Med. 1997,
    
    185:1005-1012.
    264. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001, 19:423-474.
    265. Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y, Kaneda K. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 1996, 157:3967-3973.
    266. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, Bug G, Hofmann WK, Hoelzer D, Ottmann OG. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol. 2000, 165:1307-1313.
    267. Okamura H, Nagata K, Komatsu T, Tanimoto T, Nukata Y, Tanabe F, Akita K, Torigoe K, Okura T, Fukuda S, et al. A novel costimulatory actor for g interferon induction found in the livers of mice causes endotoxic shock. Infect Immun. 1995, 63:3966-3972.
    268. Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Muhl H, Yoon DY, Reznikov LL, Kim SH, Rubinstein M. Overview of interleukin-18: more than an interferon-g inducing factor. J Leukoc Biol. 1998, 63:658-664.
    269. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003, 73:213-224.
    270. LI Yinong, SHI Guiying. Expression of interleukin□18 in peripheral blood mononuclear cells from patients with rheumatoid arthritis. Chinese journal rheumatology. 2001, 5:15-19.
    271. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B, Humbert Y, Chvatchko Y, Tedgui A. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability.
    
    Circulation. 2001, 104:1598-1603.
    272. Tone M, Thompson SA, Tone Y, Fairchild PJ, Waldmarm H. Regulation of IL-18 (IFN-gamma-inducing factor) gene expression. J Immunol. 1997, 159:6156-6163.
    273. Kim YM, Im JY, Han SH, Kang HS, Choi Ⅰ. IFN-gamma up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages. J Immunol. 2000, 165:3198-3205.
    274. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001, 70:81-120.
    275. Avots A, Buttmann M, Chuvpilo S, Escher C, Smola U, Bannister AJ, Rapp UR, Kouzarides T, Serfling E. CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation. Immunity. 1999, 10:515-524.
    276. Sisk TJ, Gourley T, Roys S, Chang CH. MHC class Ⅱ transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)/p300. J Immunol. 2000, 165:2511-2517.
    277. LIU Chunyan, LU Jun, LI Lin, et al. Coactivator CBP/p300 increased the activity of C/EBP-mediated human interleukin-5 gene promoter. Chinese Science Bulletin. 2004, 49:1-5.
    278. Vanden Berghe W, De Bosscher K, Boone E, Plaisance S, Haegeman G. The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999, 274:32091-32098.
    279. Huang SM, McCance DJ. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol. 2002, 76:8710-8721.
    280. Yamashita M, Ukai-Tadenuma M, Kimura M, Omori M, Inami M,
    
    Taniguchi M, Nakayama T. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J Biol Chem. 2002, 277:42399-42408.
    281. Bannert N, Avots A, Baier M, Settling E, Kurth R. GA-binding protein factors, in concert with the coactivator CREB binding protein/p300, control the induction of the interleukin 16 promoter in T lymphocytes. Proc Natl Acad Sci. U S A. 1999, 96:1541-1154.
    282. Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000, 19:1176-1179.
    283. Kawai H, Nie L, Wiederschain D, Yuan ZM. Dual Role of p300 in the Regulation of p53 Stability. J Biol Chem. 2001, 276:45928-45932.
    284. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially Regulated by Reversible Acetylation. J Biol Chem. 2000, 275:10887-10892.
    285. Waltzer L, Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature. 1998, 395:521-525.
    286. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003, 983:84-100.
    287. Fischle W, Kiermer V, Dequiedt F, et al. The emerging role of class Ⅱ histone deacetylases. Biochem Cell Biol. 2001, 79:337-348.
    288. Iwata K, Tomita K, Sano H, Fujii Y, Yamasaki A, Shimizu E. Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell Immunol. 2002, 218:26-33.
    289. Koyama N, Koschmieder S, Tyagi S, Nurnberger H, Wagner S, Bocker U, Hoelzer D, Gerhard O, Kalina U. Differential effects of histone deacetylase inhibitors on interleukin-18 gene expression in myeloid cells. Biochem Biophys Res Commun. 2002, 292:937-943.
    
    
    290. Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell, 1989, 56:67-75.
    291. Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell. 1999, 96:393-403.
    292. Salsi V, Caretti G, Wasner M, Reinhard W, Haugwitz U, Engeland K, Mantovani R. Interactions between p300 and multiple NF-Y trimers govern cyclin B2 promoter function. J Biol Chem. 2003, 278:6642-50.
    293. Fontes JD, Kanazawa S, Jean D, Peterlin BM. Interactions between the class Ⅱ transactivator and CREB binding protein increase transcription of major histocompatibility complex class Ⅱ genes. Mol Cell Biol. 1999, 19:941-947.
    294. Fax P, Lehmkuhler O, Kuhn C, Esche H, Brockmann D. E1A12S-mediated Activation of the Adenovirus Type 12 E2 Promoter Depends on the Histone Acetyltransferase Activity of p300/CBP. J Biol Chem. 2000, 275:40554-40560.
    295. Schuringa JJ, Schepers H, Vellenga E, Kruijer W. Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett. 2001, 495:71-76.
    296. Albanese C, D'Amieo M, Reutens AT, Fu M, Watanabe G, Lee RJ, Kitsis RN, Henglein B, Avantaggiati M, Somasundaram K, Thimmapaya B, Pestell RG. Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem. 1999.274:34186-34195.
    297. Brockmann D, Putzer BM, Lipinski KS, Schmucker U, Esche H. A multiprotein complex consisting of the cellular coactivator p300, AP-1/ATF, as well as NF-kappaB is responsible for the activation of the mouse major histocompatibility class Ⅰ (H-2K (b)) enhancer A. Gene Expr. 1999, 8:1-18.
    298. Preston GA, Srinivasan D, Barrett JC. Apoptotic response to growth
    
    factor deprivation involves cooperative interactions between c-Fos and p300. Cell Death Differ. 2000, 7:215-226.
    299. Lee JS, See RH, Deng T, Shi Y. Adenovirus E1A downregulates cJunand JunB-mediated transcription by targeting their coactivator p300. Mol Cell Biol. 1996, 16:4312-4326.
    300. Suzuki T, Kimura A, Nagai R, Horikoshi M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells. 2000, 5: 29-41.
    301. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001, 293:1653-1657.
    302. Tsai EY, Falvo JV. Tsytsykova AV, Barczak AK, Reimold AM, Glimcher LH, Fenton MJ, Gordon DC, Dunn IF, Goldfeld AE. A lipopolysaccharide-specific enhancer complex involving Ets, E1k-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol Cell Biol. 2000, 20:6084-6094.
    303. Jayaraman G, Srinivas R, Duggan C, Ferreira E, Swaminathan S, Somasundaram K, Williams J, Hauser C, Kurkinen M, Dhar R, Weitzman S, Buttice G, Thimmapaya B. p300/cAMP-responsive element-binding protein interactions with ets-1 and ets-2 in the transcriptional activation of the human stromelysin promoter. J Biol Chem. 1999, 274:17342-17352.
    304. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci. U S A. 1997, 94:2927-2932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700