用户名: 密码: 验证码:
锂离子二次电池用锡基负极材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池由于具有高能量密度、高输出电压、环境友好和无记忆效应等优点,广泛用于各种便携式电子设备的同时,在电动汽车等大型电动设备上也有着广阔的应用前景。开发高容量、高循环稳定性的负极材料以取代传统的炭材料成为近年来锂离子二次电池研究的热点。本论文综述了锂离子二次电池负极材料的研究进展及其存在的主要问题。在此基础上,针对锡基材料比容量高,但循环性能较差的特点,采用各种不同合成法制备了一系列具有新型结构的锡基负极材料。利用XRD,SEM和TEM等技术对这些材料的微观结构和形貌进行了分析,采用恒电流充放电、循环伏安(CVs)和电化学阻抗谱(EIS)等技术测试其电化学性能。本论文主要开展了以下几个方面的研究工作:
     锡基合金负极材料:由于锂离子二次电池有限的内部空间,寻找高容量、高振实密度的负极材料有着非常重要的现实意义。本工作利用La-Co-Sn三元合金具有高晶体密度的特点,通过电弧熔炼法制备了一系列富Sn的La-Co-Sn三元合金。在深入研究Co/Sn比率对合金结构、形貌影响的基础上,研究了其电化学性能。结果表明,所有的La-Co-Sn三元合金均以Yb_3Rh_4Sn_(13)结构类型的La_3Co_4Sn_(13)金属间化合物作为主相。随着三元合金中锡含量的增加,可逆容量增大,但循环性能变差。由于铸态La-Co-Sn三元合金颗粒较大,在首次循环中活性成分利用率低,导致首次不可逆容量损失比较大。其中,铸态LaCoSn_4合金显示了最好的电化学性能。在此基础上,进一步对铸态LaCoSn_4合金进行高能球磨处理,发现球磨处理导致La_3Co_4Sn_(13)主相的逐步分解和结晶度的降低。与铸态LaCoSn_4合金相比,所有球磨的LaCoSn_4合金表现出了改善的电化学性能。特别是,球磨16h的LaCoSn_4合金在循环40周后放电容量仍然在500 mAh/g以上。球磨过程有利于合金的电荷转移电阻和Warburg阻抗明显减小,这是导致球磨LaCoSn_4合金循环性能改善的直接原因。虽然需要进一步提高首次库仑效率,具有高晶体密度的La-Co-Sn三元合金仍然能够被考虑作为有希望的锂离子二次电池的负极材料。
     Co_2SnO_4负极材料:对锂离子二次电池而言,锡基复合氧化物是最具吸引力和最具竞争力的电极材料,然而其锂合金化过程中严重的体积效应导致电极材料逐渐粉化,从而引发循环性能下降。针对锡基复合氧化物的体积效应,通过减小锡基复合氧化物的晶粒尺寸来实现良好循环性能是一个有效的途径。本工作通过水热方法成功地制备了立方尖晶石结构的Co_2SnO_4纳米晶,系统地研究了碱溶液浓度、水热温度和水热时间对产物结构和形貌的影响。结果表明,在2.0M的NaOH溶液中,240℃反应48h可以制备出结晶性良好的Co_2SnO_4纳米晶。电化学性能测试表明,Co_2SnO_4纳米晶的首次可逆容量(充电容量)达到了1088.8 mAh/g,循环50周后可逆容量仍然维持在555.9 mAh/g,远优于由高温固态法制备的体相Co_2SnO_4的循环性能。通过CVs和XRD分析表明,Co(?)CoO的可逆转化是影响Co_2SnO_4的循环稳定性的关键因素。
     虽然减小粒径尺寸可以改善锡基氧化物的循环性能。然而,氧化物的导电性对其循环性能,尤其是倍率性能有着重要影响。本工作通过水热法将Co_2SnO_4纳米晶与碳纳米管复合,不仅有助于缓冲合金化过程中巨大的体积变化引发的机械应力,提高其循环稳定性,而且还能充分发挥碳纳米管的优良的导电性,从而最大程度地发挥纳米尺寸效应,促进电极材料倍率性能的改善。当Co_2SnO_4与MWCNTs重量比为5:1时,Co_2SnO_4-MWCNTs复合物的首次可逆容量(充电容量)高达986 mAh/g。在循环50周以后,其可逆容量仍然稳定在898 mAh/g,容量保持率达到了91.1%,平均每次循环容量仅损失0.18%。而且该复合材料还具有比较良好的倍率性能,即使在1000 mA/g的电流密度下可逆容量仍然达到了100-120 mAh/g左右。这种优异的性能表明了碳纳米管载体在增强电子导电率,维持热力学/动力学稳定性和降低电荷转移电阻方面所起的关键作用。
     锡-炭复合材料:针对金属锡在深度嵌锂过程中严重的体积效应,采用具有较高导电性和适当孔隙率的多孔炭材料作为金属锡纳米粒子的缓冲材料制备了新型锡-多孔炭复合材料。因该锡-多孔炭复合材料具有特殊的异质结构,优势互补,具有协同效应,进而导致增强的电化学性能。其中,锡含量为45.6%的锡-多孔炭复合材料在循环60周后可逆容量仍然维持在503 mAh/g。即使在1000mA/g电流密度下可逆容量仍然达到180 mAh/g。复合材料的电化学结果表明,所制备的多孔炭材料是金属锡的良好的缓冲材料,它既能保证复合材料的导电性,又能对其内部的金属锡在充放电过程中起到有效的缓冲作用。
Recently,lithium-ion secondary batteries have been widely used in portable electronic devices due to their high energy density,high voltage and non-pollution. Meanwhile,they have great potential for using in electric vehicles(EVs).The development of anode materials with the high-capacity and good cycle stability to replace the conventional carbon-based materials has attracted more attention for the new generation of lithium-ion secondary batteries.In this dissertation,the research and development of anode materials of lithium-ion secondary batteries were reviewed. In order to improve the electrochemical performance of tin-based anode materials, tin-based anode materials were prepared and characterized by XRD,SEM and TEM measurements.The electrochemical performance of tin-based anode materials was evaluated by means of various techniques including galvanostatic method,cyclic voltammetry(CVs) and electrochemical impedance spectroscopy(EIS).The main content is presented as following:
     Because the limited inner space in lithium-ion secondary batteries,it is important to find the materials with a high capacity and a high tap density as anode materials. Based on the high crystal density of alloys,Sn-rich La-Co-Sn ternary alloys were prepared by arc melting.The relationship between the morphology,microstructure and electrochemical properties were analyzed.In particular,the effect of the crystallinity in Sn-rich La-Co-Sn ternary alloys on electrochemical properties was elucidated.On the basis of obtained results,all the as-cast La-Co-Sn ternary alloys have the same main phase of La_3Co_4Sn_(13) and low electrochemical capacities due to its large particle sizes.Among these alloys,the as-cast LaCoSn_4 alloy exhibits the best electrochemical performance.The ball-milling process results in the reduced crystallinity,and the enhanced electrochemical capacities as compared to the as-cast alloy.In particular,the LaCoSn_4 alloy,obtained after ball-milling for 16 h,provides the higher discharge capacity of 500 mAh/g after 40 cycles.Both the charge-transfer resistance and the Warburg impedance of the ball-milled alloy are much lower than that of the as-cast alloy,which are beneficial to the great improvement of the electrochemical performance.Although further studies are required to understand and increase the coulombic efficiency in the initial cycle,La-Co-Sn ternary alloys with the high crystal density can be considered as promising anode materials for lithium-ion secondary batteries.
     Tin-based oxides are good candidates as new electrode materials for lithium-ion secondary batteries.Unfortunately,the large volume change generated during the lithium alloying processes causes serious mechanical damage to the electrode, resulting in a large capacity loss.It was reported that small and uniform distribution of electrode materials may minimize the dimensional changes of the active materials and provide the improved performance of the electrode.In this work,spinel Co_2SnO_4 nanocrystals were successfully synthesized by one-pot hydrothermal method.The hydrothermal conditions,such as alkaline concentration,reaction temperature,and duration time on the structures and morphologies of the resultant products were investigated.The well crystallinity and pure phase of Co_2SnO_4 nanocrystals can be obtained with 2.0M of NaOH solution at 240℃for 48h.The as-prepared Co_2SnO_4 nanocrystals exhibit good electrochemical performance with initial coulombic efficiency of 71%,high reversible capacity of 1088.8 mAh/g and relatively good capacity retention.It is the first report about spinel Co_2SnO_4 nanocrystals prepared by hydrothermal method as anode materials for lithium-ion secondary batteries.
     Although the significant improvement in the electrochemical performance is obtained for nanocrystalline active materials,the poor electronic conductivity of Co_2SnO_4 nanocrystals still is retained.To resolve the problem,Co_2SnO_4-MWCNTs nanocomposites were prepared in this work.In the nanocomposites,3D conducting networks of MWCNTs would enhance the electronic conductivity of the nanocomposites.Moreover,MWCNTs may also provide an elastic buffer for releasing the strain of Co_2SnO_4 nanocrystals during the electrochemical processes.On the basis of obtained results,it is demonstrated that the Co_2SnO_4-MWCNTs nanocomposite(5:1) has highly reversible capacity(about 900 mAh/g) and capacity retention of 91.1%after 50 cycles,and improved rate capability.These results suggest that carbon nanotubes are beneficial for increasing electronic conductivity,and decreasing charge-transfer resistance in Co_2SnO_4-MWCNTs nanocomposites.
     Taking into account of the large volume change of tin during the electrochemical cycle,the novel tin-highly porous carbon composites were prepared using highly porous carbon materials as the matrix of tin nanoparticles.The tin-highly porous carbon composite with optimized tin contents(45.6%) has the high reversible capacity of 503 mAh/g and good capacity retention of 83.1%after 60 cycles,and good high rate discharge ability.The results indicate that the highly porous carbon is the suitable matrix for supporting tin nanoparticles because the highly porous carbon can ensure the high electronic conductivity of composites and buffer the volume change of tin nanoparticles during the electrochemical processes.
引文
[1].顾登平,童汝亭.化学电源.北京:高等教育出版社,1993.1-3
    [2].吴宇平,万春荣,姜长印等.锂离子二次电池.北京:化学工业出版社,2002.2-5
    [3].Chianelli R R.Microscopic studies of transition metal chalcogenides.J.Cryst.Growth,1976,34:239-244
    [4].Megahed S,Scrosati B.Lithium-ion rechargeable batteries.J.Power Sources,1994,51:79-104
    [5].Murphy D W,Broodhead J,Steel B C.Materials for advanced batteries.New York:Plenum Press.1980,145.
    [6].Lazzari M,Scrosati B.A cyclable lithium organic electrolyte cell based on two intercalation electrodes.J.Electrochem.Sot.,1980,127:773-774.
    [7].Auborn J J,Barberio Y L.A cyclable lithium intercalation cell without metallic lithium.J.Electrochem.Soc.,1987,134:638-641.
    [8].Nagaura T,Tazawa K.Lithium ion rechargeable battery.Prog.Batts.Sol.Cells,1990,9:209-217
    [9].Wakihara M.Recent developments in lithium-ion secondary batteries.Materials Science and Engineering,2001,33(4):109-134
    [10].Tarascon J M,Armand M.Issues and challenges facing re,chargeable lithium batteries.Nature,2001,414:359-367.
    [11].Jose L-T.Inorganic materials for the negative electrode of lithium-ion secondary batteries:state-of-art and future prospects.Materials Science and Engineering,2003,40:103-136
    [12].吴宇平,戴晓兵,马军旗等.锂离子二次电池—应用与实践.化学工业出版社:北京,2004.
    [13].Tran A D,Feikert J H,Song X,et al.Commercial carbonaceous materials as lithium intercalation anodes.J.Electrochem.Soc.,1995 142:3297-3302.
    [14].Wu G T,Wang C S,Zhang X B,et al.Structure and lithium insertion properties of carbon nanotubes.J.Electrochem.Soc.,1999,146:1696-1701
    [15].Wu Y P,Jiang C,Wan C,et al.Modified natural graphite as anode material for lithium-ion secondary batteries.J.Power Sources,2002,111:329-334
    [16].宋文生,胡成,尚尔超等.酚醛树脂包覆石墨作为锂离子二次电池炭负极材料的研究.炭素技术,2002,120(3):10-15
    [17].Wu X D,Wang Z X.,Chert L Q,et al.Surface compatibility in a carbon alloy composite and its influence on the electrochemical performance of Li/ion batteries.Carbon,2004,42:1965-1972
    [18].Wu Y S,Wang Y H,Lee Y H.Performance enhancement of spherical natural graphite by phenol resin in lithium-ion secondary batteries.J.Alloy.Compd.,2006,426:218-222.
    [19].Kim J S,Yoon W Y,Soo Y K.Charge-discharge properties of surface-modified carbon by
    [20].Yoshio M,Wang H Y,Fukuda K.Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion secondary batteries anode material.J.Electrochem.Soc.,2000,147(4):1245-1250.
    [21].Han Y S,Lee J Y.Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition.Electrochimica Acta,2003,48:1073-1079.
    [22].Zhang H L,Liu S H,Li F,et al.Electrochemical performance of pyrolytic carbon-coated natural graphite spheres.Carbon,2006,44:2212-2218.
    [23].章颂云,宋怀河,陈晓红.中间相沥青炭微球的嵌锂模型.电源技术,2002,26:176-179
    [24].Yao J,Wang G X,Aim J,et al.Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells.J.Power Sources,2003,114:292-297
    [25].Wang O,Li H,Huang X,et al.Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique.J.Electrochem.Soc.,2001,148:A737-A736
    [26].Takami N,Satoh A,Hara M,et al.Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes.J.Electrochem.Soc.,1995,142:2564-2571
    [27].Takami N,Satoh A,Hara M,et al.Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries.J.Electrochem.Soc.,1995,142:371-378
    [28].日本炭素材料协会编.新炭材料入门.中国金属学会炭素材料专业委员会译,沈阳,1-10
    [29].Mabuchi A.Charge-discharge characteristics of the mesocarbon micrbaeds heat-treated at different temperatures.J.Electrochem.Soc.,1995,142:1401-1406
    [30].Fong R,Saken U V,Dahn J R.Studies of lithium intercalation into carbons using monaqueous electrochemical cells.J.Electrochem.Sot.,1990,137:2009-2013
    [31].Xing W,Xue J S,Zheng T,et al.Correlation between lithium intercalation capacity and microstructure in hard carbons.J.Electrochem.Soc.,1996,143(11):3482-3491
    [32].Peled E,Eshkenazi V,Rosenberg Y.Study of lithium insertion in hard carbon made from cotton wool.J.Power Sources,1998,76:153-158
    [33].Fey G T K,Chen C L.High-capacity carbons for lithium-ion secondary batteries from rice husk.J.Power Sources,2001,97-98:47-51
    [34].西美绪.用作锂离子二次电池负极的活性物质炭.新型碳材料,1993,3:46-51
    [35].Qin X,Durbach S,Wu C T.Electrochemical characterization on RuO_2/carbon nanotubes composite electrodes for high energy density supercapacitors.Carbon 2004,42:451-453
    [36].Scott R W J,Mamak M,Kwong K.Making sense out of aulfated tin dioxide mesostructures.J.Mater.Chem.,2003,13:1406-1412
    [37].Winter M,Besenhard J O.Electrochemical lithiation of tin and tin-based intermetallics and composites.Electrochimica Acta.1999,45:31-50
    [38]. Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion secondary batteries. J. Power Sources, 1997, 68: 87-90
    [39]. Winter M, Besenhard J O. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998,10: 725-763
    [40]. Kepler K. D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system. J. Power Sources, 1999, 81-82: 383-387
    [41]. Larcher D, Beaulieu L Y, Macneil D D, et al. In situ X-ray study of electrochemical reactions with lithium of tin(II) phosphate chloride. J. Electrochem. Soc, 2000, 147 (5): 1658-1662
    [42]. Vaughey J T, Kepler K D, Benedek R, et al. NiAs-versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li_2CuSn. Electrochem. Commun., 1999,1:517-521
    [43]. Wolfenstine J, Campos S, Foster D, et al. Nano-scale Cu_6Sn_5 anodes. J. Power Sources, 2002,109: 230-233
    [44]. Wang G X, Sun L, Bradhurst D H, et al. Lithium storage properties of nanocrystalline eta-Cu_6Sn_5 alloys prepared by ball-milling. J. Alloy. Compd., 2000,299: L12-L15
    [45]. Liu Y, Xie J Y, Yang J. Morphology-stable alloy/C composites for lithium insertion. J. Power Sources, 2003, 119-121: 572-575
    [46]. Wolfenstine J, Campos S. Effect of Fe on the cycle life of Cu_6Sn_5 anodes. Materials Letters, 2002, 57: 24-27
    [47]. Beattie S D, Dahn J R. Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion secondary batteries. J. Electrochem. Soc, 2003 , 150 (7): A894-A898
    [48]. Ehrlich G M, Durand C, Chen X, et al. Metallic negative electrode materials for rechargeable nonaqueous batteries. J. Electrochem. Soc., 2000,147(3): 886-891
    [49]. Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries. Solid State Ionics, 2003,160: 235-240
    [50]. Dong Q F , Wu C Z , Jin M G, et al. Preparation and performance of nickel-tin alloys used as anodes for lithium-ion battery. Solid State Ionics, 2004,167: 49-54
    [51]. Lee H Y, Jang S W, Lee S M, et al. Lithium storage properties of nanocrystalline Ni_3Sn_4 alloys prepared by mechanical alloying. J. Power Sources, 2002,112: 8-12
    [52]. Mukaibo H, Sumi T, Yokoshima T, et al. Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries. Electrochem. Solid State Lett., 2003,6(10):A218-220
    [53]. Hassoun J, Panero S, Scrosati B. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium-ion secondary batteries. J. Power Sources, 2006,160: 1336-1341
    [54]. Zhang J J, Xia Y Y. Co-Sn alloys as negative electrode materials for rechargeable lithium batteries. J. Electrochem. Soc, 2006, 153: A1466-A1471
    [55].Tamura N,Kato Z Y,Mikami A,et al.Study on Sn-Co alloy anodes for lithium secondary batteries.J.Electrochem.Soc.,2006,153:A1626-A1632
    [56].Tamura N,Fujimoto M,Kamino M,ct al.Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries,Electrochimica Acta,2004,49:1949-1956
    [57].Ke F S,Huang L,Wei HB,et al.Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion secondary batteries.J.Power Sources,2007,170:450-455
    [58].Xie J,Zhao X B,Gao G S,et al.Electrochemical performance of nanostructured amorphous Co_3Sn_2 intcrmctallic compound prepared by a solvothermal route.J.Power Sources,2007,164:386-389
    [59].Yang J,Wachtler M,Winter M,et al.Sub-microcrystallinc Sn and Sn-SnSb powders as lithium storage materials for lithium-ion secondary batteries.Electrochem.Solid State Lett.,1999,2(4):161-163
    [60].Yang J,Takeda Y,Imanishi N,et al.Intermetallic SnSb_x compounds for lithium insertion hosts.Solid State Ionics,2000,133:189-194
    [61].Rom I,Wachtler M,Papst I,et al.Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion secondary batteries.Solid State Ionics,2001,143:329-336
    [62].Zhao H L,Ng D H L,Lu Z Q,et al.Carbothermal synthesis of Sn_xSb anode material for secondary lithium-ion battery.J.Alloy.Compd.,2005,395:192-200
    [63].Trifonova A,Waehtler M,Wagner M R,et al.Influence of the reduetive preparation conditions on the morphology and on the electrochemieal performance of Sn/SnSb.Solid State Ionics,2004,168:51-59
    [64].Needham S A,Wang G X,Liu H K.Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells.J.Alls.Compoun,2005,400:234-238
    [65].Chen W X,Lee J Y,Liu Z L.Electrochemical lithiation and de-lithiation of carbon nanotube-Sn_2Sb nanocomposites.Electrochem.Commun.,2002,4:260-265
    [66].Mao O,Dahn J R.Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries.J.Electrochem.Soc.,1999,146(2):414-422
    [67].Sonoda T,Kobayashi H,Komoto K,et al.Advanced lithium secondary batteries using tin-iron alloy negative electrodes prepared by electroplating.Electrochemistry,2003,71:1096-1098
    [68].Yin J T,Wada M,Yoshida S,et al.New Ag-Sn alloy anode materials for lithium-ion secondary batteries.J.Elcetrochem.Soc.,2003,150(8):A 1129-A 1139
    [69].Yin J T,Wada M,Tanase S,et al.Nanoerystallinc Ag-Fe-Sn anode materials for Li-ion batteries.J.Electrochem.Soc.,2004,151(4):A583-A589
    [70].Kim H,Kim Y J,Kim D G,et al.Mechanochemical synthesis and electrochemical characteristics of Mg-Sn as an anode material for Li-ion batteries,Solid State Ionics,2001,144:41-49
    [71].Fang L,Chowdari B V R.Sn-Ca amorphous alloy as anode for lithium-ion secondary batteries,J.Power Sources,2001,97-98:181-184
    [72].Sakaguchi H,Honda H,Akasaka Y,et al.Ce-Sn intermetallic compounds as new anode materials for rechargeable lithium batteries.J.Power Sources,2003,119-121:50-55
    [73].Beaulieu L Y,Dahn J R.The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying.J.Electrochem.Soc.,2000,147(9):3237-3241
    [74].Yoon S,Lee J-M,Kim H,et al.A Sn-Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries.Electrochimica Acta,2009,54:2699-2705
    [75].Mao O,Dahn J R.Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries,J.Electrochem.Soc.,1999,146(2):405-413
    [76].Satoshi M,Yoshihiro K.United States Patent Application,20060 121 348,2006.
    [77].Fan Q,Chupas P J,Whittingham M S.Characteerization of amorphous and crystalline tin-cobalt anodes.Electrochem.Solid-State Lett.,2007,10:A274-A278
    [78].Dahn J R,Mar R E,Abouzeid A,Combinatorial study of Sn_(1-x)Co_x(0<x<0.6) and [Sn_(0.55)Co_(0.45)]_(1-y)C_y(0<y<0.5) alloys negative electrodes materials for lithium-ion secondary batteries.J.Electrochem.Soc.,2006,153(2):A361-A365
    [79].Todd A D W,Mar R E,Dahn J R.Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion secondary batteries.J.Electrochem.Soc.,2006,153(10):A1998-A2005
    [80].Hassoun J,Ochal P,Panero S,et al.The effect of CoSn/CoSn_2 phase ratio on the electrochemical behaviour of Sn_(40)Co_(40)C_(20) ternary alloy electrodes in lithium cells.J.Power Sources,2008,180:568-575
    [81].Hassoun J,Panero S,Mulas G,et al.An electrochemical investigation ofa Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries.J.Power Sources,2007,171:928-931
    [82].Ferguson P P,Todd A D W,Dahn J R.Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion secondary batteries,Electrochem.Commun.,2008,10:25-31
    [83].Li H,Wang Q,Shi L H,et al.Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery.Chem.Mater.,2002,14:103-108
    [84].Courtney I A.The physics and chemistry of metal oxide composites as anode materials for lithium-ion secondary batteries.Dissertation for Ph.D,Dalhousie University,1999.
    [85].Courtney I A,Dahn J R.Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites.J.Electrochem.Soc.,1997,144(6):2045-2052.
    [86].Courtney I A,McKiunon W R,Dahn J R.On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium.J.Electrochem.Soc.,1999,146(1):59-68.
    [87].Li H,Huang X,Chen L.Anodes based on oxide materials for lithium rechargeable batteries.Solid State lonics,1999,123:189-197.
    [88].Zhang R;Lee J Y;Liu Z L,Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion secondary batteries. J. Power Sources, 112 (2002) 596-605.
    [89]. Bose A C, Kalpana I, Thangadurai P, et al. Synthesis and characterization of nanocrystalline SnO_2 and fabrication of lithium cell using nano-SnO_2. J. Power Sources, 2002, 107:138-141.
    [90]. Wang T, Ma Z, Xu F, et al. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials. Electrochem. Commun., 2003, 5: 599-602.
    [91]. Aurbach D, Nimberger A, Markovsky B, et al. Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem. Mater., 2002, 14:4155-4163.
    [92]. Zhu J; Lu Z; Aruna S T, et al. Sonochemical synthesis of SnO_2 nanoparticles and their preliminary study as Li insertion electrodes. Chem. Mater., 2000,12: 2557-2566.
    [93]. Idota Y, Kubota T, Matsufuji A, et al. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 1997,276: 1395-1397.
    [94]. Machill S, Shodai T, Sakurai Y, et al. Electrochemical characterization of tin based composite oxides as negative electrodes for lithium batteries. J. Power Sources, 1998, 73: 216-223.
    [95]. Gejke C, Zanghellini E, Fransson L, et al. The effect of lithium insertion on the structure of tin oxide-based glasses. J. Power Sources, 2001, 97-97: 226-228.
    [96]. He Z Q, Li X H, Xiong L Z, et al. Wet chemical synthesis of tin oxide-based material for lithium-ion secondary batteries anodes. Mater. Res. Bull., 2005, 40: 861-868.
    [97]. Benm M, Irvine J T S. Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries. Electrochim. Acta, 2002, 47: 1727-1738.
    [98]. Rong A, Gao X P, Li G R, et al. Hydrothermal synthesis of Zn_2SnO_4 as anode materials for Li-ion battery. J. Phys. Chem. B 2006,110:14754-14760
    [99]. Connor P A, Irvine J T S. Novel tin oxide spinel-based anodes for Li-ion batteries. J. Power Sources, 2001, (97-98): 223-225
    [100]. Connor P A, Irvine J T S. Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. Electrochim. Acta., 2002,47: 2885-2892
    [101]. Huang F, Yuan Z Y, Zhan H, et al. Synthesis and electrochemical performance of nanosized magnesium tin composite oxides. Mater. Chem. Phys., 2004, 83: 16-22
    [102]. Alcantara R, Ortiz G F, Lavela P, et al. Electrochemical and ~(119)Sn Mossbauer of the reaction of Co_2SnO_4 with lithium. Electrochem. Commun., 2006, 8: 731-736
    [103]. Sharma N, Rao G V S, Chowdari B V R. Anodic properties of tin oxides with pryochlore structure for lithium-ion secondary batteries. J. Power Sources 2006,159: 340-344
    [104]. Sharma N, Shaju K M, Rao G V S, et al. Sol-gel derived nano-crystalline CaSnO_3 as high capacity anode material for Li-ion batteries. Electrochem. Commun., 2002, 4: 947-952
    [105]. Huang F, Yuan Z Y, Zhan H, et al. A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries. Materials letters, 2003, 57: 3341-3345
    [106].Wang G X,Ahn J H,Lindsay M J,et al.Graphite-tin composites as anode materials for lithium-ion secondary batteries.J.Power Scources,2001,97-98:211-215
    [107].Wang G X,Yao J,Liu H K.Electrochemical characteristics of tin-coated MCMB graphite as anode in lithium-ion cells.Electrochimica Acta,2004,50:517-522
    [108].Wang G X,Yao J,Ahn J H,et al.Electrochemical properties of nanosized Sn-coated graphite anodes in lithium-ion cells.J.Appl.Electrochem.,2004,34:189-190
    [109].Zhang R,Lee J Y,Liu Z L.Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion secondary batteries.J.Power Sources,2002,112:596-605
    [110].Lee J Y,Zhang R,Liu Z.Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO.EIectrochem.Solid-State Lett.,2000,3:167-170
    [111].Chang C C,Liu S J,Wu J J.Nano-tin oxide/tin particles on a graphite surface as an anode material for lithium-ion secondary batteries.J.Phys.Chem.C,2007,111:16423-16427
    [112].Egashira M,Takatsuji H,Okada S,et al.Properties of containing Sn nanoparticles activated carbon fibeer for a negative electrode in lithium batteries.J.Power Sources,2002,107:56-60
    [113].Grigoriants I,Sominski L,Li H,et al.The use of tin-decorated mesoporous carbon as an anode material for rechable lithium batteries.Chem.Commun.,2005,7:921-923
    [114].Grigoriants I,Soffer A,Salitra Q,et al.Nanoparticles of tin confined in microporous carbon matrices as anode materials for Li batteries.J.Power Sources,2005,146:185-190
    [115].Fan J,Wang T,Yu C,et al.Ordered nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion secondary batteries.Adv.Mater.,2004,16:1432-1436
    [116].Derrien G,Hassoun J,Panero S,et al.Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion secondary batteries.Adv.Mater.,2007,19:2336-2340
    [117].Hassoun J,Derrien G,Panero S,et al.A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance.Adv.Mater.,2008,20:3169-3175
    [118].Tirado J L,Santamari A,Ortiz G F,et al.Tin-carbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO_2.Carbon,2007,45:1396-1409
    [119].郑妙生,宋怀河,章颂云等.Sn/C复合材料的制备及其电化学性能的研究.电源技术,2004.28:334-337
    [120].Read J,Foster D,Wolfenstine J,et al.SnO_2-carbon composites for lithium-ion battery anodes.J.Power Sources,2001,96:277-281
    [121].Morishita T,Hirabayashi T,Okuni T,et al.Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery.J.Power Sources,2006,160:638-644
    [122].Noh M,Kwon Y,Lee H,et al.Amorphous carbon-coatod tin anode material for lithium secondary battery.Chem.Mater.,2005,17:1926-1929
    [123].Lee K T,Jung Y S,Oh S M.Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondarybatteries.J.Am.Chem.Soc.,2003,125:5652-5653
    [124].Cui G L,Hu Y S,Zhi L J,et al.A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries.Small,2007,3:2066-2069
    [125].王忠,田文怀,李星国.锂离子二次电池锡基复合负极材料的研究进展.电源技术,2007,31:926-929
    [126].Niu J J,Lee J Y.Improvement of usable capacity and cyclability of silicon-based anode materials for lithium batteries by sol-gel graphite matrix.Electrochem.Solid-State Lett.,2002,5(6):A107-A110.
    [127].Dimov N,Kugino S,Yoshio M.Mixed silicon-graphite as anode material for lithium-ion secondary batteries influence of preparation conditions on the properties of the material.J.Power Sources,2004,136:108-114.
    [128].Wang G X,Yao J,Liu H K.Characterization of nanocrystalline Si-MCMB composite anode materials.Electrochem.Solid-State Lett.,2004,7(8):A250-A253.
    [129].Lee H Y,Lee S M.Carbon-coated dispersed oxides/graphite composites as anode material for lithium-ion secondary batteries.Electrochem.Commun.,2004,6:465-469.
    [130].Zhang X W,Patil P K,Wang C S,et al.Electrochemical performance of lithium-ion secondary batteries,nano-silicon-based,disordered carbon composite anodes with different microstructures.J.Power Sources,2004,125:206-213.
    [131].Kim S,Kumta P N.Hith capacity Si/C nanocomposite anodes for Li-ion batteries.J.Power Sources,2004,136:145-149.
    [132].Datta M K,Kumta P N.Silicon and carbon based composite anodes for lithium-ion secondary batteries.J.Power Sources,2006,158:557-563.
    [133].Guo Z P,Wang J Z,Liu H K,et al.Study of silicon/polypyrrole composite as anode materials for Li-ion batteries.J.Power Sources,2005,146:448-451.
    [134].Patel P,Kim S,Kumta P N.Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion secondary batteries.Materials Science and Engineering B,2005,116:347-352.
    [135].Guo Z P,Zhao Z W,Liu H K,et al.Lithium insertion in Si-TiC nanocomposite by high-energy mechanical milling.J.Power Sources,2005,146:190-194.
    [136].Kim S,Blomgren G E,Kumta P N.Nanostructured Si/TiB_2 composite anodes for Li-ion batteries.Electrochem.Solid-State Lett.,2003,6(8):A 157-A161.
    [137].Kim S,Kumta P N,Blomgren G E.Si/TiN nanocomposites novel anode materials for Li-ion batteries.Electrochem.Solid-State Lett.,2000,3(11):493-496.
    [138].Hwang S-M,Lee H-Y,Jang S-W,et al.Lithium insertion in SiAg powders produced by mechanical alloying.Electrochem.Solid-State Letters,2000,4(7):A97-A 100.
    [139].Bourderau S,Brousse T,Schleich D M.Amorphous silicon as a possible anode material for Li-ion batteries.J.Power Sources,1999,81-82:233-236.
    [140].Maranchi J P,Hepp A F,Kumta P N.High capacity reversible silicon thin-film anodes for lithium-ion secondary batteries,Electrochem.Solid-State Lett.,2003,6(9):A198-A201
    [141].Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion secondary batteries.Nature,2000,407:496-499
    [142].Laruelle A S,Grugeon S,Poizot P.On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential.J.Electrochem.Soc.,2002,149(5):A627-A634.
    [143].Tang Y F,Yang L,Qiu Z,et al.Preparation and electrochemical lithium storage of flower-like spinel Li_4Ti_5O_(12) consisting of nanosheets.Electrochem.Commun.,2008,10:1513-1516
    [144].Park K S,Benayad A,Kang D J,et al.Nitridation-driven conductive Li_4Ti_5O_(12) for lithium-ion secondary batteries.J.Am.Chem.Soc.,2008,130:14930-14931
    [145].Jiang C H,Hosono E,Ichihara M,et al.Synthesis of nanocrystalline Li_4Ti_5O_(12) by chemical lithiation of anatase nanocrystals and postannealing.J.Electrochem.Soc.,2008,155:A553-A556
    [146].Capsoni D,Bini M,Massarotti V.Cations distribution and valence states in Mn-substituted Li4TiSO12 structure.Chem.Mater.,2008,20:4291-4298
    [147].Wang D H,Choi DW,Yang Z G.Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO_2.Chem.Mater.,2008,20:3435-3442
    [148].Nishijima M,Kagohashi T,Imanishi M.Synthesis and electrochemical studies of a new anode material Li_(3-x)Co_xN.Solid State Ionics,1996,83(1-2):107-111.
    [149].Takeda Y,Nishijima M,Yamahata M.Lithium secondary batteries using a lithiumcobalt nitride Li_(2.6)Co_(0.4)N as the anode.Solid State Ionics,2000,130(1-2):61-69.
    [150].Souza D C S,Pralong V,Jacobson A J.A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry.Science,2002,296(14):2012-2015.
    [151].Pralong V,Souza D C S,Leung K T.Reversible lithium uptake by CoP_3 at low potential role of the anion.Electrochem.Commun.,2002,4(6):516-520.
    [152].Alcantara J L,Tirado J,Jumas C.Electrochemical reaction of lithium with CoP_3.J.Power Sources,2002,109(2):308-312.
    [153].Gillot F,Monconduit L,Doublet M L.Electrochemical Behaviors of binary and ternary manganese phosphides.Chem.Mater.2005,17:5817-5823
    [154].Gillot F,Monoconduit L,Morcrette M,et al.On the reactivity of Li_(8-y)Mn_yP_4 toward lithium.Chem.Mater.2005,17:3627-363
    [1]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414:359-367
    [2]Dhan J R,Zheng T,Liu Y H,et al.Mechanisms for lithium insertion in carbonaceous materials,Science,1995,270:590-593.
    [3]Winter M,Besenhard J O,Spahr M E,et al.Insertion electrode materials for rechargeable lithium batteries.Adv.Mater.1998,10:725-763.
    [4]Idota Y,Kubota T,Matsufuji A,et al.Tin-based amorphous oxide:a high-capacity lithium-ion-storage material.Science,1997,276:1395-1397.
    [5]Yang J,Winter M,Besenhard J O.Small particle size multiphase Li-alloy anodes for lithium-ionbatteries.Solid State Ionics,1996,90:281-287.
    [6]Courtney I A,Dahn J R.Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites.J.Electrochem.Soc.,1997,144(6):2045-2052.
    [7]Kim I S,Vaughey J T,Auciello O.Thin-film Cu_6Sn_5 electrodes:synthesis,properties,and current collector interactions.J.Electrochem.Soc.2008,155:A448-A451.
    [8]Fang L,Chowdari B V R.Sn-Ca amorphous alloy as anode for lithium-ion secondary batteries,J.Power Sources,2001,97-98:181-184
    [9]Kim H,Kim Y J,Kim D G,et al.Mechanochemical synthesis and electrochemical characteristics of Mg-Sn as an anode material for Li-ion batteries,Solid State Ionics,2001,144:41-49
    [10]Sonoda T,Kobayashi H,Komoto K,et al.Advanced lithium secondary batteries using tin-iron alloy negative electrodes prepared by electroplating.Electrochemistry,2003,71:1096-1098
    [11]Mukaibo H,Sumi T,Yokoshima T,et al.Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries.Electrochem.Solid State Lett.,2003,6(10):A218-220
    [12]Tamura N,Kato Z Y,Mikami A,et al.Study on Sn-Co alloy anodes for lithium secondary batteries.J.Electrochem.Soc.,2006,153:A1626-A1632
    [13]Ke F S,Huang L,Wei HB,et al.Fabrication and properties of macroporous fin-cobalt alloy film electrodes for lithium-ion secondary batteries.J.Power Sources,2007,170:450-455
    [14]Larcher D,Beaulieu L Y,Macneil D D,et al.In situ X-ray study of electrochemical reactions with lithium of tin(Ⅱ) phosphate chloride.J.Electrochem.Soc.,2000,147(5):1658-1662
    [15] Beattie S D, Dahn J R. Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion secondary batteries. J. Electrochem. Soc, 2003 , 150 (7): A894-A898
    [16] Chen W X, Lee J Y, Liu Z L. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn_2Sb nanocomposites. Electrochem. Commun., 2002,4: 260-265.
    [17] Sakaguchi H , Honda H , Akasaka Y, et al. Ce-Sn intermetallic compounds as new anode materials for rechargeable lithium batteries. J. Power Sources, 2003, 119-121: 50-55
    [18] Beaulieu L Y, Dahn J R. The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying. J. Electrochem. Soc, 2000,147(9): 3237-3241
    [19] Mao O, Dahn J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries, J. Electrochem. Soc, 1999, 146 (2): 405-413
    [20] Matsuno S, Kohno T, Takami N, et al. La_3Ni_2Sn_7 ternary intermetallic phase for lithium insertion and dainsertion. Electrochem. Solid-State Lett. 8 (2005) A234-A233
    [21] Beattie S D, Dahn J R. Combinatorial electrodeposition of ternary Cu-Sn-Zn alloys. J. Electrochem. Soc. 152 (2005) C542-C548
    [22] Ronnebro E, Yin J T, Kitano A, et al. Reaction mechanism of a Ag_(36.4)Sb_(15.6)Sn_(48) nanocomposite electrode for advanced Li-ion batteries. J. Electrochem. Soc 152 (2005)A152-A157
    [23] Zhang J J, Zhang X, Xia Y Y. Co-doped Co_xCu_(6-x)Sn_5 alloys as negative electrode materials for rechargeable lithium batteries. J. Electrochem. Soc, 2007,154: A7-A13
    [24] Vaughey J T, Owejan J, Thackeray M M. Substituted M_xCu_(6-x)Sn_5 compounds (M=Fe,Co,Ni,Zn) designing multicomponent intermetallic electrodes for lithium batteries. Electrochem. Solid State Lett., 2007,10: A220-A224
    [25] Guo H, Zhao H L, Ha X, et al. A novel Sn_xSbNi composite as anode materials for Li rechargeable batteries. J. Power Sources, 2007,174: 921-926.
    [26] Zhang X N, Huang P X, Li G R, et al. Si-AB_5 composites as anode materials for lithium-ion secondary batteries. Electrochem. Commun., 2007,9: 713-717.
    [27] Bousquet C M I, Lippens P E, Aldon L, et al. In situ ~(119)Sn Mossbauer effect study of Li-CoSn_2 electrochemical system. Chem. Mater., 2006,18: 6442-6447
    [28] Thomas E L, Lee H O, Bankston A N, et al. Crystal growth, transport, and magnetic properties of Ln_3Co_4Sn_(13) (Ln=La, Ce) with a perovskite-like structure. J. Solid State Chem., 2006,179: 1642-1649.
    [29] Nazar L F, Goward G, Leroux F, et al. Nanostructured materials for energy storage. Int. J. Inorg. Chem. 3 (2001) 191-200.
    [30] Pereira N, Klein L C, Amatucci G G. Particle size and multiphase effects on cycling stability using tin-based materials. Solid State Ionics, 2004, 167: 29-40
    [31] Ning L J, Wu N P, Fang S B, et al. Materials prepared for lithium-ion secondary batteries by mechanochemical methods. J. Power Sources, 2004, 133: 229-242.
    [32]Guo H,Zhao H L,Jia X D.Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries.Electrochem.Commun.,2007,9:2207-2211.
    [33]Shin H C,Liu M.Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries.Adv.Funt.Mater.,2005,15:582-586.
    [34]Wang G X,Ahn J H,Yao J,et al.Nanostructured Si-C composite anodes for lithium-ion secondary batteries.Electrochem.Commun.,2004,6:689-692.
    [35]Sharma N,Plevert J,Subba G V,et al.Tin Oxides with Hollandite Structure as Anodes for Lithium-ion secondary batteries.Chem.Mater.,2005,17:4700-4710
    [36]Park M S,Kang Y M,Wang G X,et al.The effect of morphological modification on the electrochemical properties of SnO_2 nanomaterials.Adv.Funt.Mater.,2008,18:455-461.
    [1]Idota Y,Kubota T,Matsufuji A,et al.Tin-based amorphous oxide:a high-capacity lithium-ion-storage material.Science,1997,276:1395-1397.
    [2]Poizot P,Laruele S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion secondary batteries.Nature,2000,407:496-499.
    [3]Courtney I A,Dahn J R,Key factors controlling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6 glass.J.Electrochem.Soc.144(1997) 2943-2948
    [4]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414:359-367.
    [5]Bruce P G,Scrosati B,Tarascon J M.Nanomaterials for rechargeable lithium batteries.Angew.Chem.Int.Ed.,2008,47:2930-2946.
    [6]Gao X P,Bao J L,Pan G L,et al.Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery.J.Phys.Chem.B 2004,108:5547-5551
    [7]Connor P A,Irvine J T S.Novel tin oxide spinel-based anodes for Li-ion batteries.J.Power Sources,2001,97-98:223-225
    [8]Connor P A,Irvine J T S.Combined X-ray study of lithium(tin) cobalt oxide matrix negative electrodes for Li-ion batteries.Electrochim.Acta,2002,47:2885-2892
    [9]Rong A,Gao X P,Li G R,et al.Hydrothermal synthesis of Zn_2SnO_4 as anode materials for Li-ion battery.J.Phys.Chem.B 2006,110:14754-14760.
    [10]Ai C C,Yin M C,Wang C W,et al.Synthesis and characterization of spinel type ZnCo_2O_4as a novel anode material for lithium-ion secondary batteries.J.Mater.Sci.39(2004)1077-1079
    [11]Sharma Y,Sharma N,Rao G V S,et al.Lithium recycling behaviour of nano-phase-CuCo_2O_4as anode for lithium-ion secondary batteries.J.Power Sources,2007,173:495-501.
    [12]Sharma Y,Sharma N,Rao G V S,et al.Studies on spinel cobaltites,FeCo_2O_4 and MgCo_2O_4 as anodes for Li-ion batteries.Solid State Ionics,2008,179:587-597
    [13]Nuli Y N,Zhang P,Guo Z P,et al.NiCo_2O_4/C nanocomposite as a highly reversible anode material for lithium-ion secondary batteries.Electrochem.Solid-State Lett.,2008,11:A64-A67
    [14]Sharma Y,Sharma N,Subba G V,et al.Nanophase ZnCo_2O_4 as a high performance anode material for Li-ion batteries.Adv.Funct.Mater.,2007,17:2855-2861
    [15]Chadwick A V,Savin S L P,Fiddy S,et al.Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo_2O_4:X-ray absorption spectroscopic study.J.Phys.Chem.C 2007,111:4636-4642.
    [16]Lavela P,Tirado J L.CoFe_2O_4 and NiFe_2O_4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries.J.Power Sources,2007,172:379-387.
    [17]Sharma Y,Sharma N,Rao G V S,et al.Li-storage and cyclability of urea combustion derived ZnFe_2O_4 as anode for Li-ion batteries.Electrochim.Acta,2008,53:2380-2385.
    [18]Tabuchi M,Nabeshima Y,Shikano M,et al.Optimizing chemical composition and preparation condition for Fe-substituted Li_2MnO_3 positive electrode material.J.Electrochem.Soc.154(2007) A638-A648
    [19]Liu Q,Li Y X,Ha Z L,et al.One-step hydrothermal routine for pure-phased orthorhombic LiMnO_2 for Li ion battery application.Elextrochim.Acta,2008,53:7298-7302.
    [20]Li J,Zhou Z,Zhu L,et al.Salt effects on crystallization of titanate and the tailoring of its nanostructures.J.Phys.Chem.C 2007,111:16768-16773.
    [21]Zhong S L,Song J M,Zhang S,et al.Template-free hydrothermal synthesis and formation mechanism of hematite microrings.J.Phys.Chem.C 2008,112:19916-19921.
    [22]Sharma N,Rao G V S,Chowdari B V R.Anodic properties of tin oxides with py-rochlore structure for lithium-ion secondary batteries.J.Power Sources,2006,159:340-344.
    [23]Sharma N,Plevert J,Rao G V S,et al.Tin oxides with hollandite structure as anodes for lithium-ion secondary batteries.Chem.Mater.,2005,17:4700-4710
    [24]Lavela P,Vicente C P,Tirado J L,et al.Structural characterization and electrochemical reactions with lithium of Cu_2CoTi_xSn_(3-x)S_8 solid solutions.Chem.Mater.,1999,11:2687-2693
    [25]Poizot P,Laurelle S,Grugeon S,et al.Searching for new anode materials for the Li-ion technology:time to deviate from the usual path.J.Power Sources,2001,97-98:235-239
    [26]Choi H C,Lee S Y,Kim S B,et al.Local structural characterization for electrochemical insertion-extraction of lithium into CoO with X-ray absorption spectroscopy J.Phys.Chem.B 106(2002) 9252-9260.
    [27]Nuli Y,Zeng R,Zhang P,et al.Controlled synthesis of α-Fe_2O_3 nanostructures and their size-dependent electrochemical properties for lithium-ion secondary batteries.J.Power Sources,2008,184:456-461
    [28]Wu X L,Guo Y G,Wan L J,et al.α-Fe_2O_3 nanostructures:inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage.J.Phys.Chem.C 2008,112:16824-16829.
    [29]Brousse T,Retoux R,Herterich U,et al.Thin-film crystalline SnO_2-lithium electrodes.J.Electrochem.Soc.145(1998) 1-4
    [30]Kim C,Nob M,Choi M,et al.Critical size of a nano SnO_2 electrode for Li-secondary battery.Chem.Mater.,2005,17:3297-3301
    [31]Aurbach D,Nimberger A,Markovsky B,et al.Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries.Chem.Mater.,2002,14:4155-4163.
    [32]Marcinek M,Hardwick L J,Richardson T J,et al.Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries.J.Power Sources,2007,173:965-971.
    [33]Chang C C,Liu S J,Wu J J,et al.Nano-tin oxide/tin particles on a graphite surface as an anode material for lithium-ion secondary batteries.J.Phys.Chem.C 2007,111:16423-16427
    [34]Zhang C Q,Tu J P,Huang X H,et al.Preparation and electrochemical performances of nanoscale FeSn_2 as anode material for lithium-ion secondary batteries.J.Alloys Compds.,2008,457:81-85
    [35]Lavela P,Ortiz G F,Tirado J L,et al.High-performance transition metal mixed oxides in conversion electrodes:a combined spectroscopic and electrochemical study.J.Phys.Chem.C 2007,111:14238-14246
    [36]Xue M Z,Fu Z W.The reinvestigation on electrochemical reaction mechanism of stannic oxide thin film with lithium.Electrochem.Solid-State Lett.9(2006) A468-A470
    [37]Alcantara R,Ortiz G F,Lavela P,et al.Electrochemical and ~(119)Sn M(o|¨)ssbauer studies of the reaction of Co_2SnO_4 with lithium.Electrochem.Commun.,2006,8:731-736
    [38]Courtney I A,Dahn J R.Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites.J.Electrochem.Soc.144(1997) 2045-2052
    [1]Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries.J.Electrochem.Soc.,1997,144:1188-1194
    [2]Hang J J,Jiang Z Y.The preparation and characgerization of Li_4Ti_5O_(12)/carbon nano-tubes for lithium-ion secondary batteries.Electrochim.Acta,2008,53:7756-7759
    [3]Zhang S F,Hu J S,Zhou L S,et al.Introducing duai functional CNT networks into CuO nanomicrospheres toward supperior electrode materials for lithium-ion secondary batteries.Chem.Mater.,2008,20:3617-3622
    [4]Hu Y S,Cakan R D,Titirici M M,et al.Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion secondary batteries.Angew.Chem.Int.Ed.,2008,47:1645-1649
    [5]Derrien G,Hassoun J,Panero S,et al.Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion secondary batteries.Adv.Mater.,2007,19:2336-2340
    [6]Ng S H,Wang J Z,Wexler D,et al.Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion secondary batteries.Angew.Chem.Int.Ed.,2006,45:6896-6899
    [7]Kavan L,Exnar I,Cech J,et al.Enhancement of electrochemical activity of LiFePO_4(olivine) by amphiphilic Ru-bipyridine complex anchored to a carbon nanotube.Chem.Mater.,2007,19:4716-4721
    [8]Badway F,Mansour A N,Pereira N,et al.Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices.Chem.Mater.,2007,19:4129-4141
    [9]Liu H,Cao Q,Fu L J,et al.Doping effects of zinc on LiFePO_4 cathode material for lithium-ion secondary batteries.Electrochem.Commun.,2006,8:1553-1557
    [10]Chung S-Y,Bloking J T,Chang Y-M,Electronically conductive phospho-olivines as lithium storage electrodes.Nat.Mater.2002,1:123-128
    [11]Kubiak P,Garcia A,Womes M,et al.Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion:influence of the substitutions Ti/V,Ti/Mn,Ti/Fe.J.Power Sources,2003,119-121:626-630
    [12]Chen C H,Vaughey J T,Jansen A N,et al.Studies of Mg-substituted Li_(4-x)Mg_xTi_5O_(12)spinel electrodes(0<x<1) for lithium batteries.J.Electrochem.Soc.,2001,148(1):A102-A104
    [13]Taberna L,Mitra S,Piozot P,et al.High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications.Nat.Mater.,2006,5:567-573
    [14]Yamada A,Chung S C,Hinikuma K.Optimized LiFePO_4 for lithium battery cathodes.J.Electrochem.Soc.,2001,148:A224-A229
    [15]Arica A S,Bruce P,Scrosati B,et al.Nanostructured materials for advanced energy conversion and storage devices.Nat.Mater.,2005,4:366-377
    [16]Li H,Richter G,Maier J.Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries.Adv.Mater.2003,15:736-739
    [17]Tarascon J M,Delacourt C,Prakash A S,et al.Various strategies to tune the ionic/electronic properties of electrode materials.Dalton Trans.2004,2988-2994
    [18]Seayad A M,Antonelli D M.Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials.Adv.Mater.2004,16:765-777
    [19]He X,Antonelli D.Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves.Angew Chem.,Int.Ed.2002,41:214-229
    [20]Rowsell J L C,Yaghi O M.Strategies for hydrogen storage in metal-organic frameworks.Angew Chem.,Int.Ed.2005,44,4670-4679
    [21]Lee J Y,Xiao Y W,Liu Z L.Amorphous Sn_2P_2O_7,Sn_2B_2O_5 and Sn_2BPO_6 anodes for lithium-ion secondary batteries.Solid lonics,2000,133:25-35
    [22]Xiao Y W,Lee JY,Yu A S,et al.Electrochemical performance of amorphous and crystalline Sn_2P_2O_7 anodes in secondary lithium batteries.J.Electrochem.Soc.,1999,146:3623-3629
    [23]Aurbach D,Nimberger A,Markovsky B,et al.Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries.Chem.Mater.,2002,14:4155-4163
    [24]Zhang Y L,Liu Y,Liu M L.Nanostructured columnar tin oxide thin film electrode for lithium-ion secondary batteries.Chem.Mater.,2006,18:4643-4646
    [25]Idota Y,Kubota T,Matsufuji A,et al.Tin-based amorphous oxide:a high-capacity lithium-ion-storage material Science,1997,276:1395-1397.
    [26]Mao O,Turner R L,Courtney I A,et al.Active/inactive nanocomposites as anodes for Li-ion batteries.Electrochem.Solid-State Lett.,1999,2:35-39
    [27]Wei C,Dai L,Roy A,et al.Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites.J.Am.Chem.Soc.,2006,128:1412-1413
    [28]Wang Y,Lee J Y.One-Step,Confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li~+ ion storage.Angew.Chem.,Int.Ed.,2006,45:7039-7042
    [29]Eder D,Windle A H.Carbon-inorganic hybrid materials:the carbon-nanotube/TiO2interface.Adv.Mater.,2008,20:1787-1793
    [30]Li J,Tang S B,Lu L,et al.Preparation of nanocomposites of metals,metal oxides,and carbon nanotubes via self-assembly.J.Am.Chem.Soc.,2007,129:9401-9409
    [1]Tirado J L.Inorganic materials for the negative electrode of lithium-ion secondary batteries:state-of-art and future prospects.Mater.Sci.Eng.,2003,40:103-136
    [2]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414:359-367
    [3]Whittingham M S.Inorganic nanomaterials for batteries.Dalton Trans.,2008,5424-5431
    [4]Yang J,Winter M,Besenhard J O.Small particle size multiphase Li-alloy anodes for lithium-ion secondary batteries.Solid State Ionics,1996,90:281-287
    [5]Lee Y H,Lee S M.Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium-ion secondary batteries.Electrochem.Commun.,2004,6:465-469
    [6]Winter M,Besenhard J O.Electrochemical lithiation of tin and tin-based intermetallic and composites.Electrochim.Acta,1999,45:31-50
    [7]Yang J,Wachtler M,Besenhard J O.Sub-microcrystalline Sn and SnSb powders as lithium storage materials for lithium-ion secondary batteries.Electrochem.Solid State Lett.,1999,2:161-163
    [8]Pena J S,Brousse T,Schleich D M.Search for suitable matrix for the use of tin-based anodes in lithium-ion secondary batteries.Solid State Ionics,2000,135:87-93
    [9]Zhao L Z,Hu S J,Ru Q,et al.Effects of graphite on electrochemical performance of Sn/C composite thin film anodes.J.Power Sources,2008,184:481-484
    [10]Trifonova A,Winter M,Besenhard J O.Structural and electrochemical characterization of tin-containing graphite compounds used as anodes for Li-ion batteries.J.Power Sources,2007,174:800-804
    [11]Veeraraghavan B,Durairajan A,Haran B,et al.Study of Sn-coated graphite as anode material for secondary lithium-ion secondary batteries.J.Electrochem.Soc.,2002,149:A675-A677
    [12]Guo B K,Shu J,Tang K,et al.Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency.J.Power Sources,2008,177:205-210
    [13]Noh M,Kwon Y,Lee H,et al.Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery.Chem.Mater.,2005,17:1926-1929.
    [14]Wang K,He X M,Ren J G,et al.Preparation of Sn/C microsphere composite anode for lithium-ion secondary batteries via carbothermal reduction.Electrochem.Solid-State Lett.,2006,9:A320-A323
    [15]Morishita T,Hirabayashi T,Okuni T,et al.Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery.J.Power Sources,2006,160:638-644
    [16]Marcinek M,Hardwick L J,Richardson T J,et al.Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries.J.Power Sources,2007,173:965-971
    [17]Yang S B,Song H H,X.H.Chen X H.Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion secondary batteries.J.Power Sources,2007,173:487-494
    [18]Lee K T,Jung Y S,Oh S M.Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries.J.Am.Chem.Soc.,2003,125:5652-5653
    [19]Zhang W M,Hu J S,Guo Y G,et al.Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion secondary batteries.Adv.Mater.,2008,20:1160-1165.
    [20]Derrien G,Hassoun J,Panero S,et al.Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion secondary batteries.Adv.Mater.,2007,19:2336-2340
    [21]Grigoriants I,Sominski L,Li H,et al.The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries.Chem.Commun.,2005,7:921-923
    [22]He X M,Pu W H,Wang L,et al.Synthesis of spherical nano tin encapsulated pyrolytic polyacrylonitile composite anode material for Li-ion batteries.Solid State Ionics,2007,178:833-836
    [23]Jobst K,Sawtschenko L,Schwarzenberg M,et al.Highly porous thermally structurized polyacylonitrile.Synth.Met.,1992,47:279-285
    [24]Breads J L,Salaneck W R.Electronic-structure evolution upon thermal treatment of polyacrylonitrile.J.Chem.Phys.,1986,85:2219-2226
    [25]Yao J,Wang G X,Ahn J,et al.Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells.J.Power Sources,2003,114:292-297
    [26]Besenhard J O,Winter M,Yang J,et al.Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes.J.Power Sources,1995,54:228-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700