粘红酵母对柑橘采后病害的生物防治及其防治机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果蔬采后病害造成的损失是巨大的。据报道,发达国家有10%-30%的新鲜果蔬损失于采后腐烂,而在发展中国家,由于缺乏储运冷藏设备,果蔬腐烂损失率竟高达40%-50%。防治果蔬腐烂的传统有效方法是使用化学杀菌剂,但长期使用化学杀菌剂,会造成环境污染、农药残留、危害人类身体健康、病原菌对其逐渐产生抗性等一系列问题。因此迫切需要寻找一种有效而对人类无害的防治方法。生物防治作为一项新兴技术,已引起了人们的注意。本研究以浙江特产水果柑橘为试验材料,研究了粘红酵母(Rhodotorula glutinis)对引起柑橘采后病害的主要病原菌指状青霉(Penicillium digitatum)的生物防治作用。探讨了粘红酵母菌种特性及处理形式、活化条件对抑菌效果的影响以及粘红酵母与病原菌接种间隔、与佐剂、化学杀菌剂结合使用、贮藏温度、贮前热处理、添加营养物质(碳源和氮源)、与其它生防菌结合使用、采前使用等对生物防治效果的影响。并确定了最佳的处理方法。同时还探讨了粘红酵母对柑橘采后病害生物防治的机理。主要研究结果如下:
     1 筛选出一株具有良好抑菌效果的粘红酵母菌株。在PDB试管中,粘红酵母菌悬液能抑制病原菌孢子萌发和芽管伸长。且菌悬液浓度越大,对孢子和芽管抑制作用越强。培养原液对孢子萌发率有很强抑制作用,对芽管伸长的抑制作用不很明显,滤液对两者均没有抑制作用;在柑橘果实上,研究了其培养原液、培养液滤液、菌悬液和热杀死液的抑菌效果,发现菌悬液对病原菌有良好的抑制作用,且菌悬液浓度越大,抑菌效果越好。相同细胞浓度的培养原液的抑菌效果不如菌悬液的好,而滤液和热杀死液均没有抑菌效果。
     在菌悬液中添加不同的营养物(碳源、氮源)对抑菌效果有不同影响。适量的有机碳源和有机氮源可以提高粘红酵母的抑菌效果,它可能是通过促进粘红酵母生长而起作用。而添加无机氮源(硝基氮、氨基氮)会降低其粘红酵母抑菌效果。
     粘红酵母和病原菌接种间隔时间长短对抑菌效果有很大影响。一般来说,越早接种粘红酵母,效果越好。本实验中,在接种病原菌之前4小时或36小时接种粘红酵母,抑菌效果最佳。提示在采前使用或采后立即使用该菌将会有更好的效果。
     粘红酵母和其他生防菌如枯草芽孢杆菌培养液结合使用可提高粘红酵母抑菌效果。枯草芽孢杆菌通过产生抗生素来发挥作用。将粘红酵母菌悬液和37℃下培养20小时的细菌滤液结合使用可得到最好的效果。
     2 粘红酵母的抑菌机理主要是与病原菌之间对营养物质和空间的竞争有关,而不是通过产生抗生素达到目的的。粘红酵母能快速利用柑橘伤口上的营养物质生长存活,占据生存空间,排斥病原菌生长,生长速度较病原菌快。粘红酵母还
    
    浙江大学硕士论文
    可能分泌降解病原菌细胞壁的酶来发挥生防作用。此外通过显微镜观察,粘红酵
    母与病原菌丝之间没有紧密粘附和溶解作用。
     3无论果蔬伤口上是否存在病原菌,在室温20℃和低温4℃下,粘红酵母都
    能快速增长。
     4用响应面分析方法对粘红酵母活化条件进行了优化,借用SAS软件对实
    验数据进行了处理,发现麦芽汁培养基浓度对抑菌效果几乎没有影响。培养时间
    对其抑菌效果影响最大,装液量影响次之。活化培养时间为20.4小时,装液量
    38.0mL(250mL三角瓶)时为最佳条件。
     5研究了金属离子对粘红酵母抑菌效果的影响,发现:培养基中Fe2+浓度对
    粘红酵母抑菌效果有较显著影响,当在培养基中添加5卿ol/L的Fe2+时,能够提
    高抑菌效果。菌悬液中添加NaZCO3和NaHCO3对粘红酵母抑菌效果影响不大;
    二阶阳离子MgZ+(o.Zmol几)和eaZ+(o一mol/L)都能提高粘红酵母抑菌效果,
    但与ca2+相比,Mg2+的效果不够明显,c扩+可能通过多种作用机制来提高粘红酵
    母的抑菌效果。
     6探讨了粘红酵母与杀菌剂结合使用的效果,发现不同杀菌剂有不同效果。
    粘红酵母与多菌灵一起使用时,低浓度如250mg/L多菌灵结合使用时有较好效
    果,而多菌灵浓度越高,抑菌效果并没有相应地随着提高,因为高浓度的多菌灵
    对粘红酵母细胞有毒害作用,而粘红酵母对低浓度多菌灵有一定的抗性。当粘红
    酵母与扑海因结合使用时,不能降低腐烂率,可见扑海因对粘红酵母细胞有较大
    毒害作用,且其本身也不能有效地防治柑橘病害。
     7柑橘的贮藏温度和贮前热处理(37℃、4天)会影响粘红酵母抑菌效果和
    果蔬的腐烂率。贮藏温度越低,贮藏效果越好。该菌株在低温下仍能生长并发挥
    其拮抗作用,同时低温能抑制病原菌的生长。贮前热处理可以杀死部分病原菌或
    者使病原菌失活,推迟果蔬上病原菌抱子的萌发,延长保质期;贮藏前热处理可
    使果实表面干燥,不利于病原菌生长;受伤后热处理还可治疗愈合伤口。有人则
    认为:热处理可诱导果实的抗病性。
     7在最后确定最佳生防方法时,采用正交试验方法得出最佳组合即:菌体经
    Zoh活化培养、培养基中添加5啤01/L FesO4、菌悬液中添加0.lmol/L eaCI:,细
    胞浓度为10sCFU/mL,生防菌和致病菌接种间隔时间为10h时可达到最佳生防
    效果。
     8采前喷施粘红酵母菌悬液,除创伤的象山红没有降低腐烂率外,其余均获
    得了
Losses of fresh vegetables and fruits after postharvest are very serious in the world, almost 10-30% of those got rot postharvest every year. It is particularly high in undeveloped countries (almost 40-50%) for being short of refrigerate equipment.
    In general, fungicides still provide a primary means of control. However, due to the development of fungicides-resistant isolate of pathogen, the possible deregistration of some of more effective postharvest fungicides, concern for public safety, and the residue of fungicide and so on, the fungicides is forbidden to use. The microbial antagonist for biocontrol of postharvest disease of fruits and vegetables has been made actively in the world as an alternative method to fungicidal treatment in recent years. Furthermore, the biocontrol had achieved a success. Several isolates of bacteria and yeasts had been shown to be effective against postharvest pathogens on a range of crops. Some had been patented and commercialized as biocontrol agents.
    In the present study, we evaluated the biocontrol activity of Rhodotorula glutinis against the major postharvest pathogen (Penicillium digitatuni) on citrus fruits and studied the biocontrol measures. In the study, we discussed the effect of some factors on the inhibiting activity of R.glutinis. The factors are as below: the characteristic and different treatments of R.glutinis; the condition of culture; different interval between antagonist and pathogen inoculated; combination of R.glutinis with assistant substance such as chemical compound, fungicides; the store temperature of citrus fruits; heat treatment before store; adding nutrients (carbohydrate and nitrogen); combination with other strains. In the same time, we determined the most effective treatment of R. glutinis, discussed the mechanism of the biocontrol of R.glutinis and explored the effect in vitro. The main results were as following:
    1. One strain (R. glutinis 3) was selected for its good biocontrol activity from the strains preserved in laboratory. In PDB, the cell suspension could inhibit the germination of pathogen spores and the length of the germ tube, and the biocontrol activity was inverse proportion with cell concentration. However, the culture filtrate and culture broth hadn't the same activity. The large of cell concentration of R.glutinis, the stronger of inhibition on the pathogen spores. The culture of R.glutinis had stronger inhibition activity on the germination of pathogen and not on the length of germ tube. The filtrate had no effect on the pathogen spores. We study the effect of the culture on citrus, the filtrate, the cells suspension, and the
    
    
    
    autoclaved culture. The cells suspension of R.glutinis had the best biocontrol activity; the effect of the culture broth containing the same concentration of yeast cells had the lower activity. However, culture filtrate and autoclaved culture weren't had inhibition activity. The higher concentration of cell suspension was, the better biocontrol effect achieved.
    Nutrients (carbohydrate and nitrogen) added to the cell suspension had different influence on the activity of R.glutinis. Moderate dose of organic carbohydrate and nitrogen could promote the inhibition activity of it, maybe it exhibit its action by promoting the growth of R.glutinis. The inorganic nitrogen added to cell suspension would decrease the biocontrol activity of the antagonist by promoting the growth of pathogen.
    The interval between R.glutinis and pathogen inoculation influence the activity of R.glutinis greatly. The earlier of antagonist inoculation, the better of biocontrol achieved. When R.glutinis was inoculated 4h or 36h before pathogen, the best biocontrol activity of it was obtained. So we forecast that the better inhibition activity of R.glutinis if we used it preharvest or immediately after harvest.
    The culture filtrate of Bacillus subtilis could enhance the biocontrol when combined with R.glutinis. It was considered B.subtilis exhibit its activity by producing the antibiotic (iturin). The best activity could be achi
引文
1 罗闰良。拮抗菌防治果蔬采后病害研究进展,农牧情报研究,1993,(4)
    2 吴少华,薛春容,赵永。园艺植物病害的生物防治,南京农业大学学报,2001,Vol.25,No.4
    3 茅林春。果蔬采后病害微生物防治的研究进展,浙江农业科学,2001,No.1
    4 程昌凤。柑橘果实采后病害生物防治,果树科学,1996,13(2)
    5 李红叶,曹若彬。果蔬产后病害生物防治研究进展,生物防治通报,1993,9(4)
    6 蔡芷荷,吴清平,许红立等,木霉和粘帚霉的生物防治研究进展,微生物学通报,1998,25(5)
    7 张学英,王庆菊,美国果品采后病害的生物防治,世界农业
    8 屈红霞,孙谷畴,蒋跃明。水果中抗病原真菌物质成分的提取分离方法及应用前景,植物学通报,2001,18(4)
    9 刑晓科,郭顺星。菌寄生真菌与寄主相互作用的生化研究进展,菌物系统,2002,21(1):141-146
    10 陈捷,高洪敏等。玉米茎腐病菌产生的细胞壁降解酶的致病作用,植物病理学报,1998,28(3)
    11 葛毅强,张维一。果蔬采后病害的生物防治,世界农业,1997,7
    12 朱文达,微生物防治剂的配制,世界农药,2000,Vol.22,No.2
    13 王永兴,李效静等,拮抗菌D67-2防治柑橘青绿霉病的效果,中国柑橘,1992,21(3)
    14 梁泉峰,池振明。间型假丝酵母对多种水果蔬菜腐败霉菌的拮抗效果和拮抗机制的研究,食品与发酵工业,2002,Vol.28,No.1
    15 蒋跃明,马国华,陈芳。芒果采后潜伏真菌活化与几丁酶、β-1,3-葡聚糖酶的研究,植物保护学报,1995,Vol.22,No.1
    16 朱雪峰,陈崇顺,郁志芳。植物几丁质酶的生物功能,生命的化学,2000,Vol.20,No.1
    17 邱立友,微生物几丁质酶与害虫防治,河南农业大学学报,1995,Vol.29,No.2
    18 于汉寿,张益民等,水溶性壳聚糖对小麦和油菜几丁质酶的诱导作用,1999,15(2),67-70
    19 毕阳,刘红霞。钙对果蔬采后腐烂的控制及作用,甘肃农业大学学报,2000,3,1:1-5
    20 许煜泉,高虹等,假单胞菌株JKD-2分泌铁载体抑制稻瘟病菌,微生物学通报,1999,26(3)
    21 丁延芹,杜秉海。玉米根际细菌中PGPR的筛选及初步鉴定,土壤肥料,2001(3)
    22 王平。小麦根际细菌铁载体的检测,微生物学通报,1994,21(6)
    23 刘海波,田世平。水果采后生物防治拮抗机理的研究进展,植物学通报,2001,18(6):657-664
    24 范青,田世平,徐勇。丝孢酵母对苹果采后灰霉病和青霉病抑制效果的影响,中国农业科学,2001,34(2):163-168
    25 范青,田世平,徐勇,汪沂等,季也蒙假丝酵母对采后桃果实软腐病的抑制效果,植物学报,2000,42(10):1033-1038
    26 田世平,范青,徐勇,汪沂。丝孢酵母与钙和杀菌剂配合对苹果采后病害的抑制效果,植物学报,2001,43(5):501-505
    27 范青,田世平,李永兴等,枯草芽孢杆菌(Bacillus subtilis)B-912对采后柑橘果实青、绿霉病的抑制效果,植物病理学报,2600,Vol.30,No.4
    28 范青,田世平,刘海波,徐勇。两种拮抗菌β-1,3-葡聚糖酶和几丁酶的产生及其抑菌的可能机理,科学通报,2001,Vol.46,No.20
    29 田世平,范青。控制果蔬采后病害的生物学技术,植物学通报,2000,17(3):211-217
    30 刘海波,田世平,秦国政,徐勇。罗伦隐球酵母对葡萄采后病害的拮抗效果,中国农业科学,2002,35(7):831-835
    31 田世平。低温对葡萄孢菌(Botrytis cinerea)菌丝生长和孢子萌发以及对贮藏菊苣侵染力的影响,植物病理学报,2001,Vol.31,No.1
    32 田世平,罗云波,宫钦钦,刘红。病菌侵染对番茄果实乙烯生成,ACC合成酶和脂氧合
    
    酶活性的影响,植物病理学报,2002,Vol.32,No.2
    33 范青,田世平,姜爱丽,徐勇。采摘后果实病害生物防治拮抗菌的筛选和分离,中国环境科学,2001,21(4)
    34 范青,田世平,李永兴,徐勇,汪沂。枯草芽孢杆菌(B-912)对桃和油桃褐腐病的抑制效果,植物学报,2000,42(11)
    35 A.B.Filnow., 1998. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple. Biocontrol Science and Technology 8, 243-256
    36 Ahmed El-Ghaouth, Joseph L.Smilanick, Charles .Wilson., 2000. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruits. Postharvest Biology and Technology. 19, 103-110
    37 Ahmed EI-Ghaouth, Joseph L. Smilanick, et al. Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-deoxy-D-glucose, Plant Disease, 2000.3
    38 Ahmed EI-Ghaouth, Joseph L.Smilanick, et al. Application of Candida saitoana and Glycolchitosan for the control of postharvest disease of apple and citrus fruit under semi-commercial conditions, Plant Disease,2000,3
    39 Antonio, Ippolito., Franco, Nigro., 2000. Impact of preharvest application of biological control agents on postharvest disease of fresh fruits and vegetables. Crop Protection 19, 715-723
    40 Antonio Ippolito, Ahmed El Ghaouth, Charles L.Wilson, Michael Wisniewski, 2000.Control of postharvest decay of apple fruit by Aureobasidium Pullulans and induction of defense response. Postharvest Biology and Technology. 19, 265-272
    41 Alan R.Biggs, Effects of calcium salts on apple bitter rot caused by two colletotrichum spp. Plant Disease. 1999.11
    42 Bendow, J.M., Sugar, D., 1999. Fruit surface colonization and biological control of postharvest disease of pear by preharvest yeast application. Plant Dis. 83, 839-844
    43 Bernhard Schwyn, J.B.Neilands, Universal chemical assay for the detection and determination of siderphores, Analytical Biochemistry, 1987,160
    44 Boller, T., A.Gehr, F. Mauch and U.Vogeli 1983 Chitinase in bean leaves: induction by ethylene, purification ,properties, and possible function. Plant 157(1):22-31
    45 Britta Leverenta, Wojciech J.Janisiewicz, William S.Conway, etc., 2000. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of "Gala" apples. Postharvest Biology and Technology. 21, 87-94
    46 Castoria, R., curtis, F. De., Lima, G., Caputo, L., Pacidico, S., Cicco, V.De., 2001. Aureobasidium pullulans(LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology 22, 7-17
    47 Calventz, V., Benuzzi, D., Tosetti, M.I., 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicilliiium expansum. International biodeterioration and biodegradation 43, 167-172
    48 Carmi Omero, Benjamin A.Horwitz, Ilan Chet., 2001. A convenient fluorometric method for the detection of extracllular N-acetyglucosaminidase production by filamentous fungi. Journal of Microbiological Methods. 43,165-169
    49 Castoria Raffaello, De Curtis Filippo, Cime Giuseppe, et al 1997. β-1.3-glucanase activity of two Saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest biology and technology 12, 293-300
    50 Chand-Goyal, T., Spotts, R.A., 1996. Postharvest biological control of blue mold of apple and
    
    brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides. Biol. Control. 6,253-259
    51 Chand-Goyal, T., and Spotts, RA., 1997. Biological control of postharvest disease of apple and pear under semi-commerical conditions using three Saprophytic yeast. Biol. Control 10,200-206
    52 Cheoi-Wol Yun, John S.Tiedemant, Robert E.Moore, and Caroline C.Philpott, Siderophore-Iron uptake in Saccharmyces cerevisiae, The Journal of Biological Chemistry, Vol.275, No.21
    53 Chuanxue Hong, Themis J.Michailides, Brent A.Holtz., 1998. Effects of wounding, inoculum density, and biological control agents on postharvest brown rot of stone fruits. Plant Disease. 82,1210-1216
    54 Charles L.Wilson, Michaeol E.Wisniewski, Charles L.Biles, Randy Mclaughlin, Edo Chaluta., Samir Droby., 1991. Biology control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Protection. 10,
    55 C.Nunes, J.Usall, N.Teixido, I. Vinas., 2001. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA_2. International Journal of Food Microbiology. 70,53-61
    56 D.A.Schisler, RJ.Slininger, RJ.Bothast, 1997. Effects of antagonist cell concentration and two-strain mixtures on biological control of fusarium dry rot of potatoes. Phytopathology. 87,177-183
    57 Davide Spadaro, Rossana Vola, Serenella Piano, Maria Lodovica Gullino., 2002. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology. 24, 126-134
    58 De Cal, A., Sagasta, E.M., Melgarejo, P., 1990. Biological control of peach twig blight (Monilinia lead) with Penicillium frequentans. Plant Pathol. 39,612-618
    59 Droby, S., Chalutz, E., Wilson, C.L., 1991. Antagonistic microorganisms as biocontrol agents of postharvest diseases of fruits and vegetables. Postharvest News and Information. 2,169-173
    60 Droby, S., Wisniewski, M.E., Cohen, L., Wiess, B., Touitou, D., Eilam, Y., Chalutz, E., 1997. Influence of CaCb on Penicillium digitatum grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology. 87,310-315
    61 Duccio R.L.Caccioni, Monica Guizzardi, Daniela M.Biondi, Agatino Renda, Giuseppe Ruberto., 1998. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology. 43, 73-79
    62 E.Fallik, S.Grinberg, M.Gambourg, et al. Prestorge heat treatment reduces pathogenicity of Penicillium expansion in apple fruit, Plant Pathology, 1995(45)
    63 Eckert, J.W., Ogawa, J.M., 1988. The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annu. Rev. Phytopathol. 26,433-469
    64 Eckert, J.W., Sievert, J.R., Ratnayake, M., 1994. Reduction of imazalil effectiveness against citrus green mold in California packinghouse by resistant biotypes of Penicillium digitatum. Plant Dis. 78,791-794
    65 Edo Chalutz., 1990. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Disease. 74, 134-13 7
    66 Elixabeth A.B. Emmert, Jo Handelsman, Biocontrol of plant disease: a (Gram-) positive perspective, FEMS Microbiology Letters, 1999,171
    67 Fan Qing, Tian Sniping, Postharvest biological control of rhizopus rot of nectarine fruits by Pichia membranefaciens, Plant Disease,2000,Vol.84,No. 11
    68 GEldon Brown, Jacqueline K.Burns., 1998. Enhanced activity of abscission enzymes predisposes oranges to invasion by Diplodia natalensis during ethylene degreening. Postharvest
    
    Biology and Technology. 14,217-227
    69 Gerald J.Holmes, Joseph W.Ekert., 1999. Sensitivity of Penicillium digitatiun and P.italicum to postharvest citrus fungicides in California. Phytopathology. 89, 716-721.
    70 Giuseppe Lima, Filippo de Curtis, Raffaello Castoria, Vincenzo de Cicco., 1998. Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Science and Technology. 8, 257-267
    71 Hadwiger.L.A. and J.M.Bechman 1980 Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 66(2) :205-211
    72 I.Vinas, J.Usall. N.Teixido, V.Sanchis., 1998. Biological control of major postharvest pathogens on apple with Candida sake. International Journal of Food Microbiology. 40,9-16
    73 Jijakli, M.H., Leopoivre, P., 1998. Characterization of an exo-β-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology. 88,335-343
    74 J.L.Smilanick, B.E.Mackey, R.Reese. etc., 1997. Influence of concentration of soda ash, temperature, and immersion period on the control of postharvest green mold of oranges. Plant Disease. 81,379-382
    75 J.L.Smilanick, D.Sorenson., 2001. Control of postharvest decay of citrus fruit with calcium polysulfide. Postharvest Biology and Technology 21, 157-168
    76 J Irwandi, Y B Che Man, S Yusof, S Jinap and H Sugisiwa. Effects of type of materials on physicochemical, microbiological and sensory characteristicals of durian fruit leather during storage. J Sci Food Agric. 1998,76,427-434
    77 Joseph, L., Smilanick, R., Denis-Arrue, J.R., 1993. Control of postharvest brown rot of nectarines and peachs by Pseudomonas species. Crop Protection . 12, 513-520
    78 Joseph L.Smilanick, Dennis A.Margosan., 1999. Control of citrus green mold by Carbonate and biocarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Disease. 83, 139-145
    79 Joseph L.Smilanick, Dennis A.Margosan, Delmer J.Henson., 1995. Evaluation of heated solutions of sulfur dioxide, ethanol, and hydrogen peroxide to control postharvest green mold of lemons. Plant Disease. 79, 742-747
    80 Josep Usall, Neus Teixido, Rosario Torres, etc., 2001. Pilot tests of Candida Sake(CPA-l) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology. 21, 147-156
    81 Laura., E.Birch, Manfred., Ruddat., 1998. Extracellular accumulation of Rhodotorulic acid in strains of Microbotruyum Violaceum. Int.J.Plant Sci. 159, 213-220
    82 Leibinger, W., Breukerm B., Hahn, M., et al. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganism in the field. Phytopathology. 87,1103-1110
    83 Lima, G., Ippolito, A., Nigro, F., Salerno, M., 1997a. Effectiveness of Aweobasidium pullulans and Candida oleophila against postharvest strawberry rot. Postharvest Biol. Technol. 10,169-178
    84 Steven E. Lindow, Mary Wilson, Biological control of foliar pathogens and pests with bacterial biocontrol agents,
    85 M.C.Matteson Heldenreich, M.R.Corral-Garcia, E.A.Momol, etc., 1997. Russet of apple fruit caused by Aureobasidium pullulans and Rhodotorula glutinis. Plant Disease. 81, 337-342
    86 M.Schirra., GD'hallewin., S.Ben-Yehoshua., E.Fallik., 2000. Host-pathogen interactions modulated by heat treatment. Postharvest Biology and Technology. 21, 71-85
    
    
    87 M.Wisniewski, S.droby, E.Chalutz, Y.Eilam., 1995. Effects of Ca2+ and Mg2+ on Botrytis cinerea and Penicilliiiun expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathology. 44,1016-1024
    88 N.Teixido, J.Usall, L.Paon, A.Asension, etc., 2001. Improving control of green and blue molds of oranges by combining Pantoea agglomerans (CPA-2) and sodium bicarbonate. European Journal of Plant Pathology. 107, 685-694
    89 Ozgur Akgun Karabuulut, Susan Luire, Samir Droby., 2001. Evaluation of the use of sodium bicarbonate, potassium sorbate and yeast antagonists for decreasing postharvest decay of sweet cherries. Postharvest Biology and Technology. 23, 233-236
    90 Peter J.Mccormack, Howard GWildman, Petr Jeffries., 1994. Production of antibacterial compounds by phylloplane-inhibiting yeasts and yeastlike fungi. Applied and Environmental Microbiology. 5,927-931
    91 Q.Fan, S.P., Tian, 2001. Postharvest biological control of grey mold and blue mold on apple by Cryptococcus aibidus(Sa\io) Skinner. Postharvest Biology and Technology. 21, 341-350
    92 Raffaello Castoria, Filippo de Curtis, Giuseppe Lima, Vincenzo de Cicco., 1997. B-1. 3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biology and Technology. 12, 293-300
    93 R.G.Roberts., 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology. 80, 526-530
    94 RJ.McLaughlin, C.L. Wilson, Biological control of postharvest diseased of grape, peach, and apple with the yeasts Kloeckera apiculata and Candida guilliernondii, Plant Disease,1992, Vol.76,No.5
    95 RJ.McLaughlin, M.E.Wisniewski, C.L. Wilson, E.Chalutz, Effect of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida sp., Phytopathology, 1990,80
    96 Roberts, R.G., 1994. Integating biological control into postharvest disease management strategies. HortScience. 29,758-762
    97 Richard C.Gueldner, Charles C.Reilly, P.Lawrence Pusey. etc., 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J.Agric.Food.Chem. 36, 366-370
    98 Rivka Barkal-Golan, Douglas J.Phillips., 1991. Postharvest heat treatment of fresh fruits and vegetables for decay control. Plant Disease. 11, 1085-1089
    99 R. Castpria, F. De Curtis, G. Lima, L. Caputo, et al. Aureobasidium ptdlulans (LS-30) an antagonist of postharvest pathogen of fruits: study on its modes of action. Postharvest Biology and Technology. 22 (2001)
    100 Roberts, R.G., 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80, 526-530
    101 Robert A.Saftner, William S.Conway., 1997. Effects of some polymine biosynthesis inhibitors and calcium chloride on in vitro growth and decay development in apples caused by Botrytis cinerea and Penicillium expansum. Hort. Sci. 122, 380-385
    102 Schlumbaum,A., F.mauch, U.Vogeli and T.Boller 1986 Plant chitinase are potent inhibitors of fungal growth. Nature 324(6075) :365-367
    103 Smilanick, J., 1992. Biological control of postharvest disease studies. Citrograph. 78,16-18
    104 Serenella Piano, Valentina Neyrotti, Quirico Migheli, M.Lodovica Gullino, 1997. Biocontrol
    
    capability of Metschnikowia pulcherrima against Botrytis postharvest rot of apple. Postharvest Biology and Technology. 11, 131-140
    105 Sugar, D., Spotts, R.A., 1999. Control of postharvest decay in pear by four laboratory-grown yeasts and two registered biocontrol products. Plant Dis. 83, 155-158 US Dept Agric Res Serr. 1995. Losses in agriculture. USDA Handb. 291, 1-120
    106 S.P.Tian , P.Bertolini, Effects of low temperature on mycelial growth and spore germination of Botrytis allii in culture and on its pathogenicity to stored garlic bulbs, Plant Pathology, 1995(44)
    107 Susan Lurie, Postharvest heat treatments, Postharvest Biology and Technology, 1998,14
    108 V.,Calvent, D.,Benuzzi, M.I.S. de Tosetti., .1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansion. International Biodeterioration & Biodegradation 43,167-172
    109 Viviana Calvente, Maria Edith de Orellano, Gabriela Sansone, Delia Benuzzi, Maria Isabel Sana de Tosetti., 2001. A simple agar plate assay for screening siderophore producer yeasts. Journal of Microbiological Methods. 47,273-279
    110 Wilson, C.L., Wisniewski, M.E., 1989. Biological control of postharvest disease of fruits and vegetables: an emerging technology. Ann. Rev. Phytopathol. 27,425-441
    111 Wilson, C.L., Wisniewski, M.E., 1992. Future alternative to synthetic fungicides for the control of postharvest diseases. In:Tjamos, E.S., et al. (Eds.), Biological Control of Plant Disease. Plenum Press, New York, pp133-148
    112 Wisniewski, M.E., Biles, C., Droby, S., McLaughlin, R., Wilson, C., Chaluta, E., 1991. Mode of action of the postharvest biocontrol yeast Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol. Mol. Plant Pathol. 39,245-258
    113 Wisniewski, M.E., Wilson, C.L., 1992. Biological control of postharvest diseases of fruits and vegetables. Rec. Adv. HortSci. 27,94-98
    114 W.J.Janisiewiez., 1988. Biocontrol of postharvest disease of apples with antagonist mixtures. Phytopathology. 78, 194-198
    115 William S. Conway, Britta Leverentz, and Robert A. Saftner. Survival and growth of Listeria monocytogenes on fresh-cut apple slices and its interantion with Glomerella cingulata and Penicillium expansion. Plant Disease. 2000,2
    116 W.J.Janisiewiez, J.Usall, B.Bors., 1992. Nutritional enhancement of biocontrol of blue mold of apples. Phytopathology 82, 1364-1370
    117 W.Mao, J.A.Lewis, R.D.Lumsden, K.P.Hebbar., 1998. Biocontrol of selected soilborne diseases of tomato and pepper plants. Crop Protection. 17, 535-542
    118 Wojciech JJanisiewicz, Steven N.Jeffers. 1997. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Protection. Voll6. no7 629-633.
    119 W.S.Conway, C.E.Sams, Possible mechanisms by which postharvest calcium treatment reduces decay in apples, Phytopathology, 1984,74
    120 Y.Elad. 2000. Biological control of foliar pathologys by means of Trichoderma harzianum and potential modes of action. Crop Protection. 19,709-714
    121 Y.Huang, B.J.Deverall, S.C.Morris, Postharvest control of green mould on oranges by a strain of Pseudomonas glathei and enhancement of its biocontrol by heat treatment, Postharvest Biology and Technology, 1995(5)
    
    
    122 Young,D.H. and G.F. Regg 1982 The action of tomato and verticilium alboatrum glycosidase on the hyphal wall of Verticilium alboatrum, Plant Pathol. 21(3)411-424
    123 汪仁官,陈荣昭,实验设计与分析,中国统计出版社,1998
    124 周德庆,微生物学教程,高等教育出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700