水稻SINA泛素连接酶OsDIS1的功能分析和作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆境胁迫严重影响农作物的产量和质量,制约着全球的农业生产,是人口日益增长情况下实现农业可持续发展的重大挑战。泛素介导的蛋白酶体途径是植物体内蛋白质修饰最重要的调控机制之一,其功能涉及植物细胞周期和光周期调控、激素信号转导、新陈代谢调控和DNA修复等多个过程,研究表明泛素介导的蛋白酶体途径也参与对生物胁迫和非生物胁迫的调控。本论文通过生物化学、分子生物学和遗传学相结合的方法对SINA泛素连接酶OsDIS1蛋白的生化功能和参与的生物学过程进行了全面的阐述,并对OsDIS1的作用机制进行了深入的探讨。
     体外泛素化反应表明OsDIS1蛋白具有时间依赖的泛素化活性并且C3HC4类型RING finger结构域的完整对其E3泛素连接酶活性是必须的。烟草注射和水稻原生质体转染显示OsDIS1主要定位在细胞核中,同时在细胞膜和细胞质中有些许分布。我们通过过表达和RNAi干扰两种方法构建转基因株系对其生物学功能进行研究,干旱处理结果表明OsDIS1过量表达削弱了水稻对干旱的抗耐性,而RNAi干扰抑制表达却增强了水稻对干旱的抗耐性。为了研究OsDIS1参与干旱胁迫调控的作用机制,我们对OsDIS1过表达植物和对照植物在干旱处理前后进行了全基因组表达分析,发现OsDIS1基因在转录水平上主要通过抑制一系列干旱正调控因子和诱导一系列干旱负调控因子的表达而负调控水稻的干旱胁迫响应过程。我们同时利用酵母双杂交方法筛选OsDIS1的相互作用蛋白,并通过体外GST pull-down和体内免疫共沉淀等方法验证,发现OsDIS1与一个丝氨酸/苏氨酸类激酶OsNek6(?)互作用。亚细胞共定位显示OsDIS1与OsNek6不能共存,但是OsDIS1缺少泛素连接酶活性的突变蛋白OsDIS1(H71Y)却可以和OsNek6有很好的共定位,进一步OsNek6体内降解实验显示OsDIS1可促进OsNek6在体内的降解,而其突变蛋白OsDIS1(H71Y)丧失了这种活性。MG132处理结果显示OsNek6是通过依赖于泛素/26S蛋白酶体的途径降解的,结合体内降解实验,我们认为OsDIS1可通过泛素化促进OsNek6的降解,OsNek6可能是OsDIS1泛素化的底物。酵母双杂交同时验证OsDIS1与一个干旱正调节子OsSKIPa相互作用,并通过体内免疫共沉淀证实。虽然MG132处理结果显示OsSKIPa也是通过依赖于泛素/26S蛋白酶体的途径降解的,但OsSKIPa体内降解试验以及其在OsDIS1转基因水稻中的表达表明在这两种条件下,OsDIS1并不能促进OsSKIPa蛋白的降解。以上结果表明,OsDIS1在转录水平上通过调节一系列逆境相关基因的表达,翻译后修饰水平上通过和OsNek6以及OsSKIPa互作调控水稻的干旱胁迫响应过程。
Stresses seriously affect crop yields and quality, and constrain the global agricultural production, which has become the main challenges for sustainable development of agriculture with the growing population. Ubiquitin-protease pathway (UPS) is one of the most important regulation mechanisms for protein modification in plants. It functions in cell cycle and light cycle regulation, hormone signal transduction, metabolic regulation, DNA repair and responses to biotic and abiotic stresses. In this study, by combining biochemistry, plant molecular biology and genetics methods, we characterized the biological and biochemical functions of the SINA E3ubiquitin ligase OsDIS1(O. sativa drought induced SINA protein1) and elucidated the relationship with its interacting proteins in rice.
     In vitro ubiquitination assays showed that OsDIS1possessed time-dependent E3ubiquitin ligase activity, and that the RING finger conserved region was required for the activity. Nicotiana benthamiana transient expression assays and rice protoplast transfection indicated that OsDIS1was localized predominantly in the nucleus, as well as some localized in the cytoplasm and cytomembrane. Both OsDIS1overexpresson and RNAi transgenic lines were produced. Drought treatments showed that overexpression of OsDIS1reduced drought tolerance in transgenic rice plants while RNAi silencing of OsDIS1enhanced drought tolerance. Microarray analysis revealed that many drought responsive genes were induced or suppressed in the OsDIS1overexpression plants under normal and drought conditions. Yeast two-hybrid (Y2H) screening showed that OsDIS1interacted with OsNek6, a serine/threonine protein kinase and the interaction was confirmed by GST pull-down and in vivo co-immunoprecipitation assays. Co-sublocalization of OsDIS1and OsNek6showed that OsDIS1was not able to coexist with OsNek6while the mutant OsDIS1(H71Y) did. OsNek6in vivo degradation assay demonstrated that OsDIS1promoted OsNek6degradation while the OsDIS1(H71Y) mutant did not. The MG132treatment showed that OsNek6was degraded via the26S proteosome-dependent pathway. It seems that OsNek6degradtion via OsDIS1-mediated ubiquitination and OsNek6is the substrate of OsDIS1in rice.Y2H assays also showed that OsDIS1interacted with the drought positive regulator OsSKIPa, which was confirmed by in vivo co-immunoprecipitation assays. The in vivo degradation and expression assays in the OsDISl overexpression and RNAi transgenic plants revealed that OsDIS1was not able to promote OsSKIPa protein degradation in rice. Together, these results demonstrate that OsDIS1plays a negative role in drought stress responses through transcriptional regulation of diverse stress-related genes and post-translational regulation of OsNek6and OsSKIPa in rice.
引文
[1]Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J,2010.61(6):p.1041-52.
    [2]Ahuja I, de Vos RC, Bones AM, Hall RD. Plant molecular stress responses face climate change. Trends Plant Sci,2010.15(12):p.664-74.
    [3]Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol,2006.9(4):p.436-42.
    [4]Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol,2011.14:p.290-95.
    [5]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol,2009.149(1):p.88-95.
    [6]Pardo JM. Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol,2010.21(2):p. 185-96.
    [7]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003.218(1):p.1-14.
    [8]Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol,2006.9(2):p.189-95.
    [9]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006.57:p.781-803.
    [10]Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets:towards successful genetic engineering of drought-tolerant crops. Mol Plant,2010.3(3):p.469-90.
    [11]Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet,2008.9(6):p.444-57.
    [12]Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005.437(7058):p. 529-33.
    [13]Skamnioti P, Gurr SJ. Against the grain:safeguarding rice from rice blast disease. Trends Biotechnol, 2009.27(3):p.141-50.
    [14]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Arch Biochem Biophys,2005. 444(2):p.139-58.
    [15]Boyer JS. Plant productivity and environment. Science,1982.218(4571):p.443-8.
    [16]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol,2005.16(2):p.123-32.
    [17]Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol,2001.4(5):p.401-6.
    [18]Smirnoff N. Plant resistance to environmental stress. Curr Opin Biotechnol,1998.9(2):p.214-9.
    [19]Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002.53:p.247-73.
    [20]Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell,2002. 14 Suppl:p. S165-83.
    [21]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004.16(8):p.2001-19.
    [22]Reddy AS. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol,2007.58:p.267-94.
    [23]Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA,2008.105(12):p.4945-50.
    [24]Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A,2006.103(21):p.8281-6.
    [25]Miura K, Jin JB, Hasegawa PM. Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol,2007.10(5):p.495-502.
    [26]Cushman JC, Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol,2000. 3(2):p.117-24.
    [27]Luo LJ. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot,2010. 61(13):p.3509-17.
    [28]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot,2007.58(2):p.221-7.
    [29]Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet,2007.115(1):p.35-46.
    [30]Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J,2008.55(3):p.455-66.
    [31]Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol,2007.64(6): p.621-32.
    [32]Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT. Drought stress-induced Rma 1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell,2009.21(2):p.622-41.
    [33]Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett,2008.30(12):p.2191-8.
    [34]Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol,2008.67(6): p.589-602.
    [35]Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol,2007.143(4):p.1739-51.
    [36]Lu G, Gao C, Zheng X, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta,2009.229(3):p.605-15.
    [37]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol,2008.148(4):p.1938-52.
    [38]Song SY, Chen Y, Chen J, Dai XY, Zhang WH. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta,2011. DOI 10.1007/s00425-011-1403-2
    [39]Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun,2009.379(4):p.985-9.
    [40]Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A, 2006.103(35):p.12987-92.
    [41]Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J,2007.51(4):p.617-30.
    [42]Ning J, Li X, Hicks LM, Xiong L. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol,2010.152(2):p.876-90.
    [43]Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta,2011. DOI:10.1007/s00425-011-1386-zOnline FirstTM
    [44]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,2003.6(5):p.410-7.
    [45]Trujillo M, Shirasu K. Ubiquitination in plant immunity. Curr Opin Plant Biol,2010.13(4):p.402-8.
    [46]Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J, 2010.61(6):p.1029-40.
    [47]Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav,2009.4(10):p.924-7.
    [48]Zhang Y, Zhao Z, Xue Y. Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol,2009. 60:p.21-42.
    [49]Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 2009.10(6):p.385-97.
    [50]Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot,2007.99(5):p.787-822.
    [51]Zeng LR, Vega-Sanchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res,2006.16(5):p.413-26.
    [52]Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol,2004. 55:p.555-90.
    [53]Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol,2009.10(2):p.104-15.
    [54]Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants:a post-genomic look at a post-translational modification. Trends Plant Sci,2001.6(10):p.463-70.
    [55]Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol,2009.10(5):p.319-31.
    [56]Ye Y, Rape M. Building ubiquitin chains:E2 enzymes at work. Nat Rev Mol Cell Biol,2009.10(11):p. 755-64.
    [57]Du Z, Zhou X, Li L, Su Z. plantsUPS:a database of plants' Ubiquitin Proteasome System. BMC Genomics,2009.10:p.227.
    [58]Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. Embo J,1998. 17(24):p.7151-60.
    [59]Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell,2009.137(1):p.133-45.
    [60]Hochstrasser M. Lingering mysteries of ubiquitin-chain assembly. Cell,2006.124(1):p.27-34.
    [61]Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science,2007.315(5809):p.201-5.
    [62]Pickart CM, Fushman D. Polyubiquitin chains:polymeric protein signals. Curr Opin Chem Biol,2004. 8(6):p.610-6.
    [63]Li W, Ye Y. Polyubiquitin chains:functions, structures, and mechanisms. Cell Mol Life Sci,2008. 65(15):p.2397-406.
    [64]Cao Y, Dai Y, Cui S, Ma L. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell,2008.20(10):p.2586-602.
    [65]Gu X, Jiang D, Wang Y, Bachmair A, He Y. Repression of the floral transition via histone H2B monoubiquitination. Plant J,2009.57(3):p.522-33.
    [66]Li J, Wen R, Andersen P, Liang Y, Li Q, Xiao W, Cui Z. Zebrafish Ubc13 is required for Lys63-linked polyubiquitination and DNA damage tolerance. Mol Cell Biochem,2010.343(1-2):p.173-82.
    [67]Jin X, Jin HR, Jung HS, Lee SJ, Lee JH, Lee JJ. An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem,2010.285(40): p.30539-47.
    [68]Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature,2000.404(6779):p.770-4.
    [69]Park BS, Eo HJ, Jang IC, Kang HG, Song JT, Seo HS. Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1. Biochem Biophys Res Commun,2010.398(2):p.242-6.
    [70]Vega-Sanchez ME, Zeng L, Chen S, Leung H, Wang GL. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell,2008.20(6):p.1456-69.
    [71]Book AJ, Smalle J, Lee KH, Yang P, Walker JM, Casper S, Holmes JH, Russo LA, Buzzinotti ZW, Jenik PD, Vierstra RD. The RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. Plant Cell,2009.21(2):p.460-78.
    [72]Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell,2008.20(6):p.1437-55.
    [73]Henriques R, Jang IC, Chua NH. Regulated proteolysis in light-related signaling pathways. Curr Opin Plant Biol,2009.12(1):p.49-56.
    [74]Hoecker U. Regulated proteolysis in light signaling. Curr Opin Plant Biol,2005.8(5):p.469-76.
    [75]Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H, Xie Q. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J,2009.57(5):p.905-17.
    [76]Ren H, Santner A, del Pozo JC, Murray JA, Estelle M. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J,2008.53(5):p.705-16.
    [77]Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, Luo G, Sun K, Shi D, Aki S, Zheng N, Aoyama T, Oka A, Yang W, Umeda M, Xie Q, Gu H, Qu LJ. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell,2008.20(6):p.1538-54.
    [78]Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL. Spotted leafl 1, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell,2004.16(10):p.2795-808.
    [79]Lin SS, Martin R, Mongrand S, Vandenabeele S, Chen KC, Jang IC, Chua NH. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FBI-induced programmed cell death in Arabidopsis. Plant J,2008.56(4):p.550-61.
    [80]van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell,2008.20(3):p.697-719.
    [81]Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A. E3 ubiquitin ligases and plant innate immunity. J Exp Bot,2009.60(4):p.1123-32.
    [82]Dielen AS, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions:a never-ending hide-and-seek game. Mol Plant Pathol,2010.11(2):p. 293-308.
    [83]Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell,2004.16(3):p.582-95.
    [84]Stone SL, Anderson EM, Mullen RT, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell,2003. 15(4):p.885-98.
    [85]Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W. Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. J Plant Physiol,2008.165(16):p.1745-55.
    [86]Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol,2010.72(4-5):p.357-67.
    [87]Wan X, Mo A, Liu S, Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression. J Biosci Bioeng,2011.111(4):p.478-84.
    [88]Cho SK, Chung HS, Ryu MY, Park MJ, Lee MM, Bahk YY, Kim J, Pai HS, Kim WT. Heterologous expression and molecular and cellular characterization of CaPUB 1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol,2006.142(4):p.1664-82.
    [89]Cho SK, Ryu MY, Song C, Kwak JM, Kim WT. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell,2008. 20(7):p.1899-914.
    [90]Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell,2008.20(6):p.1693-707.
    [91]Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J,2006.47(3):p.343-55.
    [92]Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007.19(6):p.1912-29.
    [93]Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-Type RING E3 Ubiquitin Ligase AtAIRP1 Is a Positive Regulator of an ABA-Dependent Response to Drought Stress. Plant Physiol,2010.154:p. 1983-97.
    [94]Liu YC, Wu YR, Huang XH, Sun J, Xie Q. AtPUB19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana. Mol Plant,2011. doi:10.1093/mp/ssr030
    [95]Hong JK, Choi HW, Hwang IS, Hwang BK. Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol,2007.63(4):p.571-88.
    [96]Kang M, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol,2011.75(4-5):p.451-66.
    [97]Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake BM, Li D, Song F. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol,2008.68(1-2):p.17-30.
    [98]Zhang YY, Li Y, Gao T, Zhu H, Wang DJ, Zhang HW, Ning YS, Liu LJ, Wu YR, Chu CC, Guo HS, Xie Q. Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem,2008. 72(8):p.2251-4.
    [99]Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol,2011. DOI: 10.1007/s11103-011-9775-z
    [100]Park GG, Park JJ, Yoon J, Yu SN, An G. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol, 2010.74(4-5):p.467-78.
    [101]Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J,2011. 65(2):p.194-205.
    [102]Bae H, Kim SK, Cho SK, Kang BG, Kim WT. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci,2011.180(6):p.775-82.
    [103]Hadiarto T, Tran LS. Progress studies of drought-responsive genes in rice. Plant Cell Rep,2011. 30(3):p.297-310.
    [104]Kim YS, Kim JK. Rice transcription factor AP37 involved in grain yield increase under drought stress. Plant Signal Behav,2009.4(8):p.735-6.
    [105]Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev,2009. 23(15):p.1805-17.
    [106]Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics,2008.35(9):p.531-43, S1-2.
    [107]Yang J, Zhang J, Liu K, Wang Z, Liu L. Involvement of polyamines in the drought resistance of rice. J Exp Bot,2007.58(6):p.1545-55.
    [108]Carthew RW, Rubin GM. seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell,1990.63(3):p.561-77.
    [109]Hu G, Zhang S, Vidal M, Baer JL, Xu T, Fearon ER. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev,1997.11(20):p.2701-14.
    [110]Nemani M, Linares-Cruz G, Bruzzoni-Giovanelli H, Roperch JP, Tuynder M, Bougueleret L, Cherif D, Medhioub M, Pasturaud P, Alvaro V, der Sarkissan H, Cazes L, Le Paslier D, Le Gall I, Israeli D, Dausset J, Sigaux F, Chumakov I, Oren M, Calvo F, Amson RB, Cohen D, Telerman A. Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc Natl Acad Sci USA,1996.93(17):p.9039-42.
    [111]Reed JC, Ely KR. Degrading liaisons: Siah structure revealed. Nat Struct Biol,2002.9(1):p.8-10.
    [112]Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature,2002.419(6903):p.167-70.
    [113]Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van de Velde W, Clemente MR, Verplancke C, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula. Plant Physiol,2008.148(1):p.369-82.
    [114]Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol,2007. 145(3):p.1073-85.
    [115]Wang M, Jin Y, Fu J, Zhu Y, Zheng J, Hu J, Wang G. Genome-wide analysis of SINA family in plants and their phylogenetic relationships. DNA Seq,2008.19(3):p.206-16.
    [116]Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol,2004.136(1):p.2621-32.
    [117]Zimmermann P, Laule O, Schmitz J, Hruz T, Bleuler S, Gruissem W. Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol Plant,2008. 1(5):p.851-7.
    [118]House CM, Moller A, Bowtell DD. Siah proteins:novel drug targets in the Ras and hypoxia pathways. Cancer Res,2009.69(23):p.8835-8.
    [119]Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER. Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics,1997.46(1):p.103-11.
    [120]Hu G, Fearon ER. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol,1999. 19(1):p.724-32.
    [121]Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO. pGD vectors:versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J,2002. 31(3):p.375-83.
    [122]Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol,2006.7(5):p.417-27.
    [123]Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics,2006.172(3):p.1901-14.
    [124]Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. Two rice phosphate transporters, OsPhtl;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J,2009.57(5):p.798-809.
    [125]Paszkowski U, Kroken S, Roux C, Briggs SP. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A, 2002.99(20):p.13324-9.
    [126]Aharon R, Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y.,Galili, G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell,2003.15(2):p.439-47.
    [127]George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol,2010.167(4):p.311-8.
    [128]Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett,2010.32(8):p.1173-9.
    [129]Yang Z, Wu Y, Li Y, Ling HQ, Chu C. OsMTla, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol,2009.70(1-2):p.219-29.
    [130]Zhou G, Xu Y, Li J, Yang L, Liu JY. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol,2006.39(5):p.595-606.
    [131]Vigneault F, Lachance D, Cloutier M, Pelletier G, Levasseur C, Seguin A. Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J,2007.51(4):p.575-88.
    [132]Fujii S, Yamada M, Toriyama K. Cytoplasmic male sterility-related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11. Plant Cell Physiol,2009. 50(4):p.828-37.
    [133]Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y. A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J,2008.54(5):p.829-44.
    [134]Nakamura M, Naoi K, Shoji T, Hashimoto T. Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol,2004.45(9):p.1330-4.
    [135]Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, Dong L, Guo H, Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J,2010.61(5):p. 893-903.
    [136]Hou X, Xie K, Yao J, Qi Z, Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A,2009.106(15):p.6410-5.
    [137]Morris NR. Mitotic mutants of Aspergillus nidulans. Genet Res,1975.26(3):p.237-54.
    [138]Osmani SA, Pu RT, Morris NR. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell,1988.53(2):p.237-44.
    [139]O'Regan L, Blot J, Fry AM. Mitotic regulation by NIMA-related kinases. Cell Div,2007.2:p.25.
    [140]O'Connell MJ, Krien MJ, Hunter T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol,2003.13(5):p.221-8.
    [141]Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell,2001.13(12):p.2687-702.
    [142]Cloutier M, Vigneault F, Lachance D, Seguin A. Characterization of a poplar NIMA-related kinase PNekl and its potential role in meristematic activity. FEBSLett,2005.579(21):p.4659-65.
    [143]Sakai T, Honing H, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO. Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J,2008. 53(1):p.157-71.
    [144]Lee SJ, Cho DI, Kang JY, Kim MD, Kim SY. AtNEK6 interacts with ARIA and is involved in ABA response during seed germination. Mol Cells,2010.29(6):p.559-66.
    [145]Dahl R, Wani B, Hayman MJ. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. Oncogene,1998.16(12):p.1579-86.
    [146]Leong GM, Subramaniam N, Issa LL, Barry JB, Kino T, Driggers PH, Hayman MJ, Eisman JA, Gardiner EM. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem Biophys Res Commun,2004.315(4):p.1070-6.
    [147]Folk P, Puta F, Skruzny M. Transcriptional coregulator SNW/SKIP:the concealed tie of dissimilar pathways. Cell Mol Life Sci,2004.61(6):p.629-40.
    [148]Wieland C, Mann S, von Besser H, Saumweber H. The Drosophila nuclear protein Bx42, which is found in many puffs on polytene chromosomes, is highly charged. Chromosoma,1992.101(8):p. 517-25.
    [149]Albers M, Diment A, Muraru M, Russell CS, Beggs JD. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. Rna,2003.9(1):p.138-50.
    [150]Kostrouchova M, Housa D, Kostrouch Z, Saudek V, Rall JE. SKIP is an indispensable factor for Caenorhabditis elegans development. Proc Natl Acad Sci USA,2002.99(14):p.9254-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700