水稻OsRINGzf基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最主要的粮食作物之一,生产消耗水量非常大,这与近年来全球范围内日益严重的水资源短缺形成了尖锐的矛盾,因此发展抗旱的栽培稻被认为是节约水资源的有效手段。根据抗旱基因作用方式的不同,将抗旱基因分成两类:一类是功能基因,其编码产物对水稻抗旱性直接起保护作用;一类是调节基因,其编码产物在信号转导和基因表达过程中起调节功能基因的作用。本研究的目的基因OsRINGzf是基于遗传定位、生物信息学和表达谱分析的分析方法获得的,在水稻第4染色体QTL区间,预测为E3连接酶。
     OsRINGzf基因全长cDNA序列长度为1197bp,其编码框ORF长度为564bp,编码一个187个氨基酸的蛋白质。该序列C端有一个保守的RING(really interestingnew gene)结构域,N端有三个转膜(TM)区。预测为RING-H2(C3H2C3)型E3连接酶。E3连接酶可以识别特异蛋白,并通过26S蛋白酶体途径降解。本研究的主要内容:
     1.建立超表达载体、抑制表达载体、GFP融合表达载体和启动子:GFP载体,转化水稻和拟南芥,获得T0代植株。其中,超表达载体转化的水稻阳性植株已收获T1代种子。对水稻转基因种子进行发芽实验,结果显示转基因材料的相对发芽率和平均株高都比对照中花11低。
     2.通过TILLING、测序等分析方法,对OsRINGzf基因在野生稻、早稻核心种质、珍汕97B和IRAT109中的序列进行对比分析。与IRAT109中该基因相比,野生稻中OsRINGzf基因序列变化可分为5种类型,其中S1061和100916中OsRINGzf基因因为一个碱基的插入突变,致使RING结构域发生变化,可能导致该基因丧失E3连接酶活性;旱稻核心种质中,凝胶电泳图显示有3中不同的序列类型,通过测序分析发现,在ORF内变化的有两种类型,其中在ORF变化相同的类型,彼此间在内含子序列上有变化。
     3.通过RT-PCR分析在正常生长情况下和旱胁迫处理的情况下,OsRINGzf基因的表达差异。在IRAT109的苗期、分蘖盛期和孕穗期,分别进行干旱胁迫处理,结果发现:在苗期和分蘖盛期,OsRINGzf基因的表达都呈现上升趋势,在苗期的表达变化最为明显。在孕穗期,OsRINGzf基因的表达开始呈上升趋势,但是在4-6天下降,表达几乎为0,在胁迫7天的时候表达又上升,且表达量达到了最大。复水后,三个时期中的OsRINGzf基因表达都呈下降趋势,且低于对照时期。在植株正常生长情况下,转基因植株中OsRINGzf基因的表达量显著高于对照中花11。对植株进行20%PEG 6000模拟干旱处理144小时后,结果显示,在转基因植株中,OsRINGzf基因的表达量呈下降趋势,复水之后OsRINGzf基因的达量并无太大的变化。部分转基因株系在复水之后长势好于中花11对照,显示了较好的复原抗旱性。
     4.构建原核表达载体PET-32a+,通过IPTG诱导,从大肠杆菌中提取OsRINGzf基因的表达蛋白,通过SDS-PAGE电泳,分离获得了OsRINGzf基因的蛋白,优化建立了该基因的表达和纯化体系。
Rice (Oryza sativa L) is one of the most main grain crops in the world. It needs the very large consumption of water, which has formed a sharp contradiction with more and more severe shortage of global water resources in recent years. Therefore, development of drought resistance of cultivation rice is considered as the effective measure of water resources conservation. According to their mode of action, drought resistance genes can be divided into two groups: one is functional gene, which encoding products can directly protect drought resistance of rice; one is regulatory gene, which encoding products can regulate functional gene in gene expression and signal transduction pathways. Based on the heredity localization, bioinformatics and expression spectrum analysis, we got OsRINGzf gene located on chromosome IV in rice, which was speculated to be an E3 ligase.
     The full-length cDNA of OsRINGzf is 1197 bp and the opening reading frame (ORF) is 564 bp, which codes a 187 amino acids protein. The C terminus of the sequence contains a conserved RING (really interesting new gene) domain and the N terminus has three transmembranes (TM) domains. It is speculated to be E3 ligase of RING-H2 (C3H2C3) type. The E3 ligase can recognize specific protein and degenerate it by the 26S proteasome pathway. The main contents of this study are here:
     1. Construct over-expression vector, Inhibitor expression vector, GFP fusion expression vector and Promoter: GFP fusion, transformed into rice and Arabidopsis, got TO generation plants. Now, we got the seeds of T1 generation transgenic positive plants through transformed over expression vector into rice. Seeds germination test of transgenic plants, the results suggest that the average height and germination rate of the transgenic plants are lower than those of the zhonghua 11 control.
     2. Different sequences analysis of OsRINGzf in wild rice, upland rice core collection, Zhenshan 97B, and IRAT109 by TILLING, sequencing and other analytical methods. Compared to IRAT109, five types are classified by different sequences of the OsRINGzf gene in wild rice. Because of the OsRINGzf gene in S1061 and 100916 plant have a base insert mutation, which changes RING domain, maybe cause the gene E3 ubiqiutin ligase activity abolished; Gel electrophoresis indicated three different sequences type in upland rice core collection. Through the sequencing analysis, the ORF domain including two different types, and in the same ORF type, the difference occurred within intron.
     3. Analysis of the different expression of OsRINGzf gene by RT-PCR under the condition of normal and drought stress treatment. Treated with IRAT109 drought stress at seedling, vigorous division and booting stage. The results suggest that, at seedling and vigorous division stage, OsRINGzf gene expressions show an upward trend and the most obvious change occur at seedling stage. At booting stage, OsRINGzf gene expression shows an upward trend. But at 4-6th days, the expression almost disappeared. At the seventh day, the increase change is largest. After rehydration, OsRINGzf gene expressions show a downward trend at three stages and lower than control. Compared to zhonghua11 control, OsRINGzf gene expressions are markedly increased under normal situation in transgenic plants. Treated with transgenic plants 20% PEG 6000 144 hours, the results suggest that OsRINGzf gene expressions show a downward trend in transgenic plants and no obvious change after rehydration. Some trangenic plants are better than zhonghua 11 control at rehydration, showed the better recovery of drought resistance.
     4. Construct prokaryotic expression vector PET-32a+ of OsRINGzf and extracted the expression protein through IPTG induction. Through SDS-PAGE electrophoresis, isolate protein OsRINGzf gene, establish and optimize the gene expression and purification system.
引文
1.侯学文,郭勇.泛素与植株逆境响应.植物生理学通讯,1988,34:474-478
    2.刘鸿艳.基于遗传图谱和生物信息学的抗旱新基因发掘.[博士后出站报告].上海:上海市农业生物基因中心,2007
    3.刘宇锋,高国庆,李道远.水稻抗旱生理生化及其相关基因研究进展.中国农学通报,2008,24:219-224
    4.罗赛男,杨国顺,石雪晖.转录因子在植物抗逆性上的应用研究.湖南农业大学学报.2005,3(2):219-223
    5.桑新华,吴忠义,黄丛林.植物逆境抗性相关转录因子的研究进展.植物学通报.2004,21(6):700-708
    6.史胜青,齐力旺,孙晓梅,韩素英,张守攻.植物抗旱相关基因研究进展.生物技术通报.2006,C00.6-13
    7.宋素胜,谢道昕.泛素蛋白酶体途径及其对植物生长发育的调控.植物学通报,2006,23(5):564-577
    8.唐益苗,赵昌平,高世庆,田立平,单福华,吴敬新.植物抗旱相关基因研究进展.麦类作物学报.2009,29(1):166-173
    9.汪耀富,杨d旭,刘国顺,赵春华,王佩,陈新建.渗透胁迫下烟草叶片基因的差异表达研究.作物学报,2007,33(6):914-920
    10.王秀燕,孙莉萍,张建峰,李辉,吕文清,张其清.F-box蛋白家族及其功能.生命科学.2008,20:807-811
    11.王育花,赵森,陈芬,肖国樱.利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究.生命科学研究,2007,11(4):301-305
    12.吴其亮,范战民,郭蕾等.通过δ OAT基因获得抗盐抗旱水稻.科学通讯,2003,48(19):2050-2056
    13.项征,魏平,杨震.泛素调节的蛋白降解-2004年诺贝尔化学奖简介.今日化学,2005,20:8-10
    14.杨东叶,刘凯于,余泽华.泛素连接酶E3.细胞生物学杂志,2005,27:281-285
    15.杨娜,侯巧明,南洁,苏晓东.泛素连接酶的结构与功能研究进展.生物化学 与生物物理进展, 2008, 35: 14-20
    
    16. Bjoiklund S, Almouzni G, Davidson I, Nightingale K P. Global transcription regulators of eukaryotes. Cell, 1999, 96: 759-767
    
    17. Bohnert H J, Cushman J C. Plants and environmental stress adaptation strategies.Plant Biotechnology and Transgenic Plants Marcel Dekker, NY. 2002
    
    18. Bray E A. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data.Anna Bot(Lond). 2002, 89: 803-811
    
    19. Cao X F, Springer N M, Muszynski M G, Phillips R L, Kaeppler S, Jacobsen S E.Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. PNAS, 2002, 97: 4979-4984
    
    20. Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D, Luo D, Harberd N P, Peng J.Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004, 131(5): 1055-1064
    
    21. Dalmay T, Horsefield R, Braunstein T H, Baulcombe D C. SDE3 encodes an RNA helicase required for post- transcriptional gene silencing in Arabidopsis. EMBO J,2001,20(8): 2069-2078
    
    22. Deolling J H, Yan N, Kurepa J, Walker J, Vierstra R D. The ubiquitin specific protease UBP14 is essential for early embroyo development in Arabidopsis thaliana.Plant J, 2001,27:393-405
    
    23. Devoto A, John G, Turner. Regulation of Jasmonate-mediated Plant Responses in Arabidopsis. Oxford Journals, 2003, 92: 329-337
    
    24. Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiqutination and degradation of ICE1. Proc Natl Acad Sci USA, 2006, 103(21): 8281-8286
    
    25. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M,Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice(Oryza satuca L.) encode transcription activators that function in drought, high-salt and cold-responsive gene expression. Plant Journal, 2003,33(4): 751-763
    
    26. Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl.Acad. Sci., 2004,101(17): 6803-6808
    
    27. Gindin E, Borochov A. Ubiquitin conjugation to protein increases following chilling of Clerodendrum leaves. Plant Physiol. 1992,100(3): 1392-1395
    
    28. Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature, 2001, 414(6861):271-276
    
    29. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem, 1988, 67:425-79
    
    30. Hou X, Xie K, Yao J L, Qi Z Y, Xiong L Z. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. PNAS. 2009,106(15): 6410-6415
    
    31. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley P M, Huibregtse J M,Pavletich N P. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science, 1999,286(5443): 1321-1326
    
    32. Ingram J, Bartel D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physic Plant Mol Biol. 1996, 47: 377-403
    
    33. Ingram J, Chandler J W, Gallager L, Salamini F, Bartels D, Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant crater stigma plantagineum Hoechst. Plant Physiology. 1997,115: 113-121
    
    34. Joazeiro C A, Weissman A M. RING finger proteins: mediators of ubiquitin ligase activity. Cell, 2000, 102: 549-552
    
    35. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nature Biotechnology, 1999, 17:287-292
    
    36. Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔCT) method. Methods, 2001, 25:402 -408
    
    37. Kiyosue T, Yamaguchi-Shinozaki K. Cloning of cDNAs for genes that are early responsive to dehydration stress (ERDs) in Arabidopsis thaliana L identification of three ERDs as HSP cognate genes. Plant Mol Biol, 1990, 25: 791-798
    
    38. Ko J H, Yang S H, Han K H. Up-regulation of an Arabidopsis RING-H2 gene,XERICO, confers drought tolerance through increased abscisic acid biosynthesis.Plant J. 2006, 47(3): 343-355
    
    39. Kurepa J, Walker J M, Smalle J, Gosink M M, Davis S J, Durham T L, Sung D Y,Vierstra R D. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J.Biol. Chem., 2003, 278: 6862-6872
    
    40. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev, 2001, 15(7):912-924
    
    41. Liu L, Maillet D S, Frappier J R, Walden D B, Atkinson B G. Characterization chromosome mapping, and expression of different polyubiquitin genes in tissues from control and heat-shocked maize seedling. Biochem Cell Biol. 1995, 73(1-2):19-30
    
    42. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14: 389-400
    
    43. Ludwig A A, Romeis T, Jones J D G. CDPK-mediated signal pathways: Specificity and crosstalk. Journal of Experimental Botany, 2004, 55(395): 181-188
    
    44. Melchior F. SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol., 2000, 16:591-626
    
    45. Ogunjimi A A, Briant D J, Pece-Barbara N, Le Roy C, Di Guglielmo G M, Kavsak P,Rasmussen R K, Seet B T, Sicheri F, Wrana J L. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell, 2005, 19:297-308
    
    46. Petroski M D, Deshaies R J. Function and regulation of culling-RING ubiquitin ligase. Nat Rev Mol Cell Biol., 2005, 6: 9-20
    47. Plasterk R H A, Ketting R F. The Silence of the Genes. Curr Opin Genet Dev, 2000,10: 562-567
    
    48. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P.EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell, 2003,115(6): 679-689
    
    49. Ray W, Jin S, Jayaprakash T. How to obtain optimal gene expression in transgenic plants. 北京:第七次基因学术会议, 1994: 4
    
    50. Rodriguez M, Canales E, Borroto CJ, Carmona E, Lopez J, Pujol M, Borras-Hidalgo O. Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. Journal of Plant Physiology, 2006, 163(5):577-584
    
    51. Sanders D, Pelloux J, Brownlee C, Harper J F. Calcium at the crossroads of signaling.Plant Cell, 2002,14:401-417
    
    52. Sasaki T, Burr B. International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin. Plant Biol., 2000, 3(2):138-141
    
    53. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol., 1997,115: 327-334
    
    54. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997. 115: 327-334
    
    55. Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39: 623-630
    
    56. Stone S L, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol, 2005, 137(1):13-30
    
    57. Tian X H, Li X P, Zhou H L, Zhang J S, Gong Z Z, Chen S Y. OsDREB4 genes in rice encode AP2-containing protein that bind specifically to the ehydration-responsive element. Acta Botanica Sinica,, 2005,47(4):467-476
    
    58. Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533-543
    
    59. Verdecia M A, Joazeiro C A, Wells N J, Ferrer J L, Bowman M E, Hunter T, Noel J P.Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell, 2003, 11: 249-259
    
    60. Vierstra R D, Callis J. Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol. Biol., 1999, 41: 435-442
    
    61. Wing S S. Deubiquitinating enzymes-the importance of driving in reverse along ubiquitin-proteasome pathway. Int. J. Biochem. Cell Biol., 2003, 35: 590-605
    
    62. Xu D P, Duan X L, Wang B Y. Expression of a late embryogenesis abundant protein and germination XII. Purification and properties of principle storage protein. Plant Physiology, 1981, 68:180-186
    
    63. Yan N T, Doelling J H, Falbel T G, Durski A M, Vierstra R D. The ubiquitin specific proteasome family from Arabidopsis AtUBPl and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol, 2000,124: 1828-1843
    
    64. Zeng H Z, Zhong Y, Luo L J. Drought tolerance genes in rice. Funct Integr Genomics.2006, 6(4): 338-341
    
    65. Zhang X, Garreton V, Chua N H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev., 2005,19(13): 1532-1534
    
    66. Zhang Y Y, Yang C W, Li Y, Zheng N Y, Chen H, Zhao Q Z, Gao T, Guo H S, Xie Q.SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid singaling in Arabidopsis. The Plant Cell, 2007, 19: 1912-1929
    
    67. Zhong J L, Peter M, Neumannn B. Water stress inhibits hydraulic conductance and leaf growth in rice seeding but not the transport of water via mercury-sensitive water channels in the root. Plant Physiology, 1999, 120: 143-151
    
    68. Zhu J K, Hasegawa F M, Bressan R A. Molecular aspects of osmotic stressing plants.Crit Rev Plant Science. 1997, 16: 253-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700