HMGN2分子的分离纯化及其抗乙型肝炎病毒活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高迁移率组蛋白N2(High Mobility Group Chromosal protein N2,HMGN2)是脊椎动物和非脊椎动物的细胞核中普遍存在的非组蛋白,目前对其功能还不完全清楚。在本实验室从人LAK细胞和人宫颈黏液中分离纯化寻找抗菌肽过程中,发现HMGN2具有较强的抗革兰氏阴性菌的作用,为进一步深入研究HMGN2的生物学新功能,本文重点研究其体外抗乙型肝炎病毒(Hepatitis B virus,HBV)的功能。
     【目的】1.从人单核细胞株THP-1中分离与纯化HMGN2,探讨HMGN2分子的抗菌作用。2.应用HepG2.2.15细胞株作为体外抗乙型肝炎病毒的实验模型,对HMGN2分子是否抑制乙肝病毒表面抗原(HBsAg)、e抗原(HBeAg)和HBV DNA的分泌、抑制程度作初步探讨,为寻求新的抗HBV药物开辟途径。
     【方法】大量培养人单核细胞株THP-1细胞,收集THP-1细胞沉淀,加入适量5%乙酸,在冰浴中电动匀浆,收集上清液,经透析除去乙酸、冷冻干燥得到THP-1细胞的酸溶性提取物。酸溶性提取物经RP-HPLC分离,用琼脂糖弥散抗菌法筛选纯化组分的抗菌活性,对活性组分进行Tricine-SDS-PAGE电泳,AU-PAGE电泳分析,得到纯化的HMGN2。
     以HBV DNA转染的细胞株HepG2.2.15细胞为模型,HMGN2作用后检测细胞培养液中的HBsAg、HBeAg和HBV DNA,对HMGN2抗HBV效果进行评价。在HepG2.2.15细胞培养基中分别加入不同浓度的HMGN2蛋白,培养的第4天、第8天收集细胞培养上清液,用酶联免疫吸附测定技术(ELISA)检测上清液中HBsAg和HBeAg含量,用荧光定量PCR技术检测细胞培养上清液中HBV DNA的变化。
     【结果】THP-1细胞的酸溶性粗提物通过HPLC分离,在第21分钟出峰时间(保留时间)纯化出一个分子(即HMGN2),该分子对大肠杆菌氨苄青霉素耐药株ML-35p有较强的抑菌活性。琼脂糖弥散法检测显示HMGN2对大肠杆菌标准株ATCC25922和临床分离株54080有较强的抗菌活性,而对金黄色葡萄球菌ATCC25923及绿脓杆菌ATCC27853未检测到抗菌活性。HMGN2在本实验浓度范围内有抑制HBV增殖作用,表现为培养上清中HBsAg、HBeAg分泌减少,以及细胞上清液中HBV DNA水平降低,HMGN2抑制HBV以无血清条件下效果更明显,浓度为2μg/ml抗病毒效果达最大,可使HBV DNA拷贝数减少95.4%,继续增加剂量抗病毒效果不再增加。与人中性粒细胞α-防御素相比,HMGN2对HBV抑制作用更明显。
     【结论】HMGN2分子具有抗革兰氏阴性菌作用。HMGN2在2μg/ml水平可显著抑制HBVeAg和HBVsAg的表达,可降低HBV DNA拷贝数,且存在量效关系,证明HMGN2在体外细胞培养中具有直接抗HBV活性。
The high mobility group protein N2 (HMGN2) is one of the most abundant and well characterized nonhistone nuclear proteins which are found in the cell nucleus of vertebrate and invertebrate organisms. However, the biological role of this protein has not been fully defined. Recent work from our lab has shown that the human HMGN2 purified from IL-2-stimulated peripheral blood mononuclear leukocytes had antimicrobial activity against gram negative bacteria and HMGN2 may be a novel antibacterial effector molecule. To further understand the biological function of HMGN2, in the present study we investigated the anti-HBV effect of human HMGN2.
     Objective: 1. To isolate and purify antibacterial peptide HMGN2 from human monocyte THP-1 cells and determine its antimicrobial activity. 2. In order to develop new modality to treat hepatitis B infection, HepG2.2.15 cell line was used as an in vitro experimental model to study the anti-HBV activity of HMGN2. The level of HBsAg, HBeAg and HBV DNA in the supernatant of the HMGN2-treated HepG2.2.15 cells was assayed.
     Methods: Human monocyte cell line THP-1 cells were cultured in RPMI-1640 medium with 20% fetal bovine serum and collected by centrifugation. Acid-soluble components from THP-1 cells were prepared by homogenizing the cell pellet in 5% acetic acid. The supernatant was collected and dialyzed against water and lyophilized.
     The Acid-soluble components were subjected to RP-HPLC fractionation. The antimicrobial activities of the RP-HPLC fractions were determined by the agar radial diffusion assay and AU-PAGE and Tricine-SDS-PAGE were used to characterize the HMGN2 molecule.
     To investigate the in vitro anti-HBV effect of HMGN2, the HepG2.2.15 cells were treated with HMGN2 at a variety of concentrations. After inoculation for 4 days or 8 days, Supernatant of HMGN2-treated HepG2.2.15 cells were collected. The concentrations of HBsAg and HBeAg in the supernatant were measured by ELISA and the replication level of HBV DNA was detected with real-time quantitative PCR.
     Results: The agar radial diffusion assay indicated that the RP-HPLC fraction eluted at 21 min (fraction 21) had potent antimicrobial activity against E.coli ML-35p, and to some extent against E. Coli ATCC 25922 and clinical isolate 54080. However, this fraction was inactive against S. aureus ATCC25923 and E aeruginosa ATCC 27853 in this system. Analyzed by Tricine-SDS-PAGE, there was only one protein band in the fraction 21 which had an apparent molecular weight of approximately 20kDa. The biological characteristics of the protein in the fraction 21(RP-HPLC retention time, antimicrobial activities and apparent molecular weight) were identical to the previously reported characteristics of HMGN2.
     After incubation with HMGN2 at a dose of 2ug/ml for 4 days, the concentrations of HBsAg and HBeAg in the supernatant of HepG2.2.15 cells decreased by 30% and 40.8% respectively. HMGN2 also inhibited the replication of hepatitis B virus in HepG2.2.15 cells. After exposed to 2ug/ml of HMGN2 for 8 days, the level of extracellular HBV DNA in the supernatant of HepG2.2.15 cells decreased by 95.4%. The anti-HBV effect of HMGN2 was dose-dependent and the presence of serum weakened the anti-HBV activity. Although human neutrophilα-defensins showed anti-HBV activity, the potency of HMGN2 against HBV was more effective thanα-defensins.
     Conclusion: HMGN2 had potent antimicrobial activity against Gram-negative bacteria. Besides, in the presence of 2ug/ml of HMGN2, the level of HBsAg and HBeAg in the supernatant of HepG2.2.15 cells decreased significantly and the replication of hepatitis B virus in HepG2.2.15 cells is also inhibited. These results suggest that HMGN2 has direct anti-HBV effect in vitro.
引文
1. Kazmierczak B, Dal Cin P, Rogalla P, et al.Regional fine mapping of HMG17 to chromosomal band 1 p35 [J].Cancer Genet Cytogenet. 2000 Jan 15 ; 116(2): 164-165.
    2. Tsuchiya S, Int J Cancer 1980 26(2):171
    3.杨华蓉,潘小玲,黄宁等。人子宫颈粘液抗菌活性多肽的分离纯化。四川大学学报(医学版)2003;34(2):214~216
    4. Margareta F, Hans G, Ann-Charlotte B, et al. Biochemical and antibacterial analysis of human wound and blister fluid[J]. Eur J Biochem. 1996;237:86-92
    5.冯云,熊文碧,王国兴,吴琦等。人LAK细胞免疫效应分子HMGN2的鉴定。生物化学与生物物理进展,2005,32(6),568-575
    6. Maddrey.W.C, J Med. Virol, 2000;61:362-366.
    7.黄耀煊主编.肝病分子生物学,2003;第一版。福建科学技术出版社:124
    8. Jaeckel E,Manns MP.Experience with lamivudine against hepatitis B virus[J]. Intervirology, 1997,40(5-6):322-324
    9. WachingerM, Kleinschmidt A, Winder D, et al. ntimicrobial peptidesmelittin and cecrop in inhibit rep lication of human immunodeficiency virus 1 by supp ressing viral gene expression[J]. J Gen Virol, 1998, 79 (Pt 4) : 731-740
    10.侯本祥 张琛 荫俊,脂多糖对THP-1细胞CD14诱导表达的影响,首都医科大学学报 2005,26(6)711-713
    11. P, Stiegler G. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants[J]. Eur J Immunol, 1995,25:604-610
    12. Lehrer RI, Rosenman, Harvig SS, et al. Ultrasensitive assays for endogenous antimicrobial polypeptides[J]. J. Immunol. Meth. 1991; 137:167-73
    13. Oren Z, Lerman JC, Gudmundsson GH, et al. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity[J]. Biochem J,1999,341(3): 501-508
    14. Panyim S, Chalkley R. High resolution acrylamide gel electrophoresis of histone[J]. Arch Biochem Biophys. 1969; 130:337
    15. Schagger MP, Von Jagow G. Ticine-Sodium Dodecyl Sulfate-Polyacry- lamide gel electrophoresis for the separation of proteins in the range from 1-100Kda Anal[J]. Biochem. 1987;166:368
    16. Wary WI, Morrissey JH, Merril CR et al. Silver staining of proteins in polyacrylamide gels[J]. Anal.Biochem. 1981; 118:197
    17. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high- mobility-group chromosomal proteins[J]. Mol Cell Biol,1999; 19:5237-5246.
    18.朱立平.免疫学常用实验方法,北京:人民军医出版社;2000:153-154
    19. Boman HG. peptide antibiotics and their role in innate immunity[J]. AnnuRev Immunol. 1995; 13:61-92.
    20. Tremethick DJ and Hyman L.High mobility group protein 14 and 17 can prevent the closed packing of nucleosomes by increasing the strength of protein contacts in the linker DNA[J]. Biol Chem. 1996;271(20): 12009-16
    21. Vestner B, Bustin M and Gruss C. Stimulation of replication efficiency of a chromatin tempi by chromosomal protein HMG-17[J]. Biol Chem. 1998;273(16):9409-14
    22. Hock R, Scheer U and Bustin M. Chromosomal proteins HMG-14 and HMG-17 are released from mitotic chromosomes and imported into the nucleus by active transport[J]. Cell Biol. 1998;143(6):1427-36
    23. Paranjape SM, Krumm A, Kadonaga JT. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation[J]. Genes Dev. 1995 Aug 15;9(16): 1978-91.
    24. Tzioufas AG, Boumba VA, Seferiadis K, Tsolas O, Moutsopoulos HM. Autoantibodies to HMG-17 nucleosomal protein in autoimmune rheumatic diseases. Correlation with systemic lupus erythematosus clinical activity and with antibodies to double-stranded DNA[J]. Arthritis Rheum. 1993 Jul;36(7):955-61.
    25.奥斯伯.F.著.颜子疑,王海林译.精编分子生物学实验指南.科学出版社.1998;388
    26.李明 四川大学博士论文 2005;
    27. Sharma S, Khuller G. DNA as the intracellular secondary target for antibacterial action of human neutropHil peptide-Ⅰ against Mycobacterium tuberculosis H37Ra[J]. Curr Microbiol. 2001;43(1):74-6
    28.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著 金冬雁,黎孟枫等译 分子克隆实验指南(第二版) 科学出版社 1993;463~469.
    29. Femandes, J.M.O., Saint, N., Kemp, G.D., Smith, V.J. (2003) Oncoryncin Ⅲ: a potent antimicrobial peptide derived from the nonhistone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss[J]. Biochem J 373, 621-628.
    30. Sokal EM, Mieli-Vergani G, et al. A dose ranging study of theof pharmacokineties, safety, and preliminary efficacy lamivudinein children and adolescents with chronic hepatitis B[J]. Antimicrob Agenis Chemiother 2000;44 (2):590-597.
    31. Editorial Hepatitis B therapy:the plot thickens[J]. Hepatology 1999;30 (2): 579-581.
    32. Dienstag JL, Schiff ER, Wright TL. Lamivudine as initial treatment for chronic hepatitis B in the United States[J]. N Engl J Med 1999;341(17):1256-1263.
    33. Delaney WE, Tsom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus [J].Hepatology, 1998, 28:1134-46.
    34. Lampertico P, Malter JS, Gerber MA et al. Development and application of an in vitro model for screening anti-hepatitis B virus therapeutics[J]. Hepatology. 1991, 13:422
    35. Korba BE, Millman G.A cell culture assay for compounds which inhibit hepatitis B virus replication [J]. Antiviral research. 1991,15:217
    36. Roingeard P, Lu S, Sureau C et al. Immunocytochemical and electron microscopic study of hepatitis B virus DNA transfected HepG2 cells[J]. Hepatology. 1990,11:277
    37. Weiss L,Kekule AS,Jakubowski U et al.The HBV producing cell line HepG2-4A5 ,a new in vitro system for studying the regulation of HBV reolication and for screening anti-hepatitis B virus drugs[J]. Virology. 1996,214:216
    38. Larder SK, otto. MJ, Barker CS et al. Inducible expression of HBV in stably transfected hepatoblastoma cells:a novel system for screening potential inhibitors of HBV replication [J]. Antimicrobial agents and chemotherapy.1997,41:1715
    39. Korba B, Gerin JL. Use of standardized cell culture assay to assess activities of necleoside analogs against hepatitis B virus replication[J]. Antiviral Research. 1992,19:55.
    40. He TC, Zhou S, Da-Costa LI, et al.A simplified system for generating recombinant adenoviruses [J].Proc Natl Acad Sci CSA, 1998, 9:2;09-14.
    41.郑浩杰,利用2.2.15细胞株筛选抗乙肝病毒中草药的体外实验研究进展[J]陕西中医学院学报.2003.26(2).61-63
    42. Sells MA,Chen M L,Acs G, et al.Production of hepatitis B virus particles in HepG2 cells transfected with cloned hepatitis B virus DNA[J]. Proc Natl Acad SciUSA, 1987. 84:1005.
    43. LiuMC,YuM, ZhangNL.Dynamic analysis of hepatitisB virusDNA and its antigens in 2.2.15 cells[J]. JViralHepat. 2004, 1.1(2): 124
    44. Lee-Huang S, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF. Inhibition of the integrase of human immunodeficiencyvirus (HIV) type 1 by anti-HIV plant protion MAP30 and GAP31 [J].Proc Natl Acad Sci USA, 1995 ;92(19):8818-8822
    45.周侠 抗乙到肝炎病毒药物的筛选和研究 中国人民解放军军事医学科 学院硕士论文 2005
    46. Mohamed OA, Bustin M, Clarke HJ.High-mobility group proteins 14 and 17 maintain the timing of early embryonic development in the mouse[J]. Dev Biol. 2001 Jan 1; 229(1): 237-249
    1.连永权,李建平,李文君.抗菌肽及其在畜牧业中的应用[J].饲料研究,2005,2:14-17
    2.屈军梅,陈平洁,屈孝初,等.抗菌肽的研究进展[J].2005,32(6):5-7
    3.于健,邱芳萍,张玲.抗菌肽及其应用前景[J].长春工业大学学报(自然科学版),2004,25(1):66-68.
    4.李孝东,等.山东医学工业,2003(1):27~28
    5. Agerberth B, Gunne H, Odebererg J, et al. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone and testis. Proc Natl Acad Sci USA, 1995; 92(1): 195-9
    6. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregin and a variable C-terminal antimicrobial domain. FEBS Lett, 1995; 374(1): 1-5
    7. Gudmundsson GH, Agerberth B, Adeberg J, et al. The human gene FALL-39 and processing of the cathlin precursor to the antimicrobial peptide LL-37 in granulocytes. Eur J biochem, 1996; 238(2): 325-32
    8. Sorensen O, Arnljots K, Cowland JB, et al. A human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and localized to specific granules in neutropnils. Blood, 1997; 90(7): 2796-803
    9.王国兴.双歧杆菌胞壁蛋白诱导人肠腺上皮细胞β-防御素-2基因表达及其信号转导机制[D]四川大学,2005
    10. Howell, M., Jones, J., Kisich, K., Streib, J., Gallo, R. L., Leung, D. Y. (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol. 172, 1763-1767
    11. Davidson, D., Currie, A., Reid, G., Bowdish, D., MacDonald, K., Ma, R., Hancock, R. E., Speert, D. (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 172, 1146-1156
    12. Scott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D., Hancock, R. E. (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. lmmunol. 169, 3883-3891
    13. Yang, D., Chertov, O., Oppenheim, J. J. (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691-697
    14.王建纲,夏乐先,刘晓辉.生物抗菌肽研究进展[J].生物技术通报,2003,(2):26-28.
    15. Ibrahim HR, Sugimoto Y, Aoki T. Ovotransferrin antimicrobial peptide (OTAP 92) kills bacteria ia through amembrane damageme chanism[J]. B iochim B iophysActa, 2000, 1523 (2-3):196-205
    16. Bechinger B. Structure and functions of channel from ing peptides: magainins, cecrop ins, melittin and alamethicin [J]. J Mem br B iol, 1997, 156 (3) : 197-211
    17. WachingerM, Kleinschmidt A, Winder D, et al. ntimicrobial peptidesmelittin and cecrop in inhibit rep lication of human immunodeficiency virus 1 by supp ressing viral gene expression[J]. J Gen Virol, 1998, 79 ( Pt 4) : 731 - 740
    18.尹文,徐晨,马戈甲等,细胞与分子免疫学杂志,2005,21(Supp 1):136-138
    19. ShahabuddinM, etal[J]. Experimental Parasitogy, 1998, 89 (1) : 103 - 112.
    20. Hariton Gazal E, Fede rR, MorA, et al. Targeting o fonokaryophilic cell permeable pep tides into the nuclei of intact cells by covalently attached nuclear localization signals [J]. B iochem istry, 2002, 41 (29) : 9208 - 9214
    21. Chen HM, Leung KW, ThakurNN. Distinguishing between different pathways of bilayer disruption by the related antimicrobial pep tides cecrop in B, B1 and B3 [J]. Eur J B iochem, 2003, 270 (5) : 911-920
    22. Bobek LA, Situ H. MUC7 202Mer: investingation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action [J]. Antim icrob Agentss Chemother, 2003, 47 (2) : 643-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700