2E12铝合金服役环境下的损伤行为与耐损伤微观结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机的寿命和可靠性要求航空铝合金具有优良的耐疲劳及腐蚀损伤性能,合金微观结构与合金耐损伤性能有着密切关系。本文利用光学显微镜、扫描电镜和透射电镜、疲劳试验机、蠕变试验机以及电化学综合测试仪等设备系统地研究了2E12合金在服役温度和腐蚀环境下的疲劳、蠕变及腐蚀损伤行为,分析和探讨了微观结构在合金耐损伤中的影响和作用机制,本论文的主要研究内容及结果如下:
     2E12合金具有良好的力学性能和疲劳性能,常规力学性能和抗疲劳裂纹扩展性能基本达到目前报道2524-T3合金相关性能要求。运用疲劳损伤谱的相关理论,并综合考虑裂纹闭合效应的影响,建立了2E12合金R=0.1和R=0.5条件下的疲劳损伤谱,并对合金的裂纹扩展行为进行预测。
     探讨了温度对合金疲劳寿命及断裂机制的影响,温度升高,合金的疲劳性能降低,低温条件下位错运动的阻力较大,位错运动主要是以滑移为主;室温和高温条件下,位错运动需要克服的能垒降低,位错发生缠绕和攀移,同时在晶界处出现位错堆积,导致晶界的变形程度增加,断口以穿晶断裂为主同时伴随局部沿晶断裂。
     研究了合金在100℃-150℃条件下的蠕变行为,合金具有较高的蠕变应力指数,考虑门槛应力的影响,采用位错攀移模型对合金的蠕变行为进行解释,门槛应力值随着温度的升高而降低,合金的蠕变行为符合不完全回复蠕变,为应力辅助下的位错管扩散机制。
     在NaCl溶液和EXCO溶液中,2E12合金的耐腐蚀性能要优于传统的2024铝合金,盐水溶液中合金的腐蚀以点蚀为主,剥落腐蚀试验中,合金腐蚀动力学过程包括点蚀的诱导形成,点蚀发展及严重点蚀向轻微剥蚀发展,利用交流阻抗和等效电路分析和解释了合金表面的界面状态和腐蚀的微观过程。合金中Al_2Cu和Al_7Cu_2(Fe,Mn)杂质相主要作为阴极。而S相腐蚀微观过程由三阶段组成,在浸泡初期S相表现为阳极相,合金中的主要组分特别是Mg原子发生去合金化;随Mg原子含量降低,Cu原子的相对含量升高,S相转变为阴极,周围基体发生阳极溶解;最终当S相与基体连接中断时,S相发生脱落。自然时效条件下,合金晶界和晶粒内部的元素分布较为均匀,晶界对合金腐蚀的影响较小。
     在潮湿气体和盐雾条件下的裂纹扩展速率要快于室温空气条件下的裂纹扩展速率,疲劳断口形貌呈现出更多的脆性裂纹扩展特征。在腐蚀介质条件下,腐蚀介质与铝反应生成活性氢原子向塑性区扩散,导致塑性区发生氢脆,同时腐蚀诱导的阳极溶解降低了合金的裂纹扩展性能。通过在电解质中加入添加剂,延长电解充氢时间,静态电解充氢后合金表现出一定的氢脆,电解充氢后2E12合金的强度并没有明显的变化,但伸长率降低,静态电解充氢14天,塑性损失为12%。拉应力对氢的扩散起到加速作用,合金在较短的时间内显示出氢脆的特征,合金断口仍显示为韧性断口特征,总体上2E12合金的氢脆敏感性较低。
     固溶处理促进了粗大过剩相的溶解,但由于2E12合金中Cu、Mg元素含量较高,即使采用长时间固溶处理,合金中仍有相当多数量的过剩相无法溶解。利用强化固溶处理,促进了过剩相的溶解,强化固溶2小时后,合金的稳态裂纹扩展速率降低了约40%。但在固溶处理过程中基体中的合金元素向包铝层发生明显的扩散,导致包铝层耐腐蚀性能降低,因此强化固溶处理在改善包铝合金性能上的作用是非常有限的,对于不包铝合金可以采用强化固溶提高疲劳性能。
     预变形提高了合金的强度,降低了合金的塑性,而腐蚀性能变化并不显著。按照航空标准生产大规格T3态板材比T4态合金屈服强度提高了15%,伸长率仅降低了2%,合金的疲劳裂纹扩展性能基本相同,腐蚀性能没有明显差别,总体上综合力学性能要优于T4态合金,通过预变形处理工艺改善合金性能是比较有效的手段。
     人工时效处理促进析出相的析出,合金的强度提高,经形变热处理可获得更为细小均匀的析出相,晶界处无析出带变窄,强度更高,但塑性降低。析出相的析出和晶界处无析出带的出现导致人工时效处理后合金的耐腐蚀性能显著降低,按照剥落腐蚀标准判断均达到严重腐蚀的程度。研究先低温后高温双级时效处理对合金疲劳裂纹扩展性能的影响,结果发现欠时效处理形成的GPB区+S″可以降低合金的疲劳裂纹扩展速率,提高了合金的疲劳裂纹扩展性能,欠时效处理导致合金的耐腐蚀性能有所降低,合金的腐蚀性能接近2024合金。
The long life and reliability of aircraft require aeronautical aluminum alloy with good fatigue and corrosion resistance properties. The damage resistant properties of the alloys are related to the microstructures.The fatigue,creep and corrosion damage properties of 2E12 aluminum alloy,which was exposed to different temperature and corrosive environments,were tested by OM,SEM,TEM,fatigue testing machine,creep testing machine and electrochemical properties testing devices.The influence of microstructure and the corresponding mechanism were investigated.The main conclusions are as follows:
     2E12 alloy has good mechanical properties and fatigue crack propagation resistance,which are similar to the properties of 2524-T3 alloy reported in literature.The fatigue damage spectra of2E12 alloy was created at stress ratios of 0.5 and 0.1,and the crack propagation behavior was predicted according to the fatigue-damage theory with consideration of crack closure effect.
     The effect of temperature on fatigue life and fracture mechanism of 2E12 was explored,and the increase of temperature resulted in the decrease of fatigue properties.At low temperature,due to the high pinning force slip was the main pattern of dislocation movement.At room and elevated temperatures,the energy barrier to overcome for dislocation movement was decreased.Consequently,tangle and climb of dislocations occurred,and dislocations piled up at grain boundaries,which led to higher deformation degree of grain boundaries,giving rise to primarily transgranular fracture with some local intergranular cracks.
     2E12 alloy has high creep stress exponent according to the investigation of the creep behavior from 100℃to 150℃.The dislocation climb model was applied to explain the creep behavior considering the influence of stress threshold,the value of which decreased with temperature increasing.The creep mechanism,in accordance with incomplete recovery creep,was the diffusion of dislocation tube with the help of stress.
     The corrosion resistance of 2E12 alloy was superior to that of 2024 in NaCl and EXCO solutions.Pitting was the main corrosion in NaCl solution.In EXCO solution,the corrosion kinetics consisted of formation of pitting,development of pitting and transition of serious pitting to slight exfoliation.EIS was used to explain the interface and micro-corrosion process.The Al_2Cu and Al_7Cu_2(Fe,Mn)in the alloy acted as cathode.The corrosion of S phase includes three stages:during the early stage S was anode,and the content of Mg decreased;S phase changed to be cathode as Mg decreased and Copper increased relatively,meanwhile the surrounding matrix dissolved as anode;finally,S phase disrupted due to disconnection between S phase and the matrix.Under natural aging,grain boundaries had little influence on corrosion behavior due to uniformly-distributed alloying elements in the grains and at grain boundaries.
     The crack propagation rate of the alloy in humid gas and salt spray is higher than that in the air at room temperature and fatigue fracture surface exhibits brittle characteristics.In corrosive medium,the active hydrogen atom generated by the reaction between corrosive medium and aluminum diffused to the plastic zones,leading to hydrogen embrittlement. Meanwhile the anode dissolution induced by corrosion mitigated the crack growth properties of the alloy.The hydrogen embrittlement susceptibility of the alloy was also studied by electrolytic hydrogen charge.The results showed that long time electrolytic hydrogen charge decreased the ductility,and the hydrogen charge of 14 days led to 12% loss in the ductility.Tensile stress accelerated the diffusion of hydrogen, and the alloy exhibited hydrogen embrittlement in a short time despite the tough characteristic of the fracture surface.In all,the hydrogen embrittlement sensitivity of 2E12 alloy was low.
     Solution heat treatment promoted the dissolution of coarse phases, but after long time solution there were still many undissolved particles due to high content of Cu and Mg in 2E12 alloy.Promotively -solutionizing induced more dissolution of constituents,decreased fatigue crack growth rate,but resulted in diffusion of alloying elements into the cladding layer.The diffusion of Cu decreased the corrosion resistance of the cladding layer.Therefore,promotively-solutionzing had limited improvement on cladding aluminum alloy,while improved the fatigue properties of aluminum alloy without cladding
     Pre-deformation enhanced the strength but decreased the ductility of 2E12 alloy without significant effect on corrosion properties.The large-gauge T3-plates produced according to aviation standard has strength 15%higher and elongation 2%lower than T4 plates with similar fatigue crack propagation and corrosion resistance.In all,the properties of T3 alloy are superior to that of T4 alloy,and pre-deformation is an effective way to improve the properties of 2E12 aluminum alloy.
     Artificial aging led to precipitation of S' phase and increased the strength.More uniform fine hardening precipitates with narrow grain boundary precipitate zone were obtained by thermo-mechanical treatment. Consequently,higher strength and lower ductility were obtained.The formation of grain boundary particles and precipitates-free zone led to a significant decrease of exfoliation corrosion resistance.The influence of first-low and then high temperature aging on fatigue crack growth was studied.It was found that GPB and S" in the under-aged alloy decreased fatigue crack growth rate,therefore improved the fatigue crack growth properties,but led to lower corrosion resistance,which was similar to that of 2024 aluminum alloy.
引文
[1]李成功,博恒志,于翘,等.航空航天材料.北京:国防工业出版社,2002,28-38
    [2]王祝堂,田荣璋.铝合金及其加工手册.长沙:中南工业大学出版社,2005
    [3]William C,John L,James T.Aluminum alloys for aircraft structure.Advanced Materials Processes,2002,160(12):27-29
    [4]David S T.Metallurgical factors affecting high strength aluminum alloy production.Metallurgical TransactionA,1997,(6):671-683
    [5]Alcoa Technical Center.New aluminum alloy for wings and fuselages of commercial aircraft.Advanced Materials & Processes,2002,(8):87
    [6]Staley J T,Lege D J.Advances in aluminum alloy products for structural applications in transportation.J.de PHys,1993,(3):159-169
    [7]Liu J,Kulak M.A new paradigm in the design of aluminum alloys for aerospace applications.Materials Science Forum,2000,331-337:127-140
    [8]Heinz A,Haszler A,Keidel C.Recent development in aluminum alloys for aerospace applications.Mater Science and Engineering A,1999,280(1):102-107
    [9]杨守杰,戴圣龙.航空铝合金的发展回顾与展望.材料导报.2002,19(2):76-80
    [10]в.г.库德良绍夫,в.и.斯莫连采夫.铝合金断裂韧性(高云震译).北京:冶金工业出版社,1980:94-100
    [11]Starke E A,Staley J T.Application of modem aluminum alloys to aircraft.Prog Aerospace Sci,1995,32:131-172
    [12]中国特种飞行器研究所主编.海军飞机结构腐蚀控制设计指南.北京:航空工业出版社,2005
    [13]章澄昌.飞行气象学.北京:气象出版社,2000:2-70
    [14]Charles J,Crane F A A,Fumess J A G.Selection and use of engineering materials:Third Edition,Butterworth Heinemann,Oxford,1997
    [15]吕宝桐,郑修麟.低温下LY12CZ铝合金的疲劳裂纹扩展.宇航学报,1993(1):76-80
    [16]Abelkis P B,Harmon M B,Hayman E L.Low temperature and loading frequency effects on crack growth and fracture toughness of 2024 and 7475 aluminum.ASTM Special Technical Publication,1985:257-273
    [17]陶华,薛红前.铝合金低温超声疲劳研究.第十届全国疲劳与断裂学术会议.2000:258-261
    [18]徐永波,张匀,王中光.铝锂合金在室温和低温下的疲劳与断裂行为.材料 工程,1990,(2):16-18
    [19]Srivatsan T S,Kolar D,Maguusen P.Influence of temperature on cyclic stress response,strain resistance and fracture behavior of aluminum alloy 2524.Materials Science and Engineering A,2001,314:118-130
    [20]Srivatsan T S,Kolar D,Maguusen P.The cyclic fatigue and final fracture behavior of aluminum alloy 2524.Materials and Design,2002,23:129-139
    [21]田铁忠.温度对典型连接件疲劳寿命的影响.飞机设计,1989,2:46-54
    [22]Sarioglu F,Orhaner F O.Effect of prolonged heating at 130℃ on fatigue crack propagation of 2024 A1 alloy in three orientations.Materials Science and Engineering A,1998,248:115-119
    [23]Lumley R N,Morton A J,Polmear I J.Enhanced creep resistance in underaged aluminum alloys.Materials Science Forum,2002,331-337(3):1495-500
    [24]Majimel J,Casanove M J,Lapasset G,etal.Dislocation mechanisms involved in a 150℃ creep test of an Al(CuMg)aluminum alloy.Materials Science forum,2002,396-402:1383-1388
    [25]Kloc L,Sqi EWWLI s,Cerri E.Creep behavior of an aluminum 2024 alloy produced by powder metallurgy.Acta Mater,1997,45(2):529-540
    [26]Wang J,Wu X,Xia K.Creep behaviour at elevated temperatures of Al-Cu-Mg-Ag alloy.Materials Science and Engineering A,1997,234-236:287-290
    [27]Stefano S,Marcello C,Enrico E,etal.Creep properties of an Al-2024 composite reinforced with SiC particulates.Materials Science and EngineeringA,2002,380:39-47
    [28]鲍蕊.腐蚀条件下民机结构DFR方法及裂纹扩展分析:[博士学位论文].北京:北京航空航天大学,2005
    [29]陈群志,刘文埏,陈志伟,等.腐蚀环境下飞机结构日历寿命研究现状与关键技术问题.中国安全科学学报,2000,10(3):42-27
    [30]穆志韬.海军飞机结构腐蚀损伤规律及使用寿命研究:[博士学位论文].北京:北京航空航天大学,2001
    [31]孙跃,胡津.金属腐蚀与控制,哈尔滨:哈尔滨工业大学出版社,2003:89-94
    [32]王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗谱特征.中国腐蚀与防护学报,1989,9(4):271-279
    [33]李劲风,张昭,程英亮,等.NaCl溶液中Al-Li合金腐蚀过程的电化学特征.金属学报,2002,38(7):760-764
    [34]Conde A,Damborenea J DE.An electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl.Corrosion Science,1997,39(2):295-303
    [35]Guillaumin V,Mankowski G.Localized corrosion of 2024 T351 aluminum alloy in chloride media.Corrosion Science,1999,41:421-438
    [36]Foley R T.Localized corrosion of aluminum alloys a review.Corrosion,1986,42(5):277-288
    [37]张正,宋诗哲,墨淑芬.0.1mol/L NaCl溶液中不同剥蚀程度LY12CZ合金的EIS特征.金属学报.2004.40(7):754-758
    [38]Buchheit R G,Grant R P,Hlava P F,et al.Local dissolution phenomena associated with S phase(Al_2CuMg)particles in aluminum alloy 2024-T3.J Electrochem Society,1997,144:2621-2628
    [39]Cheng Y L,Zhang Z,Cao F H,et al.Corrosion of LY12 aluminum alloy in sodium chloride solution.Trans Nonferrous Met Soc,China,2003,13(3):617-621
    [40]邵敏华,付燕,胡融刚,等.Al 2024-T3合金局部腐蚀的扫描微电极研究.物理化学学报,2002,18(4):350-354
    [41]李劲风,郑子樵,任文达.第二相在铝合金局部腐蚀中的作用机制.材料导报,2005,19(2):81-83
    [42]Shao M H,Fu Y,Hu G.A study on pitting corrosion of aluminum alloy 2024T3by scanning microreference electrode technique.Mater.Sci.Eng.A,2003,344(1):323-327
    [43]Zhu D Q,Wim J,Ooij V.Corrosion protection of AA2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution.part 1:corrosion of AA 2024-T3.Corrosion Science,2003,45:2163-2175
    [44]Li J F,Zheng Z Q,Jiang N,etal.Localized corrosion mechanism of 2-series Al alloy containing S'(Al2CuMg)and θ'(Al_2Cu)precipitates in 4.0%NaCl solution at PH6.1.Materials Chemistry and Physics,2005,91:325-329
    [45]李荻,左尚志.LY12铝合金剥蚀行为的研究.中国腐蚀与防护学报,1995,15(3):203-209
    [46]王逾涯.韩恩厚,孙祚东.LY12CZ铝合金在EXCO溶液的腐蚀行为的研究.装备环境工程,2005,2(1):20-24
    [47]刘瑛,张新明,刘波,等.预变形量对2519铝合金抗晶间腐蚀性能的影响.中国有色金属学报,2006,16(9):1545-1550
    [48]林启权,张辉,彭大暑.形变热处理对2519铝合金性能的影响.矿冶工程,2004,24(1):92-95
    [49]徐灏.疲劳强度.北京:高等教育出版社,1990:354-360
    [50]蒋祖国.飞机结构腐蚀疲劳.北京:航空工业出版社,1992:1-10
    [51]秦剑波,王生楠,刘亚龙,等.腐蚀环境下20242T3铝合金疲劳裂纹扩展和剩余强度实验研究.材料工程,2006,(3):14-17
    [52]Piascik R S,Willard S A.The growth of small corrosion fatigue cracks in Alloy 2024.Fatigue Fract.Eng.Mater.Struct,1994,17(11):1247-1259
    [53]Chaudhuri J,Tan Y M,Patni K,etal.Comparison of corrosion-fatigue properties of 6013 bare,Alclad 2024,and 2024 bare aluminum alloy sheet materials.J.Mater.Eng.Perf,1992,(1):91-96
    [54]鲁自界.LY12CZ和7075-T6铝合金在氯化钠溶液中的腐蚀疲劳裂纹扩展研究:[博士学位论文].沈阳:中科院金属研究所,2001
    [55]Stefanie E S,herwig R M,Elmar K T.The influence of air humidity on near-threshold fatigue crack growth of 2024-T3 aluminum alloy.Materials Science and Engineering A,1991,147:45-54
    [56]李眉娟,胡海云,刑修三.多晶体金属疲劳寿命随晶粒尺寸变化的理论研究,物理学报,2003,52(8):2092-2095
    [57]Saga J,hayashi M,Nishio Y.Effect of grain size on fatigue damage in pure aluminum.Journal of the Society of Materials Science,1977,26:289-295
    [58]Lindigkeit J,Terlinde G,Gysler A,etal.The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environment.Acta Metallurgica,1979,27(11):1717-1726
    [59]Ludwing W,Buffiere J Y,Savelli S,etal.Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography.Acta Materialia,2003,51(3):585-598
    [60]Merati A.A study of nucleation and fatigue behavior of an aerospace Aluminum alloy 2024-T3.International Journal of Fatigue,2005,27(1):33-44
    [61]Zebett A,Pulmtree A.Microstructural effects on the small fatigue crack behaviour of an Aluminum alloy plate.Fatigue & Fracture of Engineering Materials &Structures,1995,18(7-8):801-809
    [62]Manabu N,Takehiko E.New aspects of development of high strength aluminum alloys for aerospace application.Materials Science and Engineering A,2000,285:62-68
    [63]Kunq C Y,fine M E.Fatigue crack initiation and microcrack growth in 2024-T4and 2124-T4 aluminium alloys.Metallurgical Transactions A,1979,10(5):603-610
    [64]张国君,刘刚,丁向东,等.含有第二相的高强铝合金疲劳模型.稀有金属材料与工程,2004,33(1):35-39
    [65]Suresh S,Ritchie R O.Propagation of short fatigue cracks,Int Met Rev,1984,29: 455-47
    [66]Suresh S,Vasudevan A K,Bretz P E.Mechanism of slow fatigue crack growth in high strength aluminum alloys:role of microstructure and environment.Metallurgical Transactions A,1984,15(2):369-379
    [67]Carter R D,Lee E W,Starke E A,etal.The effect ofmicrostructure and environment on fatigue crack closure of 7475 aluminum alloy.Metallurgical Transactions A,1984,15(3):555-563
    [68]Bray GH,Glazov M,Rioja R J.Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys.International Journal of Fatigue,2001,23:S265-276
    [69]曾苏民.影响铝合金固溶保温时间的多因素相关规律.中国有色金属学报,1999,9(1):79-86
    [70]陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能.中国有色金属学报,2000,10(6):819-822
    [71]Xu X J,Zhang J,Chen K M,etal.Improvement of strength in 2024 Al Alloy by enhanced solution treatment.Transactions of materials and heat treatment proceedings of the 14~(th)IFHTSE congress,2004,25(5):297-300
    [72]Sadeler R,Totik Y,Gavgali M,etal.Improvements of fatigue behavior in 2014 Al alloy by solution heat treating and age-hardening.Materials and Design,2004,25:439-445
    [73]Schijve J.The effect of Pre-strain on fatigue crack growth and crack closure.Engineering Fracture Mechanics,1976,8:575-581
    [74]AlCuMg Alloy with high damage tolerance suitable for use as structural members in aircrafts,EP pattern 2003/008215
    [75]Singh S,Goel D B.Structural changes during thermomechanical agine of 2014Aluminum alloy for aerospace application.Bulletin of Mater.Sci,1991,14(1):35-41
    [76]Wang S C,Starink M J,Gao N.Precipitation hardening in Al-Cu-Mg alloys revisited.Script Materialia,2006,54:287-291
    [77]Wang S C,Starink M J.Preicipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li)based alloys.Int.Materials Reviews,2005,20(4):193-215
    [78]Shin H CH,Ho N J,Huang J C.Precipitation behaviors in Al-Cu-Mg and 2024Aluminum Alloys.Metallurgical and Materials Transactions,1996,27:2479-2494
    [79]Ber L B.Acclerated artificial ageing regimes of commercial Aluminum alloys I Al-Cu-Mg alloys.Materials Science and Engineering A,2000,280:83-90
    [80]Charal A,Walther T,Alfonso C,etal.Coexistence of clusters,GPB zones,S"-,S'-and S-phase in an Al-0.9%Cu-1.4%Mg alloy.Acta Mater.2000(48):2751-2764
    [81]中华人民共和国国家技术监督局.GB3075-82.中华人民共和国国家标准—量与单位.北京:中国标准出版社,1983-03-01
    [82]中华人民共和国国家技术监督局.GB/T 6398-2000.中华人民共和国国家标准一量与单位.北京:中国标准出版社,2001-06-01
    [83]中华人民共和国国家技术监督局.GB/T 2039-1997.中华人民共和国国家标准—量与单位.北京:中国标准出版社,1997-09-01
    [84]Standard test method for exfoliation corrosion susceptibility in 2xxx and 7xxx series aluminum alloys(EXCO test),USA:ASTM,1985
    [85]中华人民共和国国家技术监督局.GB/T228-2002.中华人民共和国国家标准—量与单位.北京:中国标准出版社,2000-05-01
    [86]Walsh J A,Jata K V,Starke Jr E A.The influence ofMn dispersoid content and stress state on ductile fracture of 2124 type A1 alloys,Acta Metal,1989,37(11):2861-2871
    [87]中国特种飞行器研究所主编.海军飞机结构腐蚀控制设计指南.北京:航空工业出版社,2005
    [88]Damage tolerant aluminum alloy products useful for aircraft applications such as skin,US pattern 5213639
    [89]Golden P J,Grandt A F,Bray G H.A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens,International Journal of Fatigue,1999,21:211-219
    [90]Rodopoulos C A,Choi J H,De los E R,etal.Stress ratio and the fatigue damage map-Part Ⅰ:Modelling.International Journal of Fatigue,2004,26(7):739-746
    [91]Rodopoulos C A,Choi J H,De los E R,etal.Stress ratio and the fatigue damage map-Part Ⅱ:the 2024-T351 aluminium alloy.International Journal of Fatigue,2004,26(7):747-752
    [92]Rodopoulos C A.Evolution of fatigue damage using the fatigue damage map method.Theoretical and Applied Fracture Mechanics,2006,45(3):252-265
    [93]Thakur A,Raman R,Malhotra S N.Stress ratio and fatigue damage map study of hot rolled 7020-T6 aluminum alloy.Materials Science and Engineering A,2007,454-455:552-557
    [94]Rodopoulos C A,Kermanidis A Th.Understanding the effect of block verloading on the fatigue behaviour of 2024-T351 aluminium alloy using the fatigue damage map.International Journal of Fatigue,2007,29(2):276-288
    [95]吴学仁,于辉,丁传富.LY12CZ铝合金的疲劳裂纹门槛值及宽范围裂纹扩展速率的研究.航空材料学报,2000,20(1):12-17
    [96]Suresh S,Ritchie R O.A geometric model for fatigue crack closure induced by fracture surface roughness.Metallurgical Transactions A,1982,13A:1627-1631
    [97]Hunter MS,Fricke WG.Metallographic aspects of fatigue behavior of aluminium,Proceedings ASTM,1954(54):717-36.
    [98]Edwards PR,Earl MG.A comparative study of the fatigue performance of notched specimens of clad and unclad Aluminum alloy with and without a pre-stress.RAE Technical Report of Aeronautical Research Council.Famborough:1977:1361
    [99]崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社1998
    [100]Cedric G,Christine S B,Jean P,etal.Fatigue crack propagation in an aluminium alloy at 223 K.Scripta Materialia,2005,53:1333-1337
    [101]Wanhill R J H.low stress intesisty fatigue crack growth in 2024-T3 and T351.Engineering Fracture Mechanics,1988,30(2):233-260
    [102]徐灏.疲劳强度.北京:高等教育出版社,1988
    [103]冯端.金属物理学Ⅲ—金属力学性质.北京:科学出版社,1999
    [104]Basinski Z S,Christian J W.Mechanical properties of metals at low temperatures.Advanced Cryogenic Engineering,1954,2:90-92
    [105]黄明华,王浩伟,李险峰,等.原位合成TiB2/ZL109复合材料的高温蠕变行为.复合材料学报,2005,22(1):36-40
    [106]Spigarelli S,Cabibbo M,Evangelista E,etal.Analysis of creep behaviour of a thixoformed AZ91 magnesium alloy.Materials Science and Engineering A,2000,289:171-181
    [107]张俊.合金强度学.哈尔滨:哈尔滨工业大学出版社,2004:130-150
    [108]普瓦里埃J P.晶体的高温塑性变形(管德林译).大连:大连理工大学出版社,1989:35
    [109]Farghalli A M.Correlaation between creep behavior in Al-based solid solution alloys and power metallurgy Al alloys.Materials Science and Engineering A,1998,245(2):242-256
    [110]Haynes M J,Gangloff R P.Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr.Metallurgical and Materials Transactions,1998,29(6):1599-1614
    [111]Nakajima T,Takeda M,Endo T.Accelerated coarsening of precipitates in crept Al-Cu alloys.Materials science and engineering A,2004,387-389:670-673
    [112]Shi Y Y,Zhang Z,Su J X,etal.EIS study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry conditions.Materials and Corrosion,2005,56(10):701-706
    [113]Cheng Y L,Zhang Z,Cao F H,etal.Corrosion of LY12 aluminum alloy in sodium chloride solution.Trans.Nonferrous Met.Sot.China,2003,13(3):617-621
    [114]李劲风,曹发和,曹楚南,等.时效状态对Al-Cu-Li-Mg-Ag-Zr合金在3.0%NaCl溶液中局部腐蚀的影响.中国有色金属学报,2002,12(5):967-971
    [115]Zhang J Q,Zhang Zh,Wang J M,etal.Corrosion monitoring of LY12 alloy in NaCl solution with electrochemical noise technique.Acta Metallurgic Sinica,2001,14(2):91-96
    [116]吴荫顺.金属腐蚀研究方法.北京:冶金工业出版社,1993
    [117]Petroyiannis P V,Pantelakis Sp G,Haidemenopoulos G N.Protective role of local Al cladding against corrosion damage and hydrogen embrittlement of 2024aluminum alloy specimens.Theoretical and Applied Fracture mechanics,2005,44:70-81
    [118]Valerie G,Georges M.Localized corrosion of 2024 T351 aluminum alloy in chloride media.Corrosion science,1999,41:421-438
    [119]Bucheil R G,Grant R P,Halava P F,etal.Local dissolution phenomena associated with S phase(Al_2CuMg)particles in aluminum alloy 2024-T3.Journal of the Electrochemical Society,1997,144(8):2621-2528
    [120]Schmutz P,Frankel G S.Characterization of AA2024-T3 by scanning Kelvin probe force microscopy Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching.Journal of the Electrochemical Society,1998,145(7):2285-2295
    [121]Schmutz P,Frankel G S.Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching.Journal of the Electrochemical Society,1998,145(7):2295-2306
    [122]Chen G S,Gao M,Wei R P.Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3.Corrosion,1996,52(1):8-15
    [123]Obispo H M,Murr L E,Arrowood R M,etal.Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions.Jounal of Materials Science,2000,35:3479-3495
    [124]Murr L E.Theory and practice of copper sulphide leaching in dumps and in-situ,Minerals Sci.Eng.1980,12(3):121-190
    [125]Taheri M,Albrecht J,Bemsterin I M,etal.Strain-rate effects on hydrogen embrittlement of 7075 aluminum.Scripta Metallurgica,1979 13(9):871-875
    [126]Nguyen D,Thompson A W,Bemstein I M.Microstructural effects on hydrogen embrittlement in a high purity 7075 aluminum alloy.Acta Metallurgica,1987,3(10):2417-2425
    [127]Chlistovsky R M,Heffeman P J,Duquesnay D L.Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads.International Journal of Fatigue,2007,29(9-11):1941-1949
    [128]Song R G,Dietzel W,Zhang B J,etal.Stress corrosion cracking and hydrogen embrittlement of an A1-Zn-Mg-Cu alloy.Acta Materialia,2004,52(16):4727-4743
    [129]Hardwick D A,Taheri M,Thompson A W,etal..Hydrogen embdttlement in a 2000-series aluminum alloy.Metallurgical Transaction A,1982,13:235-239
    [130]Zeides F,Roman L,Study of hydrogen embrittlement in aluminum alloy 2024 in the longitudinal direction.Materials Science and Engineering A,1990,125:21-30
    [131]Kermanidis A1 Th,Stamatelos D G,Labeas G N,etal.Tensile behaviour of corroded and hydrogen embrittled 2024 T351 aluminum alloy specimen.Theoretical and Applied Fracture Mechanics,2006,45:148-158
    [132]姚红宇,花迎春,宋余九,等.颗粒增强SiCp/2024铝基复合材料的应力腐蚀断裂行为.中国腐蚀与防护学报,1996,16(2):206-210
    [133]Stanzl-Tschegg S E,Mayer H R,Tschegg E K.The influence of air humidity on near-threshold fatigue crack growth of 2024-T3 aluminum alloy.Materials Science and Engineering A,1991,147:45-54
    [134]Harvey C.Voris and Min-Ten Jahn,Fatigue of aluminum alloy 2024-T351 in humid and dry air.Journal of Material Science,1989(25):4708-4711
    [135]褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社,1988:327
    [136]Ruiz J,Elices M.Effect of water vapour pressure and frequency on fatigue behaviour in 7017-T651 aluminum alloy plate.Acta Mater,1997,45(1):281-293
    [137]刘绍伦,王淑芝,欧阳辉,等.3.5%NaCl溶液和取向对铝合金2124-T851疲劳裂纹扩展特性的影响.1994,15(11):1362-1369
    [138]Zamponi CH,Sonneberger ST,Haaks M,etal.Investigation of fatigue cracks in aluminum alloys 2024 and 6013 in laboratory air and corrosive environment.Jounal of Materials Science,2004,39:6951-6956
    [139]苏晓燕,曹定国.LY12-CZ和LC4-CS铝合金在多种环境中的腐蚀疲劳裂纹扩展.材料工程,1991,(1):48-51
    [140]Liu X F,Huang S J,Gu H C.Crack growth behaviour of high strength aluminum alloy in 3.5%NaCl solution with corrosion inhibiting pigments.International Journal of Fatigue,2002,24:803-809
    [141]Pantelakis Sp G,Daglaras P G,Apostolopoulos C A.Tensile and energy density properties of 2024,6013,8090 and 2091 aircraft aluminum alloy after corrosion exposure.Theretical and Applied Fracture Mechanics,2000,33:117-134
    [142]Albrecht J,Thornpson A W,Bemstein I M.Role of microstructure in hydrogen-assisted fracture of 7075 aluminum.Met.Trans.A,1979,10:1759-1766
    [143]Grubl W,Brungs O.Untersuchungen zum mechanismus der spanningsriss korrosion bei alznmglegierungen(investigations of the mechanism of stress corrosion cracking in alznmg alloys.Metall,1969,23:1020-1025
    [144]Kamoutsi H,Haidemenopoulos G N,Bontozoglou V,etal.Corrosion-induced hydrogen embrittlement in aluminum alloy 2024.Corrosion science,2006,48(5):1209-1224
    [145]常红,韩恩厚,王俭秋,等.阴极极化对LY12CZ铝合金腐蚀疲劳寿命的影响.金属学报,2005,41(5):556-560
    [146]徐文龙.LY12CZ铝合金在NaCl溶液中的腐蚀/疲劳交替作用研究:[硕士学位论文],沈阳:中科院金属研究所,2002
    [147]Kung C Y,Fine M E.Fatigue crack initiation and microcrack growth in 2024-T4and 2124-T4 aluminum alloys.Metallurgical Transaction A,1979,10:603-609
    [148]Hahn G T,Rosenfield A R.Metallurgical factors affecting fracture toughness of aluminum alloys.Metall Trans A,1975,6:653-668
    [149]Nakai M,Etoh T.Effect of the morphology of constituents and dispersoids on fracture toughness and fatigue crack propagation rate in 2024 aluminum alloys.Journal of Japan Institute of Light Metals,1995,45:677-68
    [150]Uchida H,Yoshida H.Heat treatment of aluminum alloys.Sumitomo Light Metal Technical Reports,1997,38:177
    [151]王祝堂,田荣璋.铝合金及其加工手册.长沙:中南工业大学出版社,1989
    [152]SchercliffH R,Ashby M F.A process model for age hardening of aluminium alloys-the model.Acta Metall,1990,38(10):1789-1802
    [153]黄继华.金属及合金中的扩散.北京:冶金工业出版社,1996:31-42
    [154]夏立芳,张振信.金属中的扩散.哈尔滨:哈尔滨工业大学出版社,1989:26-32
    [155]Anand M S,Murarka S P,Agarwala R P.Diffusion of copper in nickel and aluminum.Journal of Applied Physics,1965,36:3860-3862
    [156]Minamino Y,Yamane T,Takahashi T.Interdiffusion in the aluminium-rich solid solution of Al-Cu alloys.Journal of Materials Science Letters,1985,4(6):797-798
    [157]Dorward R C.Lattice and grain diffusion of copper into cladding on Alcad Al-Cu-Mg alloy sheet.Materials Science and Technology,1998,14:187-192
    [158]刘静,冯振海,张雅玲.2024铝合金(包铝)薄板T3、T361、T8、T861状态热处理工艺制度研究.轻合金加工技术,2003,31(8):46-47
    [159]李树棠.晶体X射线衍射学基础.北京:冶金工业出版社,1990:161-168
    [160]Zhang W L,Ruan S L,WolfD A,etal.Statistical model for intergranular -corrosion growth.kinetic.Corrosion Science,2003,45:353-370
    [161]姚磊江.疲劳损伤过程的能量耗散分析及基于能量耗散的疲劳损伤模型:[博士学位论文],西安:西北工业大学,2000
    [162]Zuo J Z,kermanidis Al Th,Pantelakis Sp G.Strain energy density prediction of fatigue crack growth from hole of aging aircraft structures.Thereotical and Applied Mechanics,2002,38:37-51
    [163]Sen N,West D R F.Some phase precipitates generally nucleate on dislocation.J.Inst.Metals,1969,97:87-92
    [164]Lumley R N,Donnell R G,Polmear L J,etal.Enhanced fatigue resistance by underageing an Al-Cu-Mg-Ag alloy.Materials Forum,2005,29:256-261
    [165]魏修宇,谭澄宇,郑子樵,等.时效对2195铝锂合金腐蚀行为的影响,有色金属学报,2004,14(7):1195-1200
    [166]范云强,陈志国,郑子樵,等.分级时效对Al-Cu-Li-Mg-Mn-Zr合金微观组织和性能的影响.中国有色金属学报,2005(15):590-595
    [167]Park J K,Ardell A J.Microchemical analysis of precipitate free zones in 7075Al in the T6,T7 and RRA tempers.Acta Metallurgica et Materialia,1991,39(4):591-598
    [168]Charai A,Walther T,Alfonso C,etal.Coexistence of clusters,GPB zone,S″-,S′-and S-phase in an A1-0.9Cu-1.4Mg alloy.Acta Material,2000,48:2751-2764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700