Stroop范式下两位数表征的ERP研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数量表征是指个体如何认识并理解数字,主要涉及数字加工的过程,它是数学认知领域关注的重点问题之一。人们在加工单个阿拉伯数字时,将具体数量涵义转化为抽象的心理数字线进行表征,由于信息存储的方式不同,两位数的加工机制不同于一位数。
     数量物理一致性效应和个位十位协调性效应是数字Stroop实验范式中的两个重要现象。数字Stroop任务中的数字刺激具有数量维度和物理两个维度的信息,具有数量物理大小一致或不一致条件,当两维度的信息不一致时,产生冲突效应,而当两维度的信息一致时,出现易化效应,这种效应被称为数量物理一致性效应,它包括大小一致效应和明暗一致效应。两位数的数字对分为协调和冲突两个条件:十位和个位都较大的数字对为协调条件,例如42_57,4<5且2<7;十位较大而个位较小的为冲突条件,例如47_62,4<6,但7>2。冲突条件的反应时显著长于协调条件,这种现象被称为个位十位协调效应。
     ERP技术可以记录两位数加工过程中的脑电成分:P300主要反映了数字属性的识别和注意加工的程度;N400是语义关联信息处理的电信号;LRP代表了个体在做出外部反应之前的动作准备和反应启动。数量物理一致性效应和个位十位协调效应可以体现在这些成分潜伏期和波幅的变化上。本研究假设两位数既有整体加工又有部分加工,分别表现为数量物理一致性效应和个位十位协调效应。以成人大学生为被试,设计了两个ERP实验来验证这些假设。
     实验一采用两位数形状比较的实验任务,脑电仪记录被试的反应时、潜伏期等数据。对数据的分析表明:在反应时以及P300、LRP的潜伏期、波幅上,大小一致性效应显著,表明两位数以整体形式进行表征;在P300、N400和LRP成分的潜伏期和波幅上,个位十位协调效应显著,说明两位数存在部分加工;脑区分析结果显示,左右半球以相互协同分工的方式对两位数进行自动加工。
     实验二使用两位数明暗比较的实验任务。统计结果表明:在反应时和P300、N400的潜伏期、波幅上,明暗一致性效应显著,表明两位数的数量信息以整体形式加工;在同样的反应指标上,个位十位协调效应显著,提供了两位数部分加工的证据;脑区分析显示,两位数的加工需要两半球的共同作用。
     综上所述,Stroop范式下两位数表征的ERP研究证实了实验假设。在数量自动加工任务中,两位数的加工表现出数量物理一致性效应和个位十位协调效应,表明两位数的加工存在整体和部分两种表征方式。本研究从理论上加深了我们对两位数加工方式的理解,揭示了两位数的心理表征机制。这些发现丰富了数字加工的理论,也有助于指导学校数学教学研究和发展数学思维能力。
Numeral representation mainly involving in number processing refers to the awareness and understanding of number, which remains the focus in mathematical cognition. In one-digit Arabic numerals processing, individuals transform specific magnitude or number to abstractly mental number line. Due to the different types of information recording, the processing mechanism of two-digit is different from that of one-digit number.
     The magnitude and physical size congruency effect and unit-decade compatible effect are the two important phenomena in Stroop experimental paradigm. The stimuli in numerical Stroop task have magnitude dimension and physical dimension, and two conditions of congruent and incongruent in magnitude size and physical size. The inconsistence of the two dimensions causes conflict effect, whereas the consistence of the two dimensions leads to facilitation effect. This effect is known as congruency effect of magnitude size and physical size. A pair of two-digit number divides into compatible and incompatible condition:a given number comparison is defined as unit-decade-compatible if both comparisons between tens and units led to the same decision (e.g., for 42_57,both 4<5 and 2<7). In contrast, a number comparison is defined as unit-decade incompatible, if the two comparisons for units and tens lead to different decisions (e.g., for 47_62; 4<6,but 7>2). Incompatible number pairs are responded to more slowly than compatible number pairs, which is called unit-decade compatible effect.
     ERP technology can record the EEG during two-digit number processing:P300 mainly reflects the recognition to the number attribute and degree of attention; N400 is the electric signal of information processing to semantic association; LRP is a measure of motor cortex activation, and it indicates selective motor preparation and response initiation before an overt response is given. Magnitude and physical size congruency effect and unit-decade compatible effect can be reflected in the changes of P300/N400/LRP latency and amplitude. It was hypothesized that the two-digit number involved both holistic and decomposed processing, manifesting in magnitude and physical size congruency effect and unit-decade compatible effect. Taken adult college students as participants, two ERP experiments were designed to verify these hypotheses.
     Experiment 1 employed physical size comparison task of two-digit Arabic number. Electrical Geodesics Incorporated system was used to record the response time, latency, et al. The statistics analysis showed that:in reaction time as well as the P300, LRP latency, amplitude, size congruency effect was significant, indicating a holistic processing of two-digit representation; in the P300, N400 and LRP latency and amplitude, unit-decade compatibility had significant effect, indicating that there was decomposed processing in two-digit number; the topography results showed that left and right hemisphere automatically processed the two-digit number in mutual cooperation.
     The luminance comparison task of two-digit number was used in Experiment 2. The results indicated:in the reaction time and P300,N400 latency, amplitude,the luminance congruency effect was significant, showing that the magnitude information of two-digit number had holistic processing; in the same response index, unit-decade compatible effect was significant, providing decomposed processing evidence; topography analysis suggested two-digit number processing needs two hemispheres together.
     Conclusively, the ERP research on the representation of two-digit number in Stroop paradigm confirms all the hypotheses. In automatic processing of number magnitude, the processing of two-digit number shows magnitude and physical size congruency effect and unit-decade compatible effect, which suggests that the two-digit number has holistic and decomposition representation. This study deepens the understanding of our understanding of double-digit processing, and reveals the mental representation mechanism of two-digit number. These findings enrich the theory of digital processing; and also help to guide education and research in school mathematics and develop mathematical thinking abilities.
引文
[1]董奇,张红川,周新林.数学认知:脑与认知科学的研究成果及其教育启示[J].北京师范大学学报(社会科学版),2005,189(3):40-46.
    [2]McCloskey M, Aliminosa D, Sokol S M. Facts, rules and procedures in normal calculation:evidence from multiple single-patient studies of impaired arithmetic fact retrieval [J]. Brain and Cognition,1991,17:154-203.
    [3]McCloskey M. Cognitive mechanisms in numerical processing:evidence from acquired dyscalculia[J]. Cognition,1992,44:107-157.
    [4]Temple C M. Procedural dyscalculia and number fact dyscalculia:Double dissociation in developmental dyscalculia[J]. Cognitive Neuropsychology,1991,8: 155-176.
    [5]Warrington E K. The fractionation of arithmetical skills:A single case study [J]. The Quarterly Journal of Experimental Psychology,1982,34A:31-51.
    [6]Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing [J]. Cognitive Neuropsychology,2003,20:487-506.
    [7]Dehaene S. Varieties of numerical abilities[J]. Cognition,1992,44:1-42.
    [8]Hauser M D, MacNeilage P, Ware M. Numerical representations in primates[J]. Proceedings of the National Academy of Sciences,1996,93:1514-1517.
    [9]Wynn K. Psychological foundations of number:numerical competence in human infants[J]. Trends in Cognitive Sciences,1998,2(8): 296-303.
    [10]Dehaene S., Spelke E., Pinel P et al. Sources of mathematical thinking: Behavioral and brain-imaging evidence [J]. Science,1999,284:970-974.
    [11]Dehaene S. The organization of brain activations in number comparison: Event-related potentials and the additive-factors method[J]. Journal of Cognitive Neuroscience,1996,8:47-68.
    [12]Campbell J I D, Clark J M. An encoding-complex view of cognitive number processing:Comment on McCloskey, Sokol, and Goodman (1986)[J]. Journal of Experimental Psychology:General,1988,117,204-214.
    [13]Campbell J I D, Epp L. An encoding-complex approach to numerical cognition in Chinese-English bilinguals[J]. Canadian Journal of Experimental Psychology, 2004,58(4):229-244.
    [14]Pesenti M,Thioux M,Seron X et al. Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition:A PET study[J]. Journal of Cognitive Neuroscience,2000,12(3):467-479.
    [15]Brysbaert M, Fias W, Noel M P. The Whorfian hypothesis and numerical cognition:is'twenty-four'processed in the same way as'four-and-twenty'[J] Cognition,1998,66:51-77.
    [16]Moyer R S, Landauer, T. K. Time required for judgments of numerical inequality [J]. Nature,1967,215:1519-1520.
    [17]Moyer R S. Comparing objects in memory evidence suggesting an internal psychophysics[J]. Perception and Psychophysics,1973,13 (2):180-184.
    [18]Restle,F. Speed of adding and comparing numbers [J]. Journal of Experimental Psychology,1970,83 (2):274-278.
    [19]Dehaene S, Akhavein R. Attention, automaticity and levels of representation in number processing [J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,1995,21:314-326.
    [20]Dehaene S,Dupoux E,Meheler J. Is numerical comparison digital? Analogical and Symbolic Effects in Two-Digit Number Comparison[J]. Journal of Experimental Psychology:Human Perception and Performance,1990,16(3):626-641.
    [21]Dehaene S. The neural basis of the Weber-Fechner law:a logarithmic mental number line[J]. Trends in Cognitive Sciences,2003,7(4):145-147.
    [22]Gallistel C R,Gelman R. Preverbal and verbal counting and computation [J]. Cognition,1992,44(1-2):43-74.
    [23]Poltrock S E,Schwartz D R. Comparative judgments of multidigit numbers[J]. Journal of Experimental Psychology:Learning, Memory and Cognition,1984, 10(1):32-45.
    [24]Zhang J, Norman D A.. A representational analysis of numeration systems[J]. Cognition,1995,57:271-295.
    [25]Zhang J, Wang H. The effect of external representations on numeric tasks[J]. The Quarterly Journal of Experimental Psychology,2005,58A (5):817-838.
    [26]Dehaene S. Precis of the number sense[J]. Mind & Language,2001,16:16-36.
    [27]Brannon E M, Wusthoff C J, Gallistel C R et al. Numerical subtraction in the pigeon:Evidence for a linear subjective number [J].Psychological Science,2001, 12:238-243.
    [28]Gallistel C R, Brannon E M, Gibbon J, et al.'Subtracting pigeons':Logarithmic or linear?":Reply[J]. Psychological Science,2001,12:247.
    [29]Brysbaert M. Arabic number reading:On the nature of the numerical scale and the origin of phonological recoding [J]. Journal of Experimental Psychology:General, 1995,124:434-452.
    [30]Hinrichs J V, Yurko D S, Hu J M. Two-digit number comparison:Use of place information[J]. Journal of Experimental Psychology:Human Perception and Performance,1981,7:890-901.
    [31]Reynvoet B, Brysbaert M. Single-digit and two-digit arabic numbers address the same semantic number line[J]. Cognition,1999,72:191-201.
    [32]Nuerk H C, Kaufmann L, Zoppoth S, et al. On the development of the mental number line:More or less or never holistic with increasing age[J]. Developmental Psychology,2004,40:1199-1211.
    [33]Delazer M, Bartha L. Transcoding and calculation in aphasia[J]. Aphasiology, 2001,15:649-679.
    [34]Nuerk H C, Willmes K. On the magnitude representations of two-digit numbers[J]. Psychology Science,2005,47:52-72.
    [35]Verguts T, De Moor W. Two-digit comparison decomposed, holistic or hybrid? [J] Experimental Psychology,2005,52:195-200.
    [36]Nuerk H C, Weger U, Willmes K. Decade breaks in the mental number line? Putting tens and units back into different bins[J]. Cognition,2001,82:B25-B33.
    [37]Ratinckx E, Brysbaert M, Fias W. Naming two-digit Arabic numerals:Evidence from masked priming studies [J]. Journal of Experimental Psychology:Human Perception and Performance.2005,31(5):1150-1163.
    [38]Greenwald A G, Abrams R L, Naccache L, et al. Long-term semantic memory versus contextual memory in unconscious number processing[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,2003,29:235-247.
    [39]Dehaene S, Cohen L. Cerebral pathways for calculation:double dissociation between rote verbal and quantitative knowledge of arithmetic[J]. Cortex,1997, 33:219-250.
    [40]Nuerk H C, Geppert B E, van Herten M, et al. On the impact of different number representations in the number bisection task[J]. Cortex,2002,38:691-715.
    [41]Pinel P, Piazza M,Le Bihan D,et al. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments [J]. Neuron,2004,41:983-993.
    [42]Goebel S, Johansen-Berg H, Behrens T, et al. Response-selection-related parietal activation during number comparison[J]. Journal of Cognitive Neuroscience,2004, 16:1536-1551.
    [43]Wood G, Nuerk H C, Willmes K. Neural representations of two-digit numbers:a parametric fMRI study [J]. Neuroimage,2006,29:358-367.
    [44]Ratinckx E, Nuerk H C, van Dijck J P, et al. Effects of interhemispheric communication on two-digit Arabic number processing[J]. Cortex,2006,42:1128-1137.
    [45]Celesia G G, Brigell M. Event-related potentials [J]. Current Opinion in Neurology, 1992,5(5):733-739.
    [46]Naatanen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function[J]. Behavioral and Brain Sciences,1990,13(2):201-288.
    [47]Stroop J R. Studies of interference in serial verbal reactions[J]. Journal of Experimental Psychology:General,1935,18:643-662.
    [48]Allen H W, Maureen A M, Alina T. Numerical Stroop effect[J]. Perceptual and Motor Skills,2004,98 (1):67-77.
    [49]Besner D, Coltheart M. Ideographic and alphabetic processing in skilled reading of English[J].Neuropsychologia,1979,17:467-472.
    [50]Henik A, Tzelgov J. Is three greater than five:the relation between physical and semantic size in comparison tasks[J]. Memory & Cognition,1982,10:389-395.
    [51]Schwarz W, Ischebeck A,. On the relative speed account of the number-size interference in comparative judgment of numerals[J]. Journal of Experimental Psychology:Human Perception and Performance.2003,29:507-522.
    [52]Tzelgov J, Meyer J, Henik A. Automatic and intentional processing of numerical information[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition.1992,18:166-179.
    [53]Cohen Kadosh R, Henik A, Rubinsten O. The effect of orientation on number word processing[J]. Acta Psychologica,2007,124:370-381.
    [54]Pansky A, Algom D. Comparative judgment of numerosity and numerical magnitude:attention preempts automaticity[J]. Journal of Experimental Psychology:Learning, Memory, and Cognition,2002,28:259-274.
    [55]Hurewitz F, Gelman R, Schnitzer B. Sometimes area counts more than number[J]. Proceedings of the National Academy of Sciences,2006,103:19599-19604.
    [56]Duncan E M, McFarland C E. Isolating the effects of symbolic distance and semantic congruity in comparative judgments:an additive factors analysis [J]. Memory & Cognition,1980,8:612-622.
    [57]Ganor-Stern D, Tzelgov J, Ellenbogen R. Automaticity and two-digit numbers[J]. Journal of Experimental Psychology:Human Perception and Performance,2007, 33(2):483-496.
    [58]Kaufmann L, Koppelstaetter F, Delazer M, et al.. Neural correlates of distance and congruity effects in a numerical Stroop task:an event-related fMRI study [J]. NeuroImage,2005,25:888-898.
    [59]Cohen Kadosh R, Cohen Kadosh K, Linden D E J, et al. The brain locus of interaction between number and size:A combined functional magnetic resonance imaging and event-related potential study [J]. Journal of Cognitive Neuroscience, 2007,19:957-970.
    [60]Cohen Kadosh R, Henik A. A common representation for semantic and physical properties:a cognitive-anatomical approach[J]. Experimental Psychology,2006, 53:87-94.
    [61]Cohen Kadosh R, Henik A, Rubinsten O, et al. Are numbers special? The comparison systems of the human brain investigated by fMRI[J]. Neuropsychologia,2005,43:1238-1248.
    [62]Cohen Kadosh R, Cohen Kadosh K, Henik A. When brightness counts:The neuronal correlate of numerical-luminance interference[J]. Cerebral Cortex, 2008,18:337-343.
    [63]Sutton S, Braren M, Zubin J, et al. Evoked potential correlates of stimulus uncertainty [J]. Science,1965,150:1187-1188.
    [64]Duncan-Johnson C C, Donchin E. Effects of a priori and sequential probability of stimuli on event-related potential [J]. Psychophysiology,1977,14:95.
    [65]Mcdowe B K, Keriek S E, Santa-Maria D L, et al. Aging, physical activity, and cognitive processing:an examination of P300[J]. Neurobiology Aging,2003, 24(4):597-606.
    [66]Chochon F, Cohen L, Moortele P F, Dehaene S. Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing[J]. Journal of Cognitive Neuroscience,1999,11:617-630.
    [67]Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry:The P299 as a measure of stimulus evaluation time [J]. Science,1977,197:792-795.
    [68]Magliero A, Bashore T R, Coles M G H, Donchin E. On the dependence of P300 latency on stimulus evaluation processes[J]. Psychophysiology,1984,21 (2):171-186.
    [69]McCarthy G, Donchin E. A metric for thought:A comparison of P300 latency and reaction time[J]. Science,1981,211:77-79.
    [70]Grune K, Mecklinger A, Ullsperger P. Mental comparison P299 component of the ERP reflects the symbolic distance effect[J]. NeuroReport,1993,4:1272-1274.
    [71]Grune K, Ullsperger R, Molle M, Mecklinger A. Mental comparison of visually presented two digit numbers:a P300 study[J]. International Journal of Psychophys-iology,1994,17:47-56.
    [72]Ullsperger P, Grune K. Processing of multi-dimensional stimuli:P300 component of the event-related brain potential during mental comparison of compound digits[J]. Biological Psychology,1995,40:17-31.
    [73]Schwarz W,Heinze H J. On the interaction of numerical and size information in digit comparison:a behavioral and event-related potential study[J].Neuropsychol-ogia,1998,36:1167-1179.
    [74]Kutas M, Hillyard S A. Reading senseless sentences:Brain potentials reflect semantic incongruity [J]. Science,1980,207(4427):203-205.
    [75]Nobre A C. McCaahy G. Language-related field potentials in the anterior—medial temporal lobe: Ⅱ. Efects of word type and semantic priming[J]. Journal of Neuroscience,1995,15(2):1090-1098.
    [76]Simos P G,Basile L F, Papanicolaou A C. Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic resonance imaging[J]. Brain Research,1997,762(1-2):29-39.
    [77]Silva-Pereyra J, Rivera-Gaxiola M, Auben E, et al. N400 during lexical decision tasks:a current source localization study [J]. Clinical Neurophysiology,2003,114 (12):2469-2486.
    [78]Frishkof G A, Tucker D M, Davey C, et al. Frontal and posterior sources of event-related potentials in semantic comprehension[J]. Brain Research Cognitive Brain Research,2004,20(3):329-335.
    [79]Niedeggen M,Rosler F,Jost K. Processing of incongruous mental calculation problems:Evidence for an arithmetic N400 effect[J]. Psychophysiology,1999,36: 307-324.
    [80]Niedeggen M,Rosler F. N400 effects reflect activation spread during retrieval of arithmetic facts[J]. Psychological Science,1999,10:271-276.
    [81]Szucs D, Csepe V. The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition[J]. Cognitive Brain Research,2005,22:289-300.
    [82]Kornhuber H H,Deecke L Hirnpotentialanderungen bei Wilkurbewegungen und passiven Bewegungen des Menschen:Bereitschaftspotential und reafferente Potentiale[J]. Pflugers Archive,1965,284:1-17.
    [83]Libet B,Gleason C A,Wright E W,Pearl D K. Time of conscious intention to act in relation to onset of cerebral activity (Readiness Potential):The unconscious initiation of a freely voluntary act[J]. Brain,1983,106:623-642.
    [84]Gratton QColes M G H,Sirevaag E J,et al. Pre-and poststimulus activation of response channels:a psychophysiological analysis[J]. Journal of Experimental Psychology:Human Perception and Performance.1988,14:331-344.
    [85]De Jong R,Wierda M,Mulder G,et al. Use of partial stimulus information in response processing[J]. Journal of Experimental Psychology:Human Perception and Performance.1988,682-692.
    [86]Coles M G H. Modern Mind-Brain Reading:Psychophysiology,Physiology,and Cognition. SPR Presidential Address [J]. Psychophysiology,1989,26(3):251-269.
    [87]Szucs D,Soltesz F. Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm[J]. Neuropsychologia,2007,45:3190-3202.
    [88]Sziics D,Soltesz F. The interaction of task-relevant and task-irrelevant stimulusfeatures in the number/size congruency paradigm:An ERP study[J]. Brain Research,2008,1190:143-158.
    [89]Verguts T,Fias W,Stevens M. A model of exact small-number representation[J]. Psychonomic Bulletin & Review,2005,12:66-80.
    [90]Macleod C. M. Half a century of research on the stroop effect:an integrative review[J]. Psychological Bulletin,1991,109:163-203.
    [91]陈兰,翟细春,周新林.两位数的整体与局部加工[J].心理学报,2009,41(5):406-413.
    [92]Ratinckx E,Nuerk H C,van Dijck J P,et al. Effects of interhemispheric communication on two-digit Arabic number processing[J]. Cortex,2006,42(8): 1128-1137.
    [93]Banich M T. The Missing Link:The Role of Interhemispheric Interaction in Attentional Processing[J]. Brain and Cognition,1998,2:128-157.
    [94]Donchin E,Coles M G H. Is the P300 component a manifestation of context updating[J]? Behavior and Brain Science,1988,11:357-374.
    [95]Johnson R. Scalp-recorded P300 activity in patients following unilateral temporal lobectomy[J]. Brain,1988,111:1517-1529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700