Wnt/β-catenin信号途径在骨肉瘤发生中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     骨肉瘤是最常见的原发性恶性骨肿瘤,主要发生于青少年,常累及长骨干骺端,如股骨远端或肱骨、胫骨的近端。在青少年生长发育时,长骨的干骺端代谢活跃,而骨肉瘤常常发生于此,提示骨肉瘤的发生可能与快速骨生长有关。自本世纪70年代采取术前化疗以来,病人5年生存率得到明显提高。但近30年来,无论尝试新化疗药物或联合化疗,病人生存率没有得到提高。对于诊断时已有肺转移或术后复发的病人,愈后更差。现阶段对骨肉瘤的发生的分子学机制了解甚少,制约了新的靶向治疗的开展。
     近来研究发现Wnt信号途径在骨的发育中扮演重要角色。Wnt信号途径包括β-catenin依赖途径,即经典型Wnt信号通路和β-catenin非依赖途径,即所谓的非经典Wnt信号途径(包括Wnt/Ca2+和Wnt/JNK途径)。许多研究发现经典型Wnt信号途径是骨骼发生的重要调控因素,而非经典型Wnt通路的作用尚不清楚。因此,本研究主要涉及经典型Wnt信号途径。
     Wnt信号途径活化是间充质干细胞向骨细胞分化所必须的条件之一。后来,它通过调节骨原细胞的增值和分化来参与调控骨的发生。研究发现在成年小鼠的骨原细胞中,Wnt信号途径是活化的。骨肉瘤的诊断标准是高度异性的肿瘤细胞伴有肿瘤样骨样基质,肿瘤样骨样基质类似正常成骨中的骨基质,提示肿瘤细胞可能来自骨细胞,但失去终末分化的能力。Wnt信号途径活化是正常骨发育的重要因素,但它是否参与骨肉瘤的形成尚不清楚。
     大量研究证明Wnt信号途径成员的突变导致过度活化的Wnt信号通路促进内胚层上皮细胞来源的肿瘤发生,如肠道肿瘤。但是关于Wnt信号途径在中胚层间充质细胞起源的骨肉瘤发生中的作用尚不清楚。早先研究根据在骨肉瘤标本中检测到Wnt配体或细胞膜/浆β-catenin表达,推测活化的Wnt信号途径促进骨肉瘤的发生。但这种研究方法存在一定缺陷,因为复杂的Wnt信号通路由多个配体、受体、共同受体及细胞抑制因子组成,仅检测Wnt家族一员如Wnt配体不足以证明Wnt信号途径是激活的,而β-catenin进入细胞核是Wnt信号活化重要标志,因此检测细胞核β-catenin的表达是证明Wnt信号途径活化的可信方法。
     大量研究发现激活Wnt信号通路促进间充质干细胞向骨细胞分化,因而对Wnt信号通路的干预,成为治疗骨质疏松新的药物靶点或骨组织再生工程学的研究热点。以往的研究表明Wnt信号通路的过度激活与某些肿瘤的发生密切相关,因此这些研究最大的担忧是激活Wnt信号途径是否会诱发骨肿瘤。本文通过研究Wnt信号途径在骨肉瘤中发生的作用,对于解除这一担忧具有一定指导意义。
     本研究系统探讨Wnt信号途径在骨肉瘤发生中的作用,我们通过检测细胞核β-catenin在骨肉瘤、骨肉瘤细胞系和骨母细胞瘤(良性骨肿瘤)中的表达,同时检测调节Wnt信号途径对骨肉瘤细胞增殖和向骨细胞分化的影响。明确Wnt信号途径在骨肉瘤的作用不仅有助于深入认识骨肉瘤发生的机制,而且将为骨肉瘤的治疗提供新的思路和理论依据。
     【研究目的】
     1.明确Wnt信号途径在骨肉瘤中状态。
     2探索激活Wnt信号途径对骨肉瘤细胞增值和分化的影响,为今后临床治疗骨肉瘤提供新思路。
     【研究方法】
     1.免疫组化方法检测细胞核β-catenin在52例人骨肉瘤活检组织、15例人骨母细胞瘤(良性骨肿瘤)标本和骨肉瘤细胞系中的表达;
     2.运用Wnt荧光素酶报告基因检测骨肉瘤细胞MG-63、SJSA-1、HOS和U-2-OS中Wnt信号途径的活性,RT-PCR方法检测Wnt信号抑制剂DKK-1的表达;
     3.检测GIN (GSK3β抑制剂)和配体Wnt3a是否能激活Wnt信号途径:根据Wnt荧光素酶报告基因的活性、细胞核β-catenin的表达和Wnt信号通路的靶基因Axin2的表达的变化;
     4.MTS方法检测激活Wnt信号途径对骨肉瘤细胞增值的影响;
     5.通过检测碱性磷酸酶活性(alkaline phosphatase, ALP)和骨原结节的形成(Alizarin Red染色)探讨激活Wnt信号途径对骨肉瘤细胞向成骨细胞分化的影响。
     【实验结果】
     1.Wnt信号途径在骨肉瘤中失活
     首先运用免疫组织化学方法检测β-catenin在骨肉瘤活检标本中的表达。研究结果发现在骨肉瘤标本中,在90%的标本中细胞核β-catenin染色呈阴性,其余的10%标本中β-catenin弱核阳性,而细胞膜或胞浆β-catenin阳性见于90%(47/52)标本中。在15例骨母细胞瘤中,β-catenin染色呈核强阳性,同时细胞浆/膜也阳性,但其中的破骨细胞β-catenin染色为阴性。
     在骨肉瘤细胞系中,我们运用Wnt荧光素酶报告基因检测Wnt信号途径的活性。在阳性对照结肠癌细胞SW480,纠正后的Wnt荧光素酶值为10左右,而在所有骨肉瘤细胞中,其值只有0.002~0.01(比SW480低1000~5000倍),这个数值与阴性对照pGL-3强度相似。Wnt荧光素酶报告基因检测结果表明在骨肉瘤系中Wnt信号途径处于失活状态。免疫荧光检测β-catenin结果发现在所有的骨肉瘤细胞系中,细胞核β-catenin染色阴性,这一结果也表明Wnt信号途径是失活的。
     2.在骨肉瘤细胞中GIN激活Wnt信号途径
     前面的结果显示在骨肉瘤细胞中Wnt信号途径失活,而Wnt信号途径是正常骨细胞分化所必须的因素之一。因此,下一步检测GIN和Wnt3a是否能够激活Wnt信号途径。GIN通过抑制GSK3β阻止β-catenin的降解进而激活Wnt信号途径。在骨肉瘤细胞系MG-63、SJSA-1、HOS和U-2-OS中,GIN (0.2μM)处理24h后Wnt荧光素酶报告基因活性提高10-200倍(p<0.01)。同时,在DMSO对照组,免疫荧光显示细胞膜β-catenin阳性,而在GIN处理所有的骨肉瘤细胞系后,细胞核β-catenin染色强阳性。与DMSO处理组相比,GIN (0.2μM)处理后的细胞Wnt靶基因Axin2 mRNA表达增加10-60倍(p<0.01)。Wnt3a是常用的Wnt配体,与受体结合后激活Wnt信号途径。在阳性对照细胞C2C12中,50ng/ml;和100ng/mlWnt3a处理后Wnt荧光素酶报告基因活性呈浓度依赖性增加,而在所有骨肉瘤细胞系中,Wnt3a作用后,未发现Wnt荧光素酶报告基因活性增加,同时也未发现Wnt3a作用后促进细胞核表达β-catenin。
     3.DKK-1在骨肉瘤细胞中表达
     前面的研究结果发现GIN能够激活Wnt信号途径,而Wnt3a却不能,推测Wnt配体和受体的结合环节受到阻碍。为了进一步探索导致Wnt信号途径失活的原因,我们应用实时荧光定量PCR (qRT-PCR)检测Wnt抑制剂DKK-1 mRNA的表达。同Hela细胞相比,我们发现在MG-63、SJSA-1和HOS细胞中,DKK-1 mRNA的表达较高,但在U-2-OS细胞中未检测到DKK-1mRNA的表达。
     4.激活Wnt信号途径促进骨原细胞分化
     Wnt信号途径激活是间充质细胞向骨细胞分化必须的,而前面的研究结果发现Wnt信号途径在骨肉瘤中失活,因此下一步检测在骨肉瘤细胞中激活Wnt信号途径是否能促进其向骨原细胞分化。我们在诱导骨肉瘤细胞向骨原细胞分化的几个不同时间段激活Wnt信号途径,即在不同时间段加入GIN,如在分化开始前3天、分化开始前3天至分化开始后前3天、分化开始后的前3天和分化开始后的前7天。ALP活性(第7天)和骨原结节的形成(第21天)是骨原细胞分化早期和晚期的标志。在MG-63和U-2-OS中,未加GIN处理时ALP活性较低,同时没有骨原结节形成,在不同的时间段运用GIN处理激活Wnt信号途径对ALP活性和骨原结节没有影响。在SJSA-1和HOS细胞中,未加GIN处理时ALP活性较高,并有骨原结节形成。同对照组相比,结果发现激活Wnt信号途径组(分化开始后的前3天或前7天的GIN处理组)ALP活性增高(p<0.01)和骨原结节形成增多;而预先激活Wnt信号途径(分化开始前3天GIN处理组)对ALP活性和骨原结节形成没有影响。
     5.激活Wnt信号途径抑制骨肉瘤细胞增殖
     接下来,我们检测激活Wnt信号途径对骨肉瘤细胞增值的影响。与DMSO对照组相比,GIN (0.2μM)作用4天后对SJSA-1和HOS细胞增殖几乎没有影响,而在MG-63和U-2-OS,细胞增殖率只有对照组50%(p<0.01)。
     【结论】
     本研究首次报道Wnt途径在骨肉瘤中是失活的,这一结论与以往的研究观点不同。前人研究根据细胞膜和/或细胞浆β-catenin的表达得出骨肉瘤中Wnt信号途径激活的结论。
     本实验结果显示Wnt信号途径关键因子细胞核β-catenin在骨肉瘤标本和骨肉瘤细胞中不表达,而在骨母细胞瘤中细胞核β-catenin强阳性表达,并且在骨肉瘤细胞中激活Wnt信号途径抑制细胞增殖或促进向骨原细胞分化,因此我们推测骨正常发育所必须的Wnt信号途径的丢失是促进骨肉瘤发生因素。
     本研究对Wnt信号途径失活的机制进行初步探讨。GIN在骨肉瘤细胞中可以激活Wnt信号通路,而Wnt3a不能,同时检测到Wnt通路抑制剂DKK-1的高表达,表明Wnt抑制剂的过表达可能是导致Wnt通路失活的原因之一。
     大量研究表明,激活的Wnt信号途径在上皮性肿瘤中扮演促进肿瘤发生的角色,而我们的结果支持Wnt信号途径在间叶来源的骨肉瘤的发生中可能起抑癌的作用,我们这一发现提示Wnt信号途径的作用可能是器官或组织依赖性的。
【Background】
     Osteosarcoma is the most common primary malignant nonhematological tumor of bone. Osteosaroma has a peak incidence in adolescence. Conventional osteosarcoma frequently affects young adolescents during their longitudinal growth spurt at the metaphysis of long bones, suggesting a correlation between rapid bone turnover and the pathogenesis of osteosarcoma. Prognosis remains less that 20% especially in patients with clinically detectable metastasis at diagnosis or relapsed disease. Limited improvement in survival has been achieved over the past 30 years, regardless of intensifying or modifying chemotherapy.. New target therapy has not been developed yet because of limited progress on the pathogenesis of osteosarocoma.
     Recently, accumulated evidence show Wnt/β-catenin pathway has emerged as an essential pathway in skeletal development. Wnt acts throughβ-catenin-independent pathways, the so-called non-canonical Wnt pathways (including the Wnt/Ca2+and Wnt/JNK pathways) and through aβ-catenin-dependent or canonical Wnt pathway. The role of the non-canonical Wnt pathway is poorly understood in bone formation, thus this study focus on canonical Wnt pathway.
     The Wnt pathway is crucial for physiological osteoblast development. Wnt pathway is required for promoting an osteogenic lineage in skeletal stem cells at an early stage. Later on, Wnts stimulate osteoblast proliferation and support osteoblast maturation. Wnt pathway has been shown to be active in osteoblasts in adult mice. The exact role of Wnt coordination osteoblast proliferation and differenation is unclear. Osteosarcoma is characterized by tumor osteoid, which suggest tumor cells retain part of capability as osteoblast but is unable to go terminal differentation. Wnt pathway plays an essential role in bone development, howerer, its role in osteogenic tumor osteosarcoma remains largely unknown.
     Since mutation of key components APC of Wnt pathway has been found to cause colorectal tumor, increasing evidence suggest that activation of Wnt pathway contributes to a variety of epithelial tumor types development. However, its role in the mesenchymal cells derived tumor osteosarcoma remains unclear. Previous studies have suggested that the Wnt pathway is active in osteosarcoma, based on the detection of Wnt ligands or cytoplasmicβ-catenin staining. However, those approaches are inadequate to demonstrate whether this pathway is active or not given the large family of Wnt pathway, which includes a number of ligands, receptors, co-receptors, and inhibitors. Nuclearβ-catenin expression is the node of Wnt pathway, thus detection nuclearβ-catenin expression is a relatively reliable method.
     Accumulating evidences suggest that activation of Wnt pathway promotes MSC toward osteoblast development, therefore, manipulating MSC is a promising direction for treatment of osteoporosis and bone regeneration. However, concerns remain that activation of Wnt pathway contributes to tumor development given that numerous studies related active Wnt pathway with tumor development.
     Thus, in this study, we aim to explore the role of Wnt pathway in osteosarcom by evaluating nuclear P-catenin expression in osteosarcoma biopsies and osteosarcoma cell lines as well as osteoblastomas. Moreover, we assessed the effect of modulating this pathway on cell growth and osteogenic differentiation. Our study will advance the understanding of mechanism of osteosarcoma development and provide a new therapy target for osteosarcoma treatment.
     【Objectives】
     1. To determine Wnt pathway status in osteosarcoma.
     2. To explore the role of Wnt pathway in osteosarcoma cells proliferation and differentiation.
     [Methods】
     1. Nuclear P-catenin expression was examined in 52 human osteosarcoma biopsies, 15 osteoblastomas (benign bone tumours) and human osteosarcoma cell lines by immunohistochemistry.
     2. Wnt pathway activity was measured in osteosarcoma cell lines MG-633. SJSA-11. HOS and U-2-OS by Wnt luciferase reporter assay. Wnt pathway inhibitor DKK-1 expression was examined by qRT-PCR.
     3. Wnt/β-catenin pathway activity was modulated using a drug GIN (GSK3βinhibitor) and Wnt 3 a and the effect was determined by Wnt luciferase reporter assay, nuclear P-catenin expression and change of Wnt target gene Axin2 mRNA expression.
     4. The effect of activation Wnt pathway on osteosarcoma cells growth was evaluated by the MTS assay.
     5. ALP activity and mineralization formation was measured to determine the effect of activation Wnt pathway on osteosarcoma cells differentiation toward osteoblasts.
     【Results】
     1. Wnt pathway is inactive in osteosarcoma The expression ofβ-catenin in osteosarcoma was examined by immunohistochemistry. Negative staining of nuclear P-catenin was detected in 90% (47/52) of cases and the remaining five cases showed weak nuclear staining. Most of the cases (47/52) showed membranous and/or cytoplasmic staining. Strong membranous and nuclear P-catenin staining was seen in all 15 osteoblastomas and absence ofβ-catenin staining was found in osteoclasts.
     Wnt luciferase assay was used to determine the functional activity of Wnt pathway. The corrected Wnt-luciferase activity was around 10 in the positive control colorectal carcinoma cell line SW480; however, it was around 0.002-0.01 (1000-5000 times lower than the positive control) in osteosarcoma cell lines, comparable with the negative control. Consistently, none of the cell lines showed nuclear P-catenin staining.
     2. Restoration of Wnt signalling by GIN and Wnt3a
     Inactive Wnt pathway was observed in osteosarcoma and active Wnt pathway is required for osteoblast development, thus we decided to investigate whether Wnt pathway can be actived in osteosarcoma cell lines.
     GIN stimulates Wnt pathway by inhibiting GSK3, thereby preventingβ-catenin degradation in the cytoplasm. Around a 10-to 200 fold increase in Wnt pathway activity occurred in all osteosarcoma cell lines upon GIN (0.2μM) treatment, as determined by the luciferase assay (p< 0.01). Accordingly, strong nuclear p-catenin staining was observed by immunofluorescence in all cell lines after GIN (0.2μM) treatment. Moreover, a 10-to 60 fold increase in Axin2 mRNA expression was found compared with DMSO-treated cells. Wnt3a is a ligand commonly used to activate Wnt signalling upon binding to the receptors. In the positive control C2C12 cell line, BAT-luc activity increased in a dose-dependent manner upon treatment with Wnt3a (50ng/ml,100ng/ml). However, neither a change of BAT-luc activity nor a change of nuclearβ-catenin staining was observed upon rWnt3a treatment in osteosarcoma cell lines.
     3. DKK1 expression in osteosarcoma cell lines
     GIN can stimulate Wnt pathway, however, Wnt3a failed, implying the link between Wnt ligands and receptor is impaired.
     To determine the possible cause of Wnt pathway inactivity, we used qRT-PCR to assess expression of the Wnt inhibitor DKK-1 at the mRNA level. Compared with HeLa cells, relatively high or similar levels of DKK-1 mRNA were found in MG-63, SJSA-1, and HOS cells, although DKK-1 mRNA expression was hardly detectable in U-2-OS cells.
     4. Restoration of Wnt signalling promotes osteoblast differentiation in SJSA-1 and HOS cells
     Since Wnt signalling is essential for osteogenic differentiation, we examined whether restoration of Wnt signalling could promote differentiation of osteosarcoma cells. ALP activity (on day 7)and mineralization formation (on day 21) are early and late stage markers of osteoblast differentiation, respectively. We planned to activate Wnt pathway at different time period by adding GIN at different time point, i.e. prior 3 days, prior 3 days till first 3 days, first 3 days and first 7days. Low levels of ALP activity and absence of mineralization were observed in U-2-OS and MG-63, and stimulation of the Wnt pathway did not rescue this phenotype. High levels of ALP activity and mineralization were seen in SJSA-1 and HOS cells. Stimulation of the Wnt pathway by GIN for 3 or 7 days (when differentiation starts) induced a further increase in ALP activity and mineralization. Three day prior treatment with GIN did not induce ALP activity or mineralization.
     5. Activation of the Wnt pathway inhibits cell proliferation in MG-63 and U-2-OS cells
     The effect of stimulation of the Wnt pathway on cell proliferation was examined. A slight decrease of cell numbers was found for SJSA-1 and HOS cells upon GIN treatment compared with DMSO control group. In contrast, around 50%inhibition of proliferation was observed in MG-63 and U-2-OS upon GIN treatment.
     【Conclusions】
     To the best of our knowledge, this is the first time we report that Wnt pathway is inactive in osteosarcoma. Our view is different from previous conclusion that Wnt pathway is active in osteosarcoma, which based on membranous and/or cytoplasm staining ofβ-catenin.
     We observed negative nuclearβ-catenin expression in most osteosarcoma specimen and osteosarcoma cell lines and strong nuclearβ-catenin staining in osteoblastoma. Moreover, activation of the Wnt pathway inhibits cell proliferation or promotes osteogenic differentiation in osteosarcoma cell lines. Thus, we propose that loss of Wnt/β-catenin pathway activity, which is required for osteoblast differentiation, may contribute to osteosarcoma development.
     We also explored the reason for inactivation of Wnt pathway. GIN stimulated Wnt pathway, but Wnt3a failed. High expression of DKK-1 was detected in osteosarcoma cells. Our data suggest high expression of Wnt inhibitor may be the cause of inactive Wnt pathway.
     The oncogenic role of the Wnt/β-catenin pathway in epithelial tumors has been well studied; however our data support a tumor suppressor role of Wnt pathway in osteosarcoma, which originate from mesenchymal cells, implicating the role of Wnt pathway acts in a context dependent manner.
引文
1. Dorfinan HD, Czerniak B. Bone cancers. Cancer 1995; 75(1 Suppl):203-210.
    2. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 2009; 125(1):229-234.
    3. Hansen MF, Seton M, Merchant A. Osteosarcoma in Paget's disease of bone. J Bone Miner Res 2006; 21 Suppl 2:58-63.
    4. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium:from endoderm to cancer. Genes Dev 2005; 19(8):877-890.
    5. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20:781-810.
    6. van AR, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal 2008; 1(35):re9.
    7. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16(3):151-158.
    8. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31(1):99-109.
    9. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987; 50(4):649-657.
    10. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11(4):273-282.
    11. Semenov MV, Habas R, Macdonald BT, He X. SnapShot:Noncanonical Wnt Signaling Pathways. Cell 2007; 131(7):1378.
    12. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3):469-480.
    13. Jones SE, Jomary C. Secreted Frizzled-related proteins:searching for relationships and patterns. Bioessays 2002; 24(9):811-820.
    14. Rawadi G Wnt signaling and potential applications in bone diseases. Curr Drug Targets 2008; 9(7):581-590.
    15. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006; 25(57):7469-7481.
    16. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003; 116(Pt 13):2627-2634.
    17. Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005; 280(29):26770-26775.
    18. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8(5):727-738.
    19. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005; 132(1):49-60.
    20. Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8(5):751-764.
    21. Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133(16):3231-3244.
    22. Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 2005;280(22):21162-21168.
    23. Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 2005; 20(7):1103-1113.
    24. Kim JB, Leucht P, Lam K, Luppen C, Ten BD, Nusse R et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res 2007; 22(12):1913-1923.
    25. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 2006; 5(12):997-1014.
    26. Chen K, Fallen S, Abaan HO, Hayran M, Gonzalez C, Wodajo F et al. Wnt1Ob induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer 2008; 51(3):349-355.
    27. Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004; 109(1):106-111.
    28. Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, Zhou L et al. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer 2002; 102(4):338-342.
    29. Iwaya K, Ogawa H, Kuroda M, Izumi M, Ishida T, Mukai K. Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis. Clin Exp Metastasis 2003; 20(6):525-529.
    30. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009; 119(4):837-851.
    31. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases. Dev Cell 2009; 17(1):9-26.
    32. Glass DA, Karsenty G Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 2006; 73:43-84.
    33. Bisgaard ML, Bulow S. Familial adenomatous polyposis (FAP):genotype correlation to FAP phenotype with osteomas and sebaceous cysts. Am J Med Genet A 2006; 140(3):200-204.
    34. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007; 110(7):2764-2767.
    35. Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB et al. Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 2003; 100(6):3299-3304.
    36. Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of Smoothened. Nature 2002; 418(6900):892-897.
    37. Romeo S, Bovee JV, Grogan SP, Taminiau AH, Eilers PH, Cleton-Jansen AM et al. Chondromyxoid fibroma resembles in vitro chondrogenesis, but differs in expression of signalling molecules. J Pathol 2005; 206(2):135-142.
    38. Nath N, Kashfi K, Chen J, Rigas B. Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci USA 2003; 100(22):12584-12589.
    39. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 1993; 53(22):5535-5541.
    40. Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 2007; 25(7):964-971.
    41. Guo Y, Rubin EM, Xie J, Zi X, Hoang BH. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 2008; 466(9):2039-2045.
    42. Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer:how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27(55):6920-6929.
    43. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123(5):889-901.
    44. Heuberger J, Birchmeier WI Interplay of cadherin-mediated cell adhesion and canonical wnt signaling. Cold Spring Harb Perspect Biol 2010; 2(2):a002915.
    45. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108(6):837-847.
    46. Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol 2005; 18(1):68-74.
    47. Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH, Romeo S, Oosting J, Egeler RM et al. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 2009; 101(11):1909-1918.
    48. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107(4):513-523.
    49. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346(20):1513-1521.
    50. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008; 135(5):825-837.
    51. Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M et al. Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 2003; 163(5):1707-1712.
    52. Rubin EM, Guo Y, Tu K, Xie J, Zi X, Hoang BH. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther 2010;9(3):731-741.
    53. Biechele TL, Adams AM, Moon RT. Transcription-based reporters of Wnt/beta-catenin signaling. CSH Protoc 2009; 2009(6):db.
    54. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 1991; 10(1):123-132.
    55. Van de Wetering M, Castrop J, Korinek V, Clevers H. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties. Mol Cell Biol 1996; 16(3):745-752.
    56. Leucht P, Minear S, Ten BD, Nusse R, Helms JA. Translating insights from development into regenerative medicine:the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19(5):434-443.
    57. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999; 126(20):4557-4568.
    58. Currier N, Chea K, Hlavacova M, Sussman DJ, Seldin DC, Dominguez I. Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer. Genesis 2010.
    59. Barolo S. Transgenic Wnt/TCF pathway reporters:all you need is Lef? Oncogene 2006; 25(57):7505-7511.
    60. Engler TA, Henry JR, Malhotra S, Cunningham B, Furness K, Brozinick J et al. Substituted 3-imidazo[1,2-a]pyridin-3-yl-4-(1,2,3,4-tetrahydro-[1,4]diazepino-[6,7,1-hi]indol-7-yl)pyrrole-2,5-dion es as highly selective and potent inhibitors of glycogen synthase kinase-3. J Med Chem 2004; 47(16):3934-3937.
    61. Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL et al. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006; 21(6):910-920.
    62. Kalderon D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol 2002; 12(11):523-531.
    63. Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 2008; 90 Suppl 1:19-24.
    64. Chien AJ, Conrad WH, Moon RT. A Wnt survival guide:from flies to human disease. J Invest Dermatol 2009; 129(7):1614-1627.
    65. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22(4):1172-1183.
    66. Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell 2008; 19(6):2588-2596.
    67. Nygren MK, Dosen Q Hystad ME, Stubberud H, Funderud S, Rian E. Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and inhibits the proliferation of B-ALL cell lines. Br J Haematol 2007; 136(3):400-413.
    68. Lee N, Smolarz AJ, Olson S, David O, Reiser J, Kutner R et al. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br J Cancer 2007; 97(11):1552-1559.
    69. Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278(30):28067-28078.
    1. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16(3):151-158.
    2. Cao X, Chen D. The BMP signaling and in vivo bone formation. Gene 2005; 357(1):1-8.
    3. Caplan AI. Why are MSCs therapeutic? New data:new insight. J Pathol 2009; 217(2):318-324.
    4. Milat F, Ng KW. Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 2009; 310(1-2):52-62.
    5. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3):469-480.
    6. Leucht P, Minear S, Ten BD, Nusse R, Helms JA. Translating insights from development into regenerative medicine:the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19(5):434-443.
    7. Chau JF, Leong WF, Li B. Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol 2009; 24(12):1593-1606.
    8. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107(4):513-523.
    9. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346(20):1513-1521.
    10. MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X et al. Bone mass is inversely proportional to Dkkl levels in mice. Bone 2007; 41(3):331-339.
    11. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005; 37(9):945-952.
    12. Collette NM, Genetos D, Murugesh D, Harland RM, Loots GG Genetic evidence that SOST inhibits WNT signaling in the limb. Dev Biol 2010.
    13. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium:from endoderm to cancer. Genes Dev 2005; 19(8):877-890.
    14. Lindvall C, Bu W, Williams BO, Li Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev 2007; 3(2):157-168.
    15. Akiri Q Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 2009; 28(21):2163-2172.
    16. Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets 2008;9(11):1013-1024.
    17. Deschaseaux F, Sensebe L, Heymann D. Mechanisms of bone repair and regeneration. Trends Mol Med 2009; 15(9):417-429.
    18. Krause U, Harris S, Green A, Ylostalo J, Zeitouni S, Lee N et al. Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci U S A 2010.
    19. Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest 2008; 88(12):1264-1277.
    20. Yu Y, Harris RI, Yang JL, Anderson HC, Walsh WR. Differential expression of osteogenic factors associated with osteoinductivity of human osteosarcoma cell lines. J Biomed Mater Res A 2004; 70(1):122-128.
    21. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 1993; 53(22):5535-5541.
    22. Matsuzaki E, Takahashi-Yanaga F, Miwa Y, Hirata M, Watanabe Y, Sato N et al. Differentiation-inducing factor-1 alters canonical Wnt signaling and suppresses alkaline phosphatase expression in osteoblast-like cell lines. J Bone Miner Res 2006; 21(8):1307-1316.
    23. Gorlick R, Khanna C. Osteosarcoma. J Bone Miner Res 2010; 25(4):683-691.
    24. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411):143-147.
    25. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22(12):1662-1676.
    26. Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H, Lozano G Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis 2009; 30(10):1789-1795.
    27. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis MA, McElmurry RT, Bell S et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25(2):371-379.
    28. Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de B, I, de JD et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 2009; 219(3):294-305.
    29. Hauben EI, Weeden S, Pringle J, Van Marck EA, Hogendoorn PC. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur J Cancer 2002; 38(9):1218-1225.
    30. Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278(30):28067-28078.
    31. Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004; 93(6):1210-1230.
    32. Baksh D, Tuan RS. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 2007; 212(3):817-826.
    33. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8(5):387-398.
    34. Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117(11):3248-3257.
    35. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726):422-426.
    36. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A2 009; 106(4):1193-1198.
    37. Matushansky I, Maki RG, Cordon-Cardo C. A context dependent role for Wnt signaling in tumorigenesis and stem cells. Cell Cycle 2008; 7(6):720-724.
    38. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 2004; 9(4):422-441.
    39. Eilber FR, Rosen G Adjuvant chemotherapy for osteosarcoma. Semin Oncol 1989; 16(4):312-322.
    40. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986; 314(25):1600-1606.
    41. Kempf-Bielack B, Bielack SS, Jurgens H, Branscheid D, Berdel WE, Exner GU et al. Osteosarcoma relapse after combined modality therapy:an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 2005; 23(3):559-568.
    42. O'Day K, Gorlick R. Novel therapeutic agents for osteosarcoma. Expert Rev Anticancer Ther 2009; 9(4):511-523.
    43. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 2004; 9(4):422-441.
    1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004:data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009; 115(7):1531-1543.
    2. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk:an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002; 20(3):776-790.
    3. Song B, Estrada KD, Lyons KM. Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 2009; 20(5-6):379-388.
    4. Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21:659-693.
    5. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005; 19(23):2783-2810.
    6. Cao X, Chen D. The BMP signaling and in vivo bone formation. Gene 2005; 357(1):1-8.
    7. Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C et al. Tgf-Beta signaling in development. Sci STKE 2007; 2007(399):cml.
    8. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW et al. Novel regulators of bone formation:molecular clones and activities. Science 1988; 242(4885):1528-1534.
    9. Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 2005; 280(9):7409-7412.
    10. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z et al. TGF-beta 1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15(7):757-765.
    11. Janssens K, ten DP, Janssens S, Van HW. Transforming growth factor-betal to the bone. Endocr Rev 2005; 26(6):743-774.
    12. Massague J. TGF beta in cancer. Cell 2008; 134(2):215-230.
    13. Yoshikawa H, Takaoka K, Hamada H, Ono K. Clinical significance of bone morphogenetic activity in osteosarcoma. A study of 20 cases. Cancer 1985; 56(7):1682-1687.
    14. Yoshikawa H, Takaoka K, Masuhara K, Ono K, Sakamoto Y. Prognostic significance of bone morphogenetic activity in osteosarcoma tissue. Cancer 1988; 61(3):569-573.
    15. Guo W, Gorlick R, Ladanyi M, Meyers PA, Huvos AG, Bertino JR et al. Expression of bone morphogenetic proteins and receptors in sarcomas. Clin Orthop Relat Res 1999;(365):175-183.
    16. Sulzbacher I, Birner P, Trieb K, Pichlbauer E, Lang S. The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter. J Clin Pathol 2002; 55(5):381-385.
    17. Franchi A, Arganini L, Baroni G, Calzolari A, Capanna R, Campanacci D et al. Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol 1998; 185(3):284-289.
    18. Yang RS, Wu CT, Lin KH, Hong RL, Liu TK, Lin KS. Relation between histological intensity of transforming growth factor-beta isoforms in human osteosarcoma and the rate of lung metastasis. Tohoku J Exp Med 1998; 184(2):133-142.
    19. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA. Molecular biology of bone metastasis. Mol Cancer Ther 2007; 6(10):2609-2617.
    20. Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de B, I, de JD et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 2009; 219(3):294-305.
    21. Korchynskyi O, ten DP. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Idl promoter. J Biol Chem 2002; 277(7):4883-4891.
    22. Dennler S, Itoh S, Vivien D, ten DP, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17(11):3091-3100.
    23. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16(3):151-158.
    24. Cai Y, Mohseny AB, Karperien M, Hogendoorn PC, Zhou G, Cleton-Jansen AM. Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol 2009.
    25. Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH, Romeo S, Oosting J, Egeler RM et al. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 2009; 101(11):1909-1918.
    26. Yoshikawa H, Nakase T, Myoui A, Ueda T. Bone morphogenetic proteins in bone tumors. J Orthop Sci 2004; 9(3):334-340.
    27. Kudo N, Ogose A, Ariizumi T, Kawashima H, Hotta T, Hatano H et al. Expression of bone morphogenetic proteins in giant cell tumor of bone. Anticancer Res 2009; 29(6):2219-2225.
    28. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 2006; 38(5):525-527.
    29. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 2008; 14(12):1363-1369.
    30. Alaoui-Ismaili MH, Falb D. Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine Growth Factor Rev 2009; 20(5-6):501-507.
    31. Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest 2008; 88(12):1264-1277.
    32. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001; 20(9):2254-2272.
    33. Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K et al. SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res 2003; 63(22):7791-7798.
    34. Siggelkow H, Schenck M, Rohde M, Viereck V, Tauber S, Atkinson MJ et al. Prolonged culture of HOS 58 human osteosarcoma cells with 1,25-(OH)2-D3, TGF-beta, and dexamethasone reveals physiological regulation of alkaline phosphatase, dissociated osteocalcin gene expression, and protein synthesis and lack of mineralization. J Cell Biochem 2002; 85(2):279-294.
    35. Buddingh EP, Anninga JK, Versteegh MI, Taminiau AH, Egeler RM, van Rijswijk CS et al. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr Blood Cancer 2010; 54(2):216-221.
    36. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 2005; 102(39):13909-13914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700