GSK-3β抑制剂对大鼠脊髓损伤后轴突再生与功能恢复影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察GSK-3β抑制剂对大鼠脊髓损伤后轴突再生与功能恢复的影响。方法:①取健康雌性SD成年大鼠115只,体重250±30g,分为四组。A组:TDZD-8治疗组(35只),B组:PBS治疗组(35只)C组:手术瘫痪对照组(35只),D组:空白手术对照组(10只)。WD法制成SD大鼠T9平面完全性截瘫的脊髓损伤动物模型,脊髓损伤后1h内经蛛网膜下腔注射TDZD-8(1mg/kg/Qd)和PBS(60μl),连续注射3w。②各组在损伤后8h、24h、7d(每个时相2只大鼠)用4%多聚甲醛灌注取材后作冰冻切片,行TUNEL法检测细胞凋亡情况。③各组在损伤后24h、7d、14d(每个时相2只大鼠)用4%多聚甲醛灌注取材后作冰冻切片,行SP法作免疫组化染色检测GAP-43的表达情况。④各组在损伤后3w,6w、8w(每个时相5只大鼠)作BBB评分,评估双下肢运动功能恢复情况。⑤各组随机抽取3只模型,在损伤后第6w经大脑感觉运动皮质区注射FITC荧光示踪剂,注入示踪剂2w后4%多聚甲醛灌注取材后作冰冻切片,观察FITC荧光示踪剂的传导情况。⑥各组随机抽取5只模型在损伤后3w、8w检测体感诱发电位(SEP)振幅与潜伏期的变化情况。结果:①凋亡细胞的表达:脊髓损伤后8h开始出现凋亡细胞。TDZD-8治疗组阳性细胞数量均明显低于PBS治疗组和手术瘫痪对照组(P<0.05),但高于空白手术对照组。术后8h各组阳性细胞数量依次为:50.27±4.74、58.93±2.46、58.47±2.09、8.27±1.44。术后24h各组阳性细胞数量依次为:45.73±4.95、55.40±3.94、54.53±3.11、8.27±1.44。术后7d各组阳性细胞数量依次为:10.67±1.50、15.67±1.49、15.60±1.68、8.27土1.44。②GAP-43的表达:脊髓损伤后GAP-43的表达逐渐增加,第14d达到高峰,各时间点中TDZD-8治疗组GAP-43表达面积均明显高于其余三组(P<0.05)。术后1d各组GAP-43阳性表达的面积依次为:79.2±5.31、43.3±3.99、42.3±4.77、6.3±2.31,术后7d各组GAP-43阳性表达的面积依次为:107.3±4.43、70.1±3.57、68.2±3.34、6.3±2.31,术后2w各组GAP-43阳性表达的面积依次为:156.7±4.35、94.5±3.91、96.1±3.56、6.3±2.31。③荧光示踪结果:损伤区域脊髓组织结构紊乱,TDZD-8治疗组有较多再生纤维穿过损伤部位,而PBS治疗组和手术瘫痪对照组损伤部位有少许的神经纤维再生,无法穿过损伤部位,再生神经纤维的面积计数依次为:82.0±1.7,35.2±1.7,33.74±1.3,138±2.2。④术后3w、8w检测SEP结果:TDZD-8治疗组较PBS治疗组、手术瘫痪对照组潜伏期明显缩短,振幅显著升高。⑤BBB运动功能评分:术后各组评分均有升高,术后8w PBS治疗组、TDZD-8治疗组、手术瘫痪对照组和空白手术对照组评分为:9.4±1.14、8.2±0.45、8.0±0.71、21±0.00。p<0.05结论:①.TDZD-8能够抑制神经细胞凋亡,减少脊髓继发性损伤。②.TDZD-8能够上调生长相关蛋白43,能够缩短体感诱发电位潜伏期、增加其波幅,促进残存神经元出芽或促进轴突再生,增加神经元的可塑性,促进脊髓损伤后功能恢复。
Abstract:Objective:To explore the effect of promoted axonal regeneration and functional recovery with GSK-3βinhibitors in vivo after spinal cord injury in rats.Methods:①A total of 115 healthly female Sprague-Dawley (SD) rats (weight 250±30)were randomly allocated into TDZD-8 group、PBS group、SCI group and Sham operated group with 10 rats in Sham operated group and 35 in other groups。The laminectomy was performed and a weight-dropoing impact at spinal levels of T9 to cause complete paraplegia。TDZD-8 or PBS were injected at the dose of (1mg/kg/Qd) or (60μl/Qd) through subarachnoid one hour after SCI and continued for three weeks。②The rats were killed by perfusion with 4%paraformaldehyde at 8h、24h、7d after SCI(2 rats at each time phase),then the frozen sections were stained with TUNEL method to measure the degree of apopotic。③The rats were killed by perfusion with 4%paraformaldehyde at 24h、7d、14d after SCI(2 rats at each time phase),then the frozen sections were stained with SP immunohistochemical method to measuring the expression of GAP-43。④Rats were used to make BBB scale in order to evaluate lower limb function recovery at 3w、6w、8w after SCI(5 rats at each time phase)。⑤Six weeks after SCI, three rats were injected FITC fluorescent tracer from sensorimotor cortex in each group。Two weeks after FITC inject, the animals were killed by perfusion with 4% paraformaldehyde, then the frozen sections were observed by Confocal microscopy in order to know the FITC fluorescent tracer passing condition。⑥Three weeks and Eight weeks after SCI, five rats were choosen to detect amplitude and latency changes of somatosensory evoked potential in each group。Results:①At the eight hours after SCI,the apoptosis positive cells were observed。The positive cells of TDZD-8 group were significantly lower than PBS group and SCI group, but higher than the Sham operated group.Eight hours after SCI,the positive cells of each group are 50.27±4.74,58.93±2.46、58.47±2.09、8.27±1.44 in turns。Twenty-four hours after SCI,the positive cells of each group are 45.73±4.95、55.40±3.94、54.53±3.11、8.27±1.44 in turns。Seven days after SCI,the positive cells of each group are 10.67±1.50、15.67±1.49,15.60±1.68,8.27±1.44 in turns。②After SCI, the GAP-43 positive reaction was increased gradually,and rose to its peak on the 14th day, which in TDZD-8 group was remarkably superior to that in other groups in different time point (P<0.05)。One day after SCI,the positive area of each group are 79.2±5.31、43.3±3.99、42.3±4.77、6.3±2.31 in turns,Seven day after SCI,the positive area of each group are:107.3±4.43、70.1±3.57、68.2±3.34、6.3±2.31 in turns,Two weeks after SCI,the positive area of each group are:156.7±4.35、94.5±3.91、96.1±3.56、6.3±2.31 in turns。③The structure of regenetation axonals are significantly disordered in lesion areas,TDZD-8 group have more regenetation axonals extend into caudal while the PBS group and SCI group have little regenetation axonal extend into caudal。The areas of regenetation axonals was followed:82.0±1.7,35.2±1.7,33.74±1.3,138±2.2。④Somatosensory evoked potentials examination postopertative 3、8 week:Compared TDZD-8 group with PBS group and SCI group,The waveform of somatosensory evoked potentials was significantly short, and the amplitude was significantly high。⑤BBB locomotor scale:All the BBB scores have arised, The mean of BBB scores of four group at 8 weeks after SCI were 9.4±1.14、8.2±0.45、8.0±0.71、21±0.00。Among the groups,there was significant difference between TDZD-8 group with PBS group and SCI group(p<0.05)。Conclusion:①TDZD-8 can inhibit neuronal apoptosis after spinal cord injury and reduce secondary spinal cord injury。②TDZD-8 can increase the growth associated protein 43 expression, reduce latency of somatosensory evoked potentials and improve the amplitude,promote the survival neuron sprouting or promote axonal regenaration,increase the plasticity of neurons,promote functional recovery。
引文
1.Zhou FQ, Zhou J, Dedhar S,et al.NGF-induced axonal growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC.Neuron,2004,42(6): 897-912
    2.Goold RG, Gordon-Weeks PR..Glycogen synthase kinase 3β and the regulation of axon growth.Biochem Soc Trans,2004,32(5):809-811
    3.Gensel JC,Tovar CA,Hamers FP,et al.Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats[J].J Neurotrauma,2006,23(1):36-54
    4.Basso DM,Beattie MS,Bresnahan JC.A sensitive and reliable locomotor rating scale for open field testing in rats[J].J Neurotr-auma,1995,12(1):1-12
    5.Erschbamer MK,Hofstetter CP,Olson L. RhoA, RhoB, RhoC, Racl, Cdc42,and Te10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-Lasting specific changes following spinal cord injury[J].JComp Neurol,2005,484(2):224-3
    6.庞清江,罗永湘.实验性脊髓损伤模型的建立.中国修复重建外科杂志,1995,9(2):120-122
    7.MalsonPierrePC,BelluseioL,FriedmanBetal.NT-3,GAP-43 and NGF in the developing rat nervous system:Parallel as well as reciprocal patterns of expression.Neuron1990;5(4):501-509
    8.Lu P,Blesch A,Tulszynski,MH.Neurotrophism without neurotr-opism:GAP-43 promotes survival but not growth of lesloned corticospinal neurons.J Comp Neurol.2001:436(4):456-70
    9.杨惠林,孟斌.脊髓损伤模型的评价标准.国外医学骨科学分册,2003,2492):74-77
    10.傅强,侯铁胜,鲁凯伍,等.大鼠胸段脊髓损伤后后肢运动功能不同评价标准的比较研究.中国脊柱脊髓杂志,2001,11(5):278-281
    11.Marwah J,Dixon CE,Banik NL Traumatic CNS Injury[M].Scottsdale: Prominent Press,2001.
    12.Moskowitz Michael A,Lo Eng H.Neumgenesis and apoptotic cell death [J].Stroke。2003,34(2):324-326.
    13.Kim MS,Cheong YP,So HS,etal Protective effects of morphine in peroxynitrite-induced apoptosis of primary rat neonatal astrocytes: potential involvement of G protein and phosphatidylinositol 3-kinase (PI3 kinase).Biochem Pharmacol(2001)61:779-786.
    14.Marc YV,Jaume F,Andres etal.GSK-3β inhibition and prevention of mitochondrial apoptosis inducing factor release are not involved in the antioxidant properties of SB-415286.European Journal of Pharma-cology 588(2008)239-243
    15.Salvatore Cuzzocrea, Tiziana Genovese, Emanuela Mazzon etal. Glycogen Synthase Kinase-3_ inhibition reduces secondary damage in experimental spinal cord trauma. JPET 318:79-89,2006
    16.Rossignol S,Schwab M,Scchwartz,M,et al.Spinal cord injury:time to move?The Journal of Neuroscience,2007,27(44):11782-11792
    17.Cafferty WB,McGee AW, Strittmatter SM. Axonal growth therapeutics:regeneration or sprouting or plasticity?Trends Neurosci, 2008,31(5):215-20
    18.Nishio T.Axonal regeneration and neural network reconstruction in mammalian CNS.J Neurol.2009,256 (Suppl 3):306-309.
    19.Gross RE,Mei Q,Gutekunst CA, et al.The pivotal role of RhoA GTPase in the molecular signaling of axon growth inhibition after CNS injury and targeted therapeutic strategies [J].Cell Transplant, 2007,16(3):245-62
    20.Yoshimura T, Arimura N, Kaibuch. Signaling networks in neuronal polarization [J].J Neurosci,2006,26(42):10626-30
    21.Dickson B.Molecular mechanisms of axon guidance [J].Science, 2002,298(5600):1959-63
    22.Dickson B.Molecular Mechanisms of Axon Guidance. Science,2002, 298(5600):1959-1963
    23.Bolsover S,Fabes J, Anderson PN.Axonal guidance molecules and the failure of axonal regeneration in the adult mammalian spinal cord. Restor Neurol Neurosci.2008:26(2-3):117-130
    24.Gallo G. RhoA-kinase coordinates F-actin organization and myosin Ⅱ activity during semaphorin-3A-induced axon retraction. J Cell Sci. 2006,119(Pt 16):3413-3423
    25.Moreau-Fauvarque C,Kumanogoh A,et al.The transmembrane semaphorin Sema4D/CD100,an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion.J Neurosci.2003,23(27):9229-9239.
    26.Zhou FQ, Snider WD.GSK-3 and microtubule assembly in axons[J]. Science,2005,308(5917):211-4
    27.Arimura N,Menager C,Kawano Y,et al.Phosporylation by Rho kinase regulates CRMP-2 activity in growth cone[J].Mol cell Biol,2005,25 (22)9973-84
    28.Nishimura T,Fukata Y,Kato K,et al.CRMP-2 regulates polarized numb-mediated endocytosis for axon growth[J].Mol Cell Biol,2003,5 (9):819-26
    29.Betty PL,Fournier A,Grandpre T,et al.Myelin-associated glycoprotein as a function ligand for the Nogo-66 receptor[J].Science,2002,297 (16):1190-3
    30.Eickholt B J,Walsh F S,Doherry P.An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A singnaling [J].J Cell Biol,2004,157(2)211-17
    31.Zhou FQ,walzer M, Yao-hong Wu,et al.Neurophins support regenerative axon assembly over CSPGs by an ECM-integrin -independent mechanism[J].J Cell Sci,2006,119(13):2787-96
    32.Sayas CL,Ariaens A,Ponsioen B,et al.GSK-3 is activiated by the tyrosine kinase Pyk2 during LPA1-mediated neurite restraction [J].Mol Biol Cell,2006,17(4):1834-44
    33.Dill J, Wang H, Zhou F,et al.Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS.J Neurosci. 2008,28(36):8914-8928
    34.Fu Qiao,Jeongsim Hue, Li Shuxin.Nonsteroidal Anti-Inflammatory Drugs Promote Axon Regeneration via RhoA Inhibition.The Journal of Neuroscience,2007,27(15):4154-4164
    35.Bradke F, Dotti CG. Establishment of neuronal polarity:lessons from cultured hippocampal neurons.Curr Opin Neurobiol,2000,10(5): 574-81
    36.Baas PW. Microtubules and axonal growth[J].J Neurobiol,1997,9(1): 29-36
    37.Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve growth [J].Neuron,1988,1(9):761-72
    38.Titzlaff W, Miller FD, Bisby MA,Synthesis of cytoskeletal proteins by axotomized and regenerating motoneurons [J].In:Reier PJ.Bunge RP.Seil FJ.eds.Current issues in neural regeneration. New York:Alan RLiss,1988:13-22
    39.Martinez A, Alonso M, Castro A. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors:thiadiazo-lidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease[J].J Med Chem,2002,45(6):1292-9
    40.Leroy K, Brion JP.Developmental expression and localization of glycogen synthase kinase-3beta in rat brain[J].J Chem N Martinez A, Alonso M, Castro A. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors:thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease [J].J Med Chem,2002,45(6):1292-9euroanat,1999,16(4):279-93
    41.Kim W Y, Zhou FQ, Zhou J.Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth[J].Neuron,2006,52(6):981-96
    1.LimPA,TOW AM.Recovery and regeneration after spinal cord injury:a review and summary of recent literature.Ann Acad Med Singapore.2007;36(1):49-57
    2.DumontRJ.erma SO konkwo DO etal.Acute spinal cord injury,part II:contemporaryPharmacotherapy.ClinNeuropharmacol.2001;24(5):2 65-79
    3.JacksonAB,Dijkers M,DeVivo MJ etal,A demographic profile of new traumatic spinal cord injuries:Change and stability over 30 years.Arch Phys Med Rehabil 2004;85(11):1740-8.
    4.Sekhon. LS.FehlingsMG. Epidemiology, demographicand Pathophy-siology of acute spinal cord injury.Spine 2001,26(24):S2-12
    5.Kwon B K, Fisher C Q Dvorak M F, et al.Strategies to promote neural repair and regeneration after spinal cord injury. Spine,2005, 30(17):3-15
    6.FitzGerald J, Fawcett J. Repair in the nervous system.The Journal of Bone and Joint Surgery,2007,89-B(11):1413-1420
    7.Goldberg J L. How does an axon grow. Genes and Development, 2007,17(8):941-958
    8.Feng-quan Zhou, Snider W D. GSK-3 and microtubule assembly in axons.Science,2005,308(5917):211-214
    9.Goold RG, Owen R, Gordon-Weeks PR..Glycogen synthase kinase 3β phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones.J Cell Sci,1999,112(Pt 19):3373-84
    10.Zhou FQ, Zhou J, Dedhar S,et al.NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC.Neuron,2004,42(6): 897-912
    11.Goold RQ Gordon-Weeks PR..Glycogen synthase kinase 30 and the regulation of axon growth.Biochem Soc Trans,2004,32(Pt 5):809-811
    12.Jiang H, Guo W, Liang X, et al.Both the establishment and the maintenance of neuronal polarity require active mechanisms:critical roles of GSK-3P and its upstream regulators.Cell,2005,120(1): 123-135
    13.Yoshimura T, Kawano Y, Arimura N,et al.GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell,2005,120(1): 137-49
    14.Feng-quan Zhou, Snider W D.GSK-3(3 and microtubule assembly in axons.Science,2005,308(5917):211-214
    15.Kim WY, Zhou FQ, Zhou J,et al.Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron,2006,52(6):981-996
    16.Trivedi N, Marsh P, Goold RQet al.Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons.J Cell Sci,2005,118(Pt 5):993-1005
    17.Bradke F, Dotti CG. Establishment of neuronal polarity:lessons from cultured hippocampal neurons.Curr Opin Neurobiol,2000,10(5): 574-81
    18.Baas PW. Microtubules and axonal growth[J].J Neurobiol,1997, 9(1):29-36
    19.Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve g.rowth[J].Neuron,1988,1(9):761-72
    20.Titzlaff W, Miller FD, Bisby MA. Synthesis of cytoskeletal proteins by axotomized and regenerating motoneurons [J].In:Reier PJ.Bunge RP.Seil FJ.eds.Current issues in neural regeneration. New York:Alan R Liss,1988:13-22
    21.Salvatore Cuzzocrea, Tiziana Genovese, Emanuela Mazzon etal. Glycogen Synthase Kinase-3_ inhibition reduces secondary damage in experimental spinal cord trauma. JPET 318:79-89,2006
    22.Jin E, Nosaka K,Sano M.NGF-dependent formation of ruffles in PC12D cells required a different pathway from that for neurite outgrowth [J].Neurochem Int,2007,51(2-4):216-226
    23.John Dill, Hongyu Wang,Fengquan Zhou,et al.nactivation of Glycogen Synthase Kinase 3 Promotes Axonal Growth and Recovery in the CNS The Journal of Neuroscience, September 3,2008.28(36): 8914-8928
    24.Basso DM, Beattie MS,Bresnahan JC A sensitive and reliable locomotor rating scale for open field testing in rats.J Neurotrauma 1995 12:1-21.
    25.Rossignol S,Schwab M,Scchwartz,M,et al.Spinal cord injury:time to move?The Journal of Neuroscience,2007,27(44):11782-11792
    26.Cafferty WB,McGee AW, Strittmatter SM.Axonal growth therapeutics:regeneration or sprouting or plasticity?Trends Neurosci, 2008,31(5):215-20
    27.Nishio T.Axonal regeneration and neural network reconstruction in mammalian CNS.J Neurol.2009,256 (Suppl 3):306-309.
    28.Gross RE,Mei Q,Gutekunst CA, et al.The pivotal role of RhoA GTPase in the molecular signaling of axon growth inhibition after CNS injury and targeted therapeutic strategies [J].Cell Transplant, 2007,16(3):245-62
    29.Yoshimura T, Arimura N, Kaibuch. Signaling networks in neuronal polarization [J].J Neurosci,2006,26(42):10626-30
    30.Dickson B.Molecular mechanisms of axon guidance [J].Science, 2002,298(5600):1959-63
    31.Dickson B.Molecular Mechanisms of Axon Guidance. Science, 2002,298(5600):1959-1963
    32.Bolsover S,Fabes J, Anderson PN.Axonal guidance molecules and the failure of axonal regeneration in the adult mammalian spinal cord. Restor Neurol Neurosci.2008;26(2-3):117-130
    33.Gallo G. RhoA-kinase coordinates F-actin organization and myosin Ⅱ activity during semaphorin-3A-induced axon retraction. J Cell Sci. 2006,119(Pt 16):3413-3423
    34.Moreau-Fauvarque C,Kumanogoh A,et al.The transmembrane semaphorin Sema4D/CD100,an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion.J Neurosci.2003,23(27):9229-9239.
    35.Zhou FQ, Snider WD.GSK-3 and microtubule assembly in axons[J]. Science,2005,308(5917):211-4
    36.Arimura N,Menager C,Kawano Y,et al.Phosporylation by Rho kinase regulates CRMP-2 activity in growth cone[J].Mol cell Biol,2005,25 (22)9973-84
    37.Nishimura T,Fukata Y,Kato K,et al.CRMP-2 regulates polarized numb-mediated endocytosis for axon growth[J].Mol Cell Biol,2003,5 (9):819-26
    38.Betty PL,Fournier A,Grandpre T,et al.Myelin-associated glycoprotein as a function ligand for the Nogo-66 receptor[J].Science,2002,297 (16):1190-3
    39.Eickholt B J,Walsh F S,Doherry P.An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A singnaling [J].J Cell Biol,2004,157(2)211-17
    40.Zhou FQ, walzer M, Yao-hong Wu,et al.Neurophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism[J].J Cell Sci,2006,119(13):2787-96
    41.Sayas CL,Ariaens A,Ponsioen B,et al.GSK-3 is activiated by the tyrosine kinase Pyk2 during LPA1-mediated neurite restraction [J].Mol Biol Cell,2006,17(4):1834-44
    42.Dill J, Wang H, Zhou F,et al.Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS.J Neurosci. 2008,28(36):8914-8928
    43.Fu Qiao, Jeongsim Hue, Li Shuxin.Nonsteroidal Anti-Inflammatory Drugs Promote Axon Regeneration via RhoA Inhibition.The Journal of Neuroscience,2007,27(15):4154-4164
    44.Bradke F, Dotti CG. Establishment of neuronal polarity:lessons from cultured hippocampal neurons.Curr Opin Neurobiol,2000,10(5): 574-81
    45.Baas PW. Microtubules and axonal growth[J].J Neurobiol,1997,9(1): 29-36
    46.Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve growth[J].Neuron,1988,1(9):761-72
    47.Titzlaff W, Miller FD, Bisby MA. Synthesis of cytoskeletal proteins by axotomized and regenerating motoneurons [J].In:Reier PJ.Bunge RP.Seil FJ.eds.Current issues in neural regeneration. New York:Alan R Liss,1988:13-22
    48.Martinez A, Alonso M, Castro A. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors:thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease [J]. J Med Chem,2002,45(6):1292-9
    49.Leroy K, Brion JP.Developmental expression and localization of glycogen synthase kinase-3beta in rat brain[J].J Chem N Martinez A, Alonso M, Castro A. First non-ATP competitive glycogen synthase kinase 3 beta(GSK-3beta) inhibitors:thiadiazolidinones(TDZD)as potential drugs for the treatment of Alzheimer's disease [J].J Med Chem,2002,45(6):1292-9euroanat,1999,16(4):279-93
    50.Kim WY, Zhou FQ, Zhou J. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth[J].Neuron,2006,52(6):981-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700