苯丙胺对PC12细胞AKT/GSK-3β/CRMP-2信号通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨苯丙胺对PC12细胞的神经毒性作用和机制。
     方法:
     将PC12细胞分为四组:空白对照组,苯丙胺组(2mM),苯丙胺加NGF(神经生长因子)组,苯丙胺加SB216763组。各组培养24h后,采用倒置显微光镜,免疫荧光技术及免疫印迹法观察苯丙胺对PC12细胞的神经毒性作用以及对AKT/GSK-3β/CRMP-2信号通路的影响,并且观察该信号通路上游激活剂NGF和下游GSK-3β的抑制剂SB216763能否减轻苯丙胺对PC12细胞的神经毒性作用。
     结果:
     1.倒置显微光镜形态学结果:空白对照组PC12细胞膜光滑,边界清晰,胞体饱满,透光,多呈椭圆形或梭形,有两条或以上的细长突起,许多细胞的突起交织在一起形成网;苯丙胺组与空白对照组相比,细胞体萎缩,呈圆形,突起变短、消失(P<0.05),突起形成的网状结构消失;苯丙胺加NGF组和苯丙胺加SB216763组与苯丙胺组相比,突起长度增长(P<0.05)。四组的细胞计数进行比较,差异无显著性(P>0.05)。多巴胺免疫荧光技术观察PC12细胞,各组间细胞长度的变化与上述的基本一致,各组细胞胞体及突起内都有多巴胺激发的荧光,其中空白对照组细胞及突起内多巴胺荧光强度比其他各组的更强,苯丙胺组与其他各组相比,多巴胺细胞的数量有所减少。
     2.苯丙胺、NGF及SB216763对AKT/GSK-3β/CRMP-2信号传导通路中蛋白表达的影响:
     1)TrkA和P-TrkA:苯丙胺组与空白对照组比较,TrkA和P-TrkA的表达差异均无统计学意义(P>0.05)。苯丙胺加NGF组和苯丙胺加SB216763组P-TrkA的表达与苯丙胺组相比均增多,差异有显著性(P<0.05),但TrkA的表达与苯丙胺组相比,差异均无统计学意义(P>0.05)。
     2)AKT和P-AKT:苯丙胺组与空白对照组相比,苯丙胺组P-AKT的表达减少,差异有显著性(P<0.05)。苯丙胺加NGF组和苯丙胺加SB216763组与苯丙胺组相比,P-AKT的表达增加,差异有显著性(P<0.05)。而AKT的表达在各组间的差异无统计学意义(P>0.05)。
     3)GSK-3β和P-GSK-3β:苯丙胺组与空白对照组相比,苯丙胺组P-GSK-3β表达减少,差异有显著性(P<0.05);而苯丙胺组GSK-3β表达增加,差异有显著性(P<0.05)。苯丙胺加NGF组与苯丙胺组相比,苯丙胺加NGF组P-GSK-3β的表达增加有显著性(P<0.05), GSK-3β表达差异无显著性(P>0.05)。苯丙胺加SB216763组和苯丙胺组相比,苯丙胺加SB216763组P-GSK-3β的表达差异无显著性(P>0.05),苯丙胺加SB216763组GSK-3β表达减少,差异有显著性(P<0.05)。
     4)CRMP-2和)P-CRMP-2:苯丙胺组与空白对照组相比,苯丙胺组P-CRMP-2的表达增多,差异有显著性(P<0.05),苯丙胺加NGF组和苯丙胺加SB216763组与苯丙胺组相比,P-CRMP-2的表达均减少,差异有显著性(P<0.05)。CRMP-2在各组间的表达差异无统计学差异(P>0.05)。
     结论:
     苯丙胺可以抑制PC12细胞突起的生长,其机制可能与抑制AKT/GSK-3β/CRMP-2信号通路有密切关系。2mM浓度的苯丙胺对PC12细胞数量无明显影响。AKT/GSK-3β/CRMP-2信号通路的上游激活剂NGF可以减轻苯丙胺对PC12细胞的神经毒性作用,且其下游GSK-3β的抑制剂SB216763也具有减轻苯丙胺对PC12细胞的神经毒性作用,这可能与激活AKT/GSK-3β/CRMP-2信号通路的分子有关。
Objective
     To explore mechanism of amphetamine-induced neurotoxicity on PC 12 cells.
     Methods
     The PC12 cells were divided into four groups:control group,amphetamine group(2.0mM), amphetamine plus NGF (nerve growth factor) group,and amphetamine plus SB216763 group. The cells were cultured for 24 hours after dosing, inverted microscope, immunofluorescence technique and western-blotting were used to observe amphetamine neurotoxicity on PC12 cells and AKT/GSK-3P/CRMP-2 signal pathway. Effects of NGF and SB216763 on PC12 cells and AKT/GSK-3β/CRMP-2 signal pathway were also explored.
     Results
     1.Morphology under light microscopy:PC12 cell membranes in control group were smooth and clear.Cell bodies were prominent,transparent and refractive with oval or spindle shapes.Each cell had two or more slender processes. Many cellular processes were connected with each other to form the neuronal network. Compared with the control group, PC12 cells in the amphetamine group were gradually shrunk in size,cell bodies became round,and cellular processes became sh-orter and broken(P<0.05),the cellular process network was disappeared.The cellular processes in the amphetamine plus NGF group and plus SB216763 group were longer than those in the amph-etamine group(P<0.05).There were no significant differences in cell number between four grou-ps(P>0.05).Immunofluorescence technique showed that PC 12 cells contain dopamine(DA).The changes of cellular processes observed by this technique are the same as above.Dopamine cells and processes in the control group had stronger fluorescence intensity than those in the other gr-oups, the cell numbers in the amphetamine group appeared to be decreased compared with the other groups.
     2.Changes of AKT/GSK-3β/CRMP-2 signaling pathway influenced by amphetamine,NGF and SB216763:
     1)TrkA and P-TrkA:The expressions of TrkA and P-TrkA had no significant differences be-tween the amphetamine and control groups(P>0.05). The expression of P-TrkA in amphetamine plus NGF group and plus SB216763 group was significantly increased compared with that of the amphtamine group(P<0.05).TrkA expression was not significantly different between plus group and amphetamine group(P>0.05).
     2)AKT and P-AKT:Compared with the control group,P-AKT expression was significantly reduced in amphetamine group (P<0.05).P-AKT expression in amphetamine plus NGF group and plus SB216763 group was significantly increased compared with that of the amphetamine groups(P<0.05).However,the expression of AKT had no any changes between all groups(P> 0.05).
     3)GSK-3βand P-GSK-3β:Compared with the control group,P-GSK-3βexpression was sig-nificantly decreased in amphetamine group(P<0.05),GSK-3βexpression was increased in amph-etamine group(P<0.05).Compared with the amphtamine group,P-GSK-3βexpression was signi-ficantly increased in amphetamine plus NGF group(P<0.05),however,GSK-3βexpression had no significantly changes in amphetamine plus NGF group(P>0.05).P-GSK-3βexpression in amphetamine plus SB216763 group was no significantly different compared with that of the amphetamine group(P>0.05),GSK-3p expression was significantly decreased in amphetamine plus SB216763 group(P<0.05).
     4)CRMP-2 andP-CRMP-2:P-CRMP-2 expression in amphetamine group was significantly increased than that of the control group(P<0.05).Compared with the amphtamine group,P-CRMP-2 expression was decreased in amphetamine plus NGF group and plus SB216763group(P< 0.05).CRMP-2 expression had no any changes between all groups(P>0.05).
     Conclusion
     Amphetamine inhibited the growth of PC 12 cell processes.Its mechanism may be closely rel-ated to inhibition of AKT/GSK-3β/CRMP-2 signaling pathway.2mM amphetamine had no effect on PC 12 cell number.NGF as an upstream signaling molecule of this pathway may reduce the amphetamine-induced neurotoxicity on PC12 cells.SB216763 as a downstream signaling mole-cule and GSK-3βinhibitor of this pathway also has a role in cell protection against amphetamine damage.They may activate AKT/GSK-3β/CRMP-2 signaling pathway in PC 12 cells.
引文
[1]刘铁桥,郝伟.苯丙胺类兴奋剂概介[J].国外医学精神病学分册,2001,2(83):129-134.
    [2]高小平.苯丙胺类毒品将成为21世纪泛滥最广泛的毒品[J].中国药物依赖性杂志,2002,11(11):73-74.
    [3]蔡志基.全球毒品问题的主要动向[J].中国药物滥用防治杂志,1999,2:13-16.
    [4]许荣富,姚付军,张茜.苯丙胺类滥用药物简介[J].北京教育学院学报(自然科学版),2007,2(3):9-14.
    [5]Fleckenstein AE, Volz TJ, Riddle EL,et al. New insights into the mechanism of ac-tion of amphetamines[J]. Annu Rev Pharmacol Toxicol,2007,47:681-698.
    [6]Kita T,Wagner GC,Nakashima T.Current research on methamphetamine-induced neur-otoxicity:animal models of monoamine disruption[J].J Pharmacol Sci,2003,92 (3):178-95.
    [7]李学锋,邱平明,王慧君.甲基苯丙胺对大鼠相关脑区神经毒性研究[J].解剖学杂志,2007,1(30):63-5.
    [8]Cheng S,Nolte H,Otton SV,et al. Simultaneous gas chromatographic determination of methamphetamine,amphetamine and their phydroxylated metabolites in plasma and urine[J].J.Chromatogr.B,1997,690:77-87.
    [9]李金.苯丙胺类物质及其检测[J].中国药物依赖性杂志,2003,12(1):10-13.
    [10]Sulzer D.Amphetamine redistributes dopamine from synaptic vesicles to the cyto-sol and promotes reverse transport[J]. J Neurosci,1995,15(5):4102-4108.
    [11]Kita T,Wagner GC,Nakashima T.Current research on METH-induced neurotoxin-cty:animal models of monoamine disruption[J].J Pharmacol Sci,2003,92 (3):178-195.
    [12]Volz TJ,Hanson GR,Fleckenstein AE.The role of the plasmalemmal dopamine a-nd vesicularmonoamine transporters in methamphetamine-induced dopaminergic defi-cits[J].Neurochem,2007,101(4):883-888.
    [13]Tzschentke TM,Schmidt WJ. Glutamatergic mechanisms in addiction[J].Mol Psy-chiastry.2003,8(4):373-382.
    [14]Ricaurte GA,Guillery RW,Seiden LS,Schuster CR,Moore RY.Dopamine nerve terminal degeneration produced by high doses of methyamphetamine in the rat brain [J].Brain Res.1982,235(1):93-103.
    [15]Seiden LS,sabol KE.Methamphetamine and methylenedioxymet amphetamine ne-urotoxicity:possible mechanisms of cell destruction[J].NDA ReS Monogr,1996,16 3:251-276.
    [16]Albers DS,Sonsalla PK.Methamphetamine-induced hyperthermia and dopaminer-gic neurotoxicity in mice:pharmacology of protective and nonprotective agents[J].J Pharmacol Exp Ther,1995,275(3):1104-1114.
    [17]Battaglia G,Fornai F,Busceti CL,et al.Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity[J].J Neuro-sci.2002,22(6):2135-2141.
    [18]Malberg JE,Sabol KE,Seiden LS.Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat[J]. J Pharmacol Exp Ther.1996,278:258-267.
    [19]Fleckenstein AE,Wilkins DG,Gibb JW,Hanson GR.Interaction between hyperth-ermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a sin-gle methamphetamine administration[J].J Pharmacol Exp Ther.1997,283:281-285.
    [20]Cadet JL,Jayanthi S,Deng X.Methamphetamine induced neuro apoptosis involves the activation of multiple death pathys[J].Neurotox Res,2005,8(3-4):199-206.
    [21]Yoshimura T,Arimura N,Kaibuch.Signaling Networks in Neuronal Polarization[J]. J Neurosci,2006,26(42):10626-10630.
    [22]Rodriguez-Viciana P,Warne PH,Dhand R,et al.Phosphatidylinositol-3-OH kinase as a direct target of Ras[J]. Nature.1994,370(6490):527-532.
    [23]Scheid MP,Woodgett JR.PKB/AKT:Functional insights from genetic models[J]. Nat Rev Mol Cell Biol,2001,2(10):760-768.
    [24]Rodriguez-Viciana P,Warne PH,Vanhaesebroeck B et al.Activation of phosphoin-Ositide 3-kinase by interaction with Ras and by point mutation[J].EMBO J,1996,15 (10):2442-2451.
    [25]Grimes CA,Jope RS.The multifaceted roles of glycogen synthase kinase 3β in ce-llular signaling[J].Prog Neurobiol,2001,65(5):391-426.
    [26]Nishimura T,Fukata,Y,Kato K,et al.CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth[J].Nat Cell Biol.2003,5(9):819-826.
    [27]Quinn CC,Chen E,Kinjo TG,Kelly G,Bell AW,Elliott RC,McPherson PS,Hockfie-ld S.TUC-4b,a novel TUC family variant,regulates neurite outgrowth and associate-swith vesicles in the growth cone[J].J Neurosci,2003,23(7):2815-2823.
    [28]Collino M,Thiemermann C,Mastrocola R,et al.Treatment with the glycogen syn-thase kinase-3beta inhibitor,TDZD-8,affects transient cerebral ischemia/reperfusion injury in the rat hippocampus[J].Shock,2008,30(3):299-307.
    [29]Greene LA,Tischler AS.Establishment of a noradrenergic clonal line of rat adren-al pheochromocytoma cells which respond to nerve growth factor[J].Proc Natl Acad Sci USA,1976,73(7):2424-2428.
    [30]Rebois RV,Reynolds EE,Toll L,et al.Storage of dopamine and acetylcholine in gr-anules of PC12,a clonal pheochromocytoma cell line[J].Biochemistry,1980,19(6): 1240-1248.
    [31]Hatanaka H. Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line[J].Brain Res,1981,222(2):225-233.
    [32]Gilgun-SherkiY,RosenbaumZ,MelamedE,et al.Antioxidant therapy in acute centr-al nervous system injury:current state[J].Pharmaeol Rev,2002,54(2):271-284.
    [33]Kitamura O.Detection of methamphetamine neurotoxicity in forensic autopsy cas-es[J].Leg Med(Tokyo),2009,11 Suppl 1:S63-65.
    [34]Imam SZ, Newport GD, Duhart HM, Islam F, Slikker W Jr, Ali SF. Methamphet-amine induced dopaminergic neurotoxicity and production of peroxynitrite are potent-iated in nerve growth factor differentiated pheochromocytoma 12 cells[J].Ann N Y A-cad Sci,2002,965:204-213.
    [35]Levi-Montalcini R,Hamburger V.Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo[J].J Exp Zool,1951,116(2):321-361.
    [36]Zhou FQ, Snider WD. Cell biology:GSK-3beta and microtubule assembly in ax-ons[J].Science,2005,308(5719):211-214.
    [37]Wagman AS,Johnson KW,Bussiere KE.Discovery and development of GSK3 in- hibitors for the treatment of type 2 diabetes[J]. Curr Pharm Des,2004,10(10):1105-1137.
    [38]MarcYV,JaumeF,Andres,et al.GSK-3β inhibition and prevention of mitochondrial apoptosis inducing factor release are not involved in the antioxidant properties of SB-415286[J].Eur J Pharmocol,2008,588(2-3):239-243.
    [39]Cuzzocrea S,Genovese T,Mazzon E,Crisafulli C,Di Paola R,Muia C,Collin M,Es-posito E,Bramanti P,Thiemermann C.Glycogen synthase kinase-3-inhibition reduces seconddary damage in experimental spinal cord trauma[J].J Pharmacol Exp Ther,200 6,318(1):79-89.
    [40]Seiden LS,Ricaurte GA.Neurotoxicity of methamphetamine and related drugs[D]. InMeltzerHY,Ed.Psychopharmacology:The Third Generation of Progress[C].NewY-ork:Raven Press,1987,359-366.
    [41]Gibb JW,HansonGR,JohnsonM.Neurochemicalmechanisms of toxicity[D].In Cho AK,Segal DS,Eds.Amphetamine and its Analogs Psychopharmacology Toxicology and Abuse[C].San Diego,CA:Academic Press,1994,269-296.
    [42]Truong JG,W ilkins DG,Baudys J,et al.Agedependent methamphetamine induced alterations in vesicular monoamine transporter-2 function:implications for neurotox-incity[J]. J PharmacolExp Ther,2005,314(3):1087-1092.
    [43]Fleckenstein A E,MetzgerR R,W ilkins D G,et al.Rapid and reversible effects of methamphetamine on dopamine transporters[J].J Pharmacol Exp Ther,1997,282(2): 834-838.
    [44]Kokoshka JM,Vaughan R A,Hanson G R,et al.Nature of methamphetamine indu-ced rapid and reversible changes in dopamine transporters[J].Eur J Pharmacol,1998, 361(2-3):269-275.
    [45]Baucum AJ,Rau KS,Riddle EL,et al.Methamphet-amine increases dopamine tran-sporter higher molecular weight complex formation via a dopamine-and hypertherm-ia-associated mechanism [J].J Neurosci,2004,24(13):3436-3443.
    [46]陈汉,张戎,丁萍,等.甲基苯丙胺对体外培养的海马神经细胞的毒性作用[J].西北国防医学杂志,2008,29(4):283-5.
    [47]Cadet JL,Ordonez SV,Ordonez JV.METH induces apoptosis in immortalized neu- ral cells:protection by the proto-oncogene,bcl-2[J].Synapse,1997,25(2):176-84.
    [48]Imam SZ,el-Yazal J,Newport GD,et al.Methamphetamine Induced Dopaminergic Neurot oxicity:Role of Peroxynitrite and Neuroprotective Role of Antioxidants and Peroxynitrite Decomposition Catalysts[J].Ann N Y Acad Sci,2001,939:366-80.
    [49]Kim DH,Zhao X,Tu CH.Prevention of apoptotic but not necrotic cell death follo-wing neuronal injury by neurotrophins signaling through the tyrosine kinase receptor [J].J Neurosurg,2004,100(1):79-87.
    [50]周鸣,张平,郭锡熔,等.甲状腺腺瘤与PI3K/Akt信号转导途径的关系[J].江苏医药,2006,32(7):601-603.
    [51]De Bartolo P,Leggio MG,Mandolesi L,et al.Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility[J].Neuroscience,2008,15 4(2):444-453.
    [52]Jiang H,Guo W,Liang X,Rao Y.Both the establishment and the maintenance of neuronal polarity require active mechanisms:critical roles of GSK-3beta and its up-stream regulator[J].Cell.2005,120(1):123-135.
    [53]Beaulieu JM,Tirotta E,Sotnikova TD,Masri B,Salahpour A,Gainetdinov RR, Bo-rrelli E,Caron MG. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo[J].J Neurosci.2007,27(4):881-885.
    [54]He Y,Yu W,Baas PW.Microtubule reconfiguration during axonal retraction indu-ced by nitric oxide[J].J Neurosci,2002,22(14):5982-5991.
    [55]Yoshimura T,Arimura N,Kaibuchi K,et al.Molecular mechanisms of axon specifi-cation and neuronal disorders[J].Ann N Y Acad Sci,2006,1086:16-125.
    [56]Marone R,Cmiljanovic V,Giese B,Wymann MP.Targeting phosphoinositide 3-ki-nase:moving towards therapy[J].Biochim Biophys Acta.2008,1784(1):159-185.
    [57]Sarbassov DD,Guertin DA,Ali SM,Sabatini DM.Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J].Science.2005,307(5712):1098-1101.
    [58]Maira SM,Galetic I,Brazil DP,Kaech S.Ingley E,Thelen M,Hemmings BA.Carbo-xyl-terminal modulator protein(CTMP),a negative regulator of PKB/Akt and v-Akt at the plasma membrane[J].Science.2001,294(5541):374-380.
    [59]Brognard J,Sierecki E,Gao T,Newton AC.PHLPP and a second isoform,PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms[J].Mol Cell.2007,25(6):917-931.
    [60]Andjelkovic M,Jakubowicz T,Cron P,Ming XF,Han JW,Hemmings BA. Activati-on and phosphorylation of a pleckstrin homology domain containing protein kinase (R AC-PK/PKB) promoted by serum and protein phosphatase inhibitors[J]. Proc Natl Acad Sci U S A.1996,93(12):5699-5704.
    [61]Micera A,Lambiase A,Stampachiacchiere B,et al.Nerve growth factor and tissue repair remodeling:trkA(NGFR) and p75(NTR),two receptors one fate[J].Cytokine Gr-owth Factor Rev,2007,18(3-4):245-256.
    [62]Heldin CH.Protein tyrosine kinase receptors.In:Parker PJ and PawsonT(eds) Cell signaling[M].Cold Spring Harbor Laboratory Press,1996:7-24
    [63]Qian X,Riccio A,Zhang Y,et al.Identification and characterization of novel subst-rates of Trk receptors in developing neurons[J].Neuron,1998,21(5):1017-1029.
    [64]Yamashita H,Avraham S,Jiang S,et al.The Csk homologous kinase associates wi-th TrkA receptors and 15 involved in neurite outgrowth of PC12 cells[J].J Biol Che-m,1999,274(21):15059-15065.
    [65]Kaplan DR,Miller FD.Neurotrophin signal transduction in the nervous system [J]. Curr Opin Neurobiol,2000,10(3):381-391.
    [66]Ron D,Habener JF.CHOP,a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-ne-gative inhibitor of gene transcription[J]. Genes Dev,1992,6(3):439-453.
    [67]Dill J,Wang H,Zhou F.Inactivation of glycogen synthase kinase-3 promotes axo-nal growth and recovery in the CNS[J].J Neurosci.2008,28(36):8914-8928.
    [68]Vaudry D,Stork PJS,Lazaroviei P,Eiden LE.Signaling pathways for PC12 cell di-fferentiation:Making the right connections[J].Science,2002,296(5573):1648-1649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700