鱼油上调断奶仔猪肌纤维类型及相关基因表达促进肌肉生长的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在母猪妊娠后期-泌乳期和断奶仔猪日粮中分别添加7%的鱼油(富含LCn-3PUFA)和猪油(富含饱和脂肪酸),旨在研究鱼油中的LCn-3PUFA对断奶仔猪肌肉块重量、骨骼肌肌纤维类型和肌肉发育相关基因表达的影响,并探讨母猪日粮中鱼油对仔猪肌肉生长的远期效应。为日粮n-3PUFA影响仔猪骨骼肌发育以及相关基因表达提供理论依据。
     试验一试验采用2因子设计,分妊娠后期-泌乳期和断奶期两个阶段进行。选择20头妊娠后期(103d)杂交健康经产母猪(长×大),按胎次、体况和预产期相近的原则随机分成2组:对照组(C),基础日粮中加7%的猪油;处理组(T),基础日粮中加7%的鱼油。每组10头母猪,每个重复一头母猪,单栏饲养。来自两个不同处理组母猪的仔猪分别合群,选择35d阉公猪和小母猪56头(公母各半)随机分为两组:对照组(C),基础日粮中加7%猪油;处理组(T),基础日粮中加7%鱼油。根据母猪日粮和仔猪日粮处理的不同,进入断奶期阶段试验的仔猪形成四个不同的处理组:CC,CT,TC和TT。每组14头仔猪,分为7个重复,每个重复2头仔猪(1公1母,同栏饲养)。每组选择4头仔猪70d屠宰,剥离并准确称重前、中、后躯主要肌肉块,旨在研究日粮中鱼油不同的添加阶段和方式,对断奶仔猪前中后躯主要骨骼肌生长发育的影响。试验结果如下:
     1.仔猪日粮中添加7%鱼油显著增加了70d仔猪背最长肌和瓣膜肌(P<0.05)的重量,斜方肌和股二头肌也有增加的趋势(P=0.056,P=0.09);
     2.母猪妊娠后期-泌乳期同粮中添加7%的鱼油极显著增加了腰小肌的重量(P<0.01),并一定程度上改善了臀中肌和腓肠肌的重量,对所测定的前躯肌肉块无显著影响(P>0.05)。
     试验二仔猪屠宰后,迅速采集臂三头肌、背最长肌和股二头肌样品,—80℃保存。Trizol一步分离法提取肌肉中总RNA,采用半定量RT-PCR技术测定肌球蛋白重链基因(myosin heavy chain,MHC)4个亚型(MHC-Ⅰ、MHC-Ⅱa、MHC-Ⅱx和MHC-Ⅱb)和IGF-1、GHR、MRF4、MyoG、PGC-1a mRNA在三块骨骼肌中的丰度。结果表明:
     1.母猪妊娠后期-泌乳期和仔猪日粮中添加7%富含LCn-3PUFA的鱼油可显著影响臂三头肌、背最长肌和股二头肌中MHC亚型的mRNA丰度(P<0.05),主要是上调了Ⅱ型MHC基因表达水平。另外,仔猪日粮效应整体上大于母猪日粮处理,而且对不同的肌肉块影响也不同,依赖于其所在的解剖学部位。
     2.在本试验条件下,母猪和仔猪日粮添加鱼油均显著增加了70 d仔猪臂三头肌、背最长肌和股二头肌中IGF-1和GHR的表达(P<0.01),并且两处理之间存在明显的互作作用(P<0.01)。结果提示:母猪日粮中鱼油对仔猪骨骼肌中生长轴基因表达的作用会影响仔猪阶段日粮的处理效应。
     3.母猪和仔猪日粮中添加n-3PUFA对三块肌肉中的MyoG表达均无显著影响(P>0.05)。仔猪日粮中添加鱼油显著上调了臂三头肌和股二头肌中MRF4基因表达,极显著增加了三块肌肉中PGC-1a的mRNA表达量(P<0.01),但有下调背最长肌中MRF4 mRNA的表达量的趋势(P=0.079);母猪日粮处理显著上调了背最长肌中MRF4 mRNA和臂三头肌PGC-1a的表达量(P<0.01),并有增加股二头肌中的MRF4、PGC-1a和背最长肌中的PGC-1a mRNA水平的趋势(P=0.107,P=0.088,P=0.081)。
     本研究通过上述试验可得如下结论:
     1)母猪妊娠后期-哺乳期和断奶仔猪日粮中添加7%的鱼油可通过改变肌肉中脂肪酸的组成,而促进70d仔猪部分骨骼肌的生长,且主要集中在中后躯的骨骼肌;母猪日粮对仔猪骨骼肌生长的影响有明显的母体效应。
     2)日粮中的LCn-3PUFA增加部分肌肉块重的原因是调控了骨骼肌的肌纤维类型,主要是增加了骨骼肌中MHC-Ⅱb和MHC-Ⅱx型基因的表达。LCn-3PUFA调控肌纤维的过程,可能是通过上调肌肉生长和肌纤维类型转化相关基因,包括生长轴基因、MRF4、MyoG和PGC-1a的表达来实现。
In the current study,7%fish oil(rich in LCn-3PUFA) or lard(rich in saturated fatty acid) was added to the diet for sows during pregnancy and lactation and for weaned pigs to test the hypothesis that dietary long-chain n-3PUFA has the effects on muscle mass,the mRNA abundances of four myosin heavy chain(MHC) isoforms and muscle development related genes(MRF4,MyoG and PGC-1α) in weaned pigs.In addition,we investigated the effect of maternal nutritional of fish oil on skeletal muscle development in weaned pigs.The objective of the study is to provide theroy basis for the effects of n-3PUFA on skeletal muscle growth and related genes in piglets.
     Experiment 1:the experiment uses the two factors design,divides to three stages, late gestation,lactation and nursing.Twenty later gestation(103 d) multiparous sows (Landrace×Large White) were randomly allocated into two groups:control group(C) and treatment(T),respectively.Ten sows were allocated into per treatment,with a sow as one experimental unit.Two isoenergetic and isonitrogenous diets were formulated to meet the nutrient requirements of late gestation and lactation of sow,and one of which was the control diet including lard at the level of 7%and another one was the treatment diet including fish oil at the level of 7%.For the postweaning growth phase of the experiment, barrows and gilts(n=56) selected from each litter of two groups were randomly allocated into two groups,control group(C) and treatment(T).Two diets were formulated to meet NRC requirements for nursery and growing pigs,and one of which was the control diet (including lard) and another one was the treatment diet(including 7%fish oil), respectively.Thus,there are four groups,CC,CT,TC and TT of nursery piglets,with seven replications per treatment and one barrow and one gilt as an experimental unit.At the 70 d,16 pigs(2 barrows and 2 gilts of each group) were slaughtered and dissected, and most of skeletal muscle in anterior part,middle and posterior part of body were weighed.The results were as follows:
     1.Dietary 7%fish oil of weaned pigs significantly increased the mass of Longissimus and Semimembranosus(P<0.05),and improved the mass of Trapezius and Biceps femoris muscles(P<0.10) in 70d weaned pigs;
     2.The results showed that,7%fish oil adding to the diet for sows during pregnancy and lactation significantly increased the mass of Lesser posas(P<0.01),and improved the mass of Gluteus medius and Gastrocnemius muscles(P<0.10),but there was no significant difference on skeletal muscles in anterior part of body we measured(P>0.05);
     Experiment 2:skeletal muscle samples of the Triceps brachii(TB),Longissimus muscle(LM) and Biceps femoris(BF) were immediately removed after slaughter and exsanguination,wrapped in foil,and frozen in liquid nitrogen to be stored at -80℃for subsequent total RNA extraction.Total RNA was extracted from the skeletal muscle samples using the Trizol regent.The mRNA expression of IGF-1,GHR,MRF4,MyoG and PGC-1 was measured using semi-quantitative reverse transcription PCR,and relative expressions of four MHC isoforms(MHC-Ⅰ,MHC-Ⅱa,MHC-Ⅱx and MHC-Ⅱb) were using a multiplex PCR procedure in threes muscles,respectively.The results as follows:
     1.Supplemented 7%fish oil in diet for sows during pregnancy and lactation and weaned pigs all resulted in an significant influence expressions of MHC in the Triceps brachii(TB),Longissimus muscle(LM) and Biceps femoris(BF)(P<0.05),especially up-regulated MHC-ⅡmRNA level,including MHC-Ⅱα,MHC-Ⅱb and MHC-Ⅱx.In addition,the effects of fish oil adding to the diet for weaned pigs on expressions of MHC in skeletal muscles in 70d was higher than adding to the diet for sows,and depended on anatomic location of muscles.
     2.In our experiment,adding 7%fish oil to diets of sows and weaned pigs diet all resulted in an significant increase expressions of IGF-1 and GHR in the Triceps brachii (TB),Longissimus muscle(LM) and Biceps femoris(BF)(P<0.05),and there was a significant interaction between two stages(P<0.01).These data indicated that,the effects of dietary fish oil for sows on expressions of growth-axis genes affected the effectiveness of dietary fish oil for weaned pigs.
     3.The level of MyoG in in threes muscles were not affected by 7%fish oil adding to sows diet or weaned pigs(P>0.05).Dietary fish oil of weaned pigs significantly increased expressions of MRF4 in the Triceps brachii(TB) and Biceps femoris(BF)(P<0.01),and significantly increased expressions of PGC-1αin the three muscles(P<0.01),while MRF4 mRNA in Longissimus muscle(LM)had a trend of decrease(P=0.079).Furthermore, dietary fish oil of sows significantly up-regulated abundance of MRF4 mRNA in Longissimus muscle and PGC-1αmRNA in the Triceps brachii(TB)(P<0.01), meanwhile,the levels of MRF4 mRNA in Biceps femoris(BF) and PGC-1αmRNA in Biceps femoris(BF) and Longissimus muscle(LM) had a trend of increase(P=0.107, P=0.088,P=0.081).
     The following conclusion of this study can be drawn from:
     1) Supplemented 7%fish oil to the diet for sows during pregnancy and lactation and for weaned pigs enhance growth of skeletal muscles,which were located in middle and posterior part of body especially,by modifying muscle phospholipid.In addition,there was significant maternal nutritional effectiveness of fish oil on skeletal muscle development in weaned pigs.
     2) Dietary long-chain n-3 fatty acids increased skeletal muscle mass in different part of body by altering composition of muscle fiber tapes,especially increased proportion of MHC-Ⅱb and MHC-Ⅱx.The effects of n-3PUFA in muscle on muscle fiber tapes may be mediated,at least in part,by up-regulating expression of muscle development and muscle fiber tapes transformation related genes,including growth-axis genes,MRF4,MyoG and PGC-1.
引文
1.鲍淑青,张克英,陈代文等.猪肌肉生长抑制素基因的克隆及原核表达.动物营养学报,2007,19(5):617-621
    2.高云芳,何志仙,樊小力,胡琳琳,宋新爱.pH值对应用mATP酶法进行梭外肌纤维分型的影响.西北大学学报,2005,35(1):76-79
    3.黄大鹏,郑本艳,陈永刚.营养水平对断奶仔猪胴体及肉质影响研究.黑龙江八一农垦大学学报,2006,18(4):39-43
    4.贾俊静,刘 勇,陈克嶙等.杂交改良对撒坝猪肌肉品质的影响.云南农业大学学报,2005,4:558-561
    5.赖长华,尹靖东,李德发,刘慕欣,陈辉.共轭亚油酸对免疫应激仔猪生长抑制的缓解作用.中国畜牧杂志,2005,41(2):6-9
    6.李虹,巴彩凤,苏玉虹.大白猪不同部位肌肉肌纤维表达特点.畜牧与兽医,2007,39(11):21-24
    7.李小菁.雌激素对大鼠咬肌ER MHCmRNA表达的影响响[硕士学位论文].2007
    8.刘传道,江钟立,朱红军,林枫,陈子庆.不同强度的耐力动物对糖尿病大鼠骨骼肌GLUT4 mRNA表达的影响.中国康复医学杂志,2005,20(4):244-247
    9.刘学铭,梁世中.微藻生产多不饱和脂肪酸.中国油脂,1999,24(3):46-50
    10.刘则学.亚麻籽中多不饱和脂肪酸在猪不同组织中的富集规律及对猪胴体品质的影响.[硕士学位论文].武汉:华中农业大学图书馆,2006
    11.孙占田,钟翠红,刘志敏.日粮多不饱和脂肪酸对猪繁殖性能的影响。中国饲料,2007,5:13-15
    12.田春庄,肖成林,彭健等.B.CD-半胱胺对母猪繁殖性能和仔猪生长性能的影响.动物营养学报,2007,19(5):559-566
    13.肖成林,田春庄,彭 健等.母猪日粮中的鱼油对乳中脂肪酸和仔猪生长性能的影响.动物营养学报,2008,20(01):8-15
    14.肖成林,田春庄,彭健等.饲粮中添加鱼油对母猪繁殖性能和仔猪生长性能的影响.养猪,2007,3:4-7
    15.徐章华,郭俊生,赵法伋.α-亚麻酸对大鼠骨骼肌细胞胰岛素信号转导蛋白和葡萄糖转运蛋白4的影响.第二军医大学学报,2003,24(1 1):1219-1221
    16.杨晓静,赵茹茜.猪背最长肌肌纤维类型的发育性变化及其品种和性别特点.中国兽医学报,2005,25(1):89
    17.杨燕军,白 亮,庞卫军,杨公社.不同猪品种肌肉组织FoxOl与MyoD基因mRNA的表达及其相关性分析.中国生物化学与分子生物学报,2008,24(3):257-261
    18.杨燕军.猪FoxOl基因cDNA的克隆及其组织表达研究[硕士学位论文].2007
    19.张文炜,徐列明.转录因子MEF2对多种信号通路的调节及其生物学作用.中国生物化学与分子生物学报,2004,20(4):423-427
    20.赵丽娜.不同原料中n-3多不饱和脂肪酸在鸡蛋中的富集规律及对蛋鸡生产性能和鸡蛋品质的影响[硕士学位论文].武汉:华中农业大学图书馆,2007
    21.朱道立,徐萍,谢锋,熊寿勇.大鼠骨骼肌纤维组织化学分型与肌球蛋白重链的功能.解剖学报,2007,38(1):93-97
    22.Adams G R,Haddad F,McCue S A,Bodell P W,Zeng M,Qin L,Qin A X,Baldwin K M.Effect s of spaceflight and thyroid deficiency on rat hindlimb development.Ⅱ.Expression of MHC isoforms.JAppl Physiol,2000,88:904-916
    23.Adams G R,McCus S A,Zeng M,Baldwin K M.Time course of myosin heavy chain transition in neonatal rats:importance of innervation and thyroid state.Am J Physiol,1999,276(4):R954-961
    24.Allen D L,Unterman T G.Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.Am J Physiol Cell Physiol,2007,292(1):C188-199
    25.Alves H J,Alvares L E,Gabriel J E.Influence of the neural tube/notochord complex on MyoD expression and cellular proliferation in chicken embryos.J Med Biol Res,2003,36(2):191-197
    26.Anna M,Brandstetter,Brigitte Pand,Yves G.Regional variations of muscle fibre characteristics in m.semitendinosus of growing cattle.J.Muscle Res.and Cell Motility,1997,18:57-62
    27.Antony N,Bass J J,McMahon C D,and Mitchell M D.Myostatin regulates glucose uptake in BeWo cells.Am JPhysiol Endocrinol Metab,2007,293(5):E1296-1302
    28.Arden K C,Biggs W H.Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling.Arch Biochem Biophys,2002,403(2):292-298
    29.Armoni M,Kritz N,Hare C,Bar-Yoseph F,Chen H,Quon M J,Kamieli E.Peroxisome proliferator-activated receptor-γ,represses GLUT4 promoter activity in primary adipocytes,and rosiglitazone alleviates this effect.J Biol Chem,2003,278(33):30614-30623
    30.Armstrong R B,Delp M D,Goljan E F,Laughlin M H.Distribution of blood flow in museles of miniature swine during exereise.J Applied Physiology,1987,62(3):1285-1295
    31. Averette G L, Odle J, Soede J, Hansen J A. Dietary medium-or long-chain triglycerides improve body condition of lean-genotype sows and increase suckling pig growth. J Anim Sci, 2002, 80: 38-44
    32. Averette L G, See M T, Hansen J A, Sutton D, Odle J. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. J Anim Sci, 1999,80: 1606-1615
    33. Bacou F, Rouanet P, Barjot C, J anmot C, Vigneron P, Albis A. Expression of myosin isoforms in denervated, crossreinnervated ,and elect rically stimulated rabbit muscles. Eur J Biochem, 1996, 236 :5392547
    34. Bark T H, McNurlan M A, Lang C H. Increased protein synthesis after acute IGF2I or insulin infusion is localized to muscle in mice. Am J Physiol Endocrinol Metab, 1998,275(1): E118-123
    35. Bee G, Gebert S and Messikommer R.Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J Anim Sci, 2002, 80:1564-1574
    36. Bee G. Birth weight of litters as a source of variation in postnatal growth, and carcass and meat quality. Advances in Pork Production, 2007, 18:191-196
    37. Bee G. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter. A. Anim Sci, 2004, 82: 826-836
    38. Beermann D H, Fishell V K, Roneker K, Boyd R D, Armbruster G, Souza L. Dose-response relationships between porcine somatotropin, muscle composition, muscle fiber characteristics and pork quality. J Anim Sci, 1990, 68 (9) : 2690-2697
    39. Benton C R., Nickerson JG., Lally J, Han Xiao-Xia,. Holloway G P, Jan F. C., Luiken J J., Graham T E., Heikkila J J., and Arend Bonen.Modest PGC-lQ Overexpression in Muscle in Vivo Is Sufficient to Increase Insulin Sensitivity and Palmitate Oxidation in Subsarcolemmal, Not Intermyofibrillar, Mitochondria. J. Biol. Chem., 2008, 283(7): 4228-4240.
    40. Bergeron K, Julien P., Davis T A., Myre A., and Thivierge M C. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in neonate piglets by differentially modifying muscle Phospholipid and intramuscular triglyceride composition. J. Lipid Res. 2007. 48: 2396-2410
    41. Bigard A X, Janmot C, Sanchez H, Serrurier B, Pollet S , Albis A. Changes in myosin heavy chain profile of mature regenerated muscle with endurance training in rat. Acta Physiol Scand, 1999, 165(2): 185-192
    42. Black B L , Olson E N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol, 1998, 14: 167-196
    43. Boirie Y, Gachon P, CordatN. Differential Insulin Sensitivities of Glucose, Amino Acid, and AlbuminMetabolism in Elderly Men and Women. J Clinical Endocrinology and Metabolism, 2001, 86 (2): 638-644
    44. Boirie Y, Short K R, Ahlman B. Tissue-Specific Regulation of Mitochondrial and Cytop lasmic Protein Synthesis Rates by Insulin. Diabetes, 2001, 50: 2652-2658
    45. Bois P R, Brochard V F , Salin-Cantegrel A V. FoxO 1 a-cyclicGMP-dependent kinase I interactions orchestrate myoblast fusion. Mol Cell Biol, 2005, 25(17): 7645-7656
    46. Brandstetter A M, Pieard B, Geay Y. Regional variations of musele fibre characteristics in m. semitendinosus of growing cattle. J. Muscle Res. and Cell Motility, 1997, 18(1): 57-62
    47. Breitbart R E , Liang C S, Smoot L B , Laheru D A , Mahdavi V and Nadal G B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the MyoGenic lineage. Development, 1993, 118 (4): 1095-1106
    48. Brunet A, Sweeney L B, Sturgill J F. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303(5666): 2011-2015
    49. Buller A J, Eccles J C and Eccles R M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol, 1960,150: 417-439
    50. Caiozzo V J, Haddad F, Baker M J, Herrick R E, Prietto N, Baldwin K M. Microgravity-induced t ransformations of myosin isoforms and cont ractile properties of skeletal muscle. J Appl Physiol, 1996, 81: 123-132
    51. Caiozzo V J, Haddad F, Baker M J, McCue S, Baldwin K M. MHC poly-morphism in rodent plantaris muscle: effect of mechanical overload and hypothyroidism. Am J Physiol Cell Physiol, 2000, 278(4): C709-717
    52. Campion D R, Rjehardson L R, Reagan J O, Kraeling R R. Changes in the sellite cell population during postnal growth of pig skeletal muscle. J Anim Sci, 1981, 52(5): 1014-1018
    53. Campion D R, Rjehardson L R, Reagan J O, Kraeling R R.Changes in the Satellite cell Population in fetal pig skeletal musele. J Anim Sci, 1979, 48(5): 1109-1115
    54. Canepari M, Cappelli V, Pellegrino M A, Zanardi M C, Reggiani C. Thyroid hormone regulation of MHC isoform composition and myofibrillar ATPase activity in rat skeletal muscles. Arch Physiol Biochem, 1998, 106: 308-315
    55. Carlson C J, Booth F W and Gordon S E. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol, 1999, 277(2): R601-606
    56. Chang K C, Costaa N D, Blackleya R, Southwoodb O, Evansb G, Plastowb G, Woode J D, Richardsonc R I. Relationships of myosin heavy chine fibers types to meat quality traits in traditional and modem pigs. Meat Science, 2003, 64: 93-103
    57. Chin E R, Olson E N, Richardson J A, Yano Q. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev, 1998, 12(16): 2499-2509
    58. Cordoba R. The effect of feeding salmon oil during pregnancy on causes of piglet deaths prior to weaning. British Society of Animal Science, 2000, 105-112
    59. Czech M P. Insulin's expanding control of forkheads. Proc Natl Acad Sci U S A, 2003, 100(20): 11198-11200
    60. David C. Wright, Dong-Ho Han, Pablo M. Garcia-Roves. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem, 2007, 282(1): 194-199
    61. Davis T A, Burrin D G, FiorottoM L. Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7- than in 26-day-old pigs. Am J Physiol, 1996, 270 (5): E802-809
    62. Davis T A, Fiorotto M L, Nguyen H V, and Reeds P J. Protein turnover in skeletal muscle of suckling rats. Am J Physiol, 1989,257: R1141-1146
    63. Davis, T A, Fiorotto M L, Beckett P R, Burrin D G, Reeds P J, D Wray-Cahen and Nguyen H V. Differential effects of insulin on peripheral and visceral tissue protein synthesis in neonatal pigs. Am. J. Physiol, 2001, 280(5): E770-779
    64. Delling U, Tureckova J, Lim H W. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy chain expression. Mol Cell Biol, 2000, 20 (17): 6600-6611
    65. Dwyer C M, Stickland N C. The Influence of Maternal Nutrition on Muscle fiber Number Development in the Porcine Fetus and on Subsequent Postnatal Growth. J Anim Sci, 1994, 72:914-917
    66. Dwyer C M, Stickland N C.Sources of variation in myofibre number within and between litters of pigs. Anim Prod, 1991, 52-527
    67. Edmondson D G, Lyons G E, Martin J F, Olson E N. MEF2 gene expression marks the cardial and skeletal muscle lineages during mouse embryogenesis. Development, 1994,120(5): 1251-1263
    68. English A W, Eason J, Schwartz G, Shirley A, Carrasco D I. Sexual dimorphism in the rabbit masseter muscle: myosin heavy chain composition of neuromuscular compartments. Cells Tissues Organs, 1999, 164: 179-191
    69. Fiedler I, Nurnberg K, Hardge T, Nurnberg G and Ender K. Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population DurocxBerlin Miniature Pig and relationships to meat quality. Meat Science, 2003, 63(1): 131-139
    70. Finck, B N, Bernal-Mizrachi, Han C, Coleman D H, Sambandam N, LaRiviere L L, Holloszy, J O, Semenkovich C F and Kelly, DP. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metab, 2005, 133-144
    71. Folch J, Lees M, Sloane G H. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem, 1957, 226(1): 497-509
    72. Foulstone E, Prince S, Zaccheo, Burns O, Harper J, Jacobs C, Church D, Hassan AB.Insulin-like growth factor ligands, receptors, and binding proteins in cancer. The J Pathology, 2005, 205: 145-153
    73. Fulco M, Schiltz R L, Iezzi S. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell, 2003, 12 (1): 51-62
    74. Gingras A A, White P J, Chouinard P Y, Julien P, Davis T A, Dombrowski L, Couture Y, Dubreuil P, Myre A, Bergeron K, Marette A and Thivierge M C. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity.J Physiol, 2007, 579 (1): 269-284
    75. Gorza L, Gundersen K, LEmo T, Schiaffino S, Westgaard R H. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol, 1988 ,402 : 627-649
    76. Green H J. Exercise-induced fibre type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflugers Arch , 1984 , 400 (4): 432-438
    77. Gu X, Li D. Fat nutrition and metabolism in piglet: a review. Animal Feed Science and Technology, 2003, 109: 151-170
    78. Gulve E A, Ren J M, Marshall B A, Gao J, Hansen P A, Holloszy J O and Mueckler M. Glucose transport activity in skeletal muscles from transgenic mice over expressing GLUT1.J Biol Chem, 1994,269: 18366-18370
    79. Han J , Jiang Y, Li Z , Kravchenko W, Ulevitch R J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature, 1997, 38 (6): 296-299
    80. Henriksen E J, Bourey R E, Rodnick K J, Koranyi L, Permutt M A and Holloszy J O. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol, 1990, 259: E593-598
    81. Hillier T A, FryburgD A, Jahn L A. Extreme hyper insulinemia unmasks insulins effect to stimulate protein synthesis in the human forearm. Am J Physiol Endocrinol Metab, 1998, 274 (6): E1067-1074
    82. Hribal ML, Nakae J, Kitamura T. Regulation of insulin-like growth factor-dependent myoblast differentiation by FoxO forkhead transcription factors. J Cell Biol, 2003 , 162(4): 535-541
    83. Hsu J M, Wang P H, Liu B H, and Ding S T. The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J Anim Sci, 2004, 82: 683-689
    84. Huang F. R., Zhan Z. P., Luo J., Liu Z. X., Peng J.. Intramuscular fat, muscle mass, and n-3PUFA enrichment of growing-finishing barrows improved by duration of feeding linseed. Livestock Science, 2008 (published on line) .
    85. Jeffery D M, Eric N O. Combinatorial control of muscle development by basichelix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA ,1996 , 93 (18) :9366-9373
    86. Ji S Q, L osinski R L, Cornelius S G, Frank G R,Willis G M, Gerrard D E, Depreux F S and Spurlock M E. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. American Journal of Physiology , 1998 , 275(4): R1265 - 1273
    87. Johnson R W. and Escobar J. Cytokine regulation of protein accretion in growing animals. In: Burrin D G, Mersmann H J eds., Biology of Metabolism in Growing Animals. London: Elsevier Press, 2005.83-106
    88. Kaestner K H, Knochel W, Martinez D E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev , 2000 , 14 (2):142-146
    89. Kamei Y, Miura S, Suzuki M. Skeletal muscle FOXO1(FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem, 2004, 279 (39): 41114-41123
    90. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T,Takahashi N, Kawada T, Miyoshi M, Ezaki O and Kakizuka A. PPARc coactivator 1b/ERR ligand 1 is an ERR protein ligand, whose expression induces a high energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA, 2003, 100: 12378-12383.
    91. Kannisto K, Chibalin A, Glinghammar B, Zierath J R, Hamsten A and Ehrenborg E. Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise. J Mol Med 2006, 17: 45-52
    92. Karlsson A H, Ronald E K and Xavier F. Skeletal muscle fibres as factors for pork quality. Livestock Production Science 1999 (60): 255-269
    93. Kim S W, Mateo R D, Yin Y L and Wu G. Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets. Asian-Aust. J Anim Sci. 2007,20 (2) : 295-306
    94. Kota B P, Huang T H W and Roufogalis B D. An overview on biological mechanisms of PPARs. Pharmacol Res, 2005, 51: 85-94
    95. Kramer D K, Ahlse'n M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T and Danielsen V, Lauridsen C. Fodringens indflydelse pamalkemaengde sammensatning. In: Jakobsen, Kirsten, Danielsen, Viggo (Eds.), Danmarks Jordbrugs Forskning, Intern Repport, 2001, 141: 29-36
    96. Kramer D K, Ahlse'n M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T and A Krook. Human skeletal muscle fibre type variations correlate with PPARa, PPARd and PGC-1a mRNA. Acta Physiol, 2006, 188: 207-216
    97. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S and Kambadur R. Myostatin Inhibits Myoblast Differentiation by Down-regulating MyoD Expression. J Biol Chem, 2002, 277(51): 49831-49840
    98. Lauridsen C, Danielsen V. Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livestock Production Science, 2004, 89: 265-276
    99. Lee H, Habas R, Abate-Shen C. MSX1 cooperates with histone H1b for inhibition of transcription and MyoGenesis. Science, 2004,304(5677): 1675-1678
    100.Lefaucheur L, Ecolan P, Barzic Y Early postnatal food intake aiters myofiber maturation in pig skeletal musele. J Nutr, 2003, 133(1): 140-147
    101.Lin J, Tarr P T, Yang R, Rhee J, Puigserver P, Newgard, C B and Spiegelman B M. PGC-1b in the regulation of hepatic glucose and energy metabolism. J Biol Chem, 2003, 278, 30843-30848
    102.Lin J, Wu H, Tarr P T, Zhang C Y, Wu Z, Boss O, Michael L F, Puigserver P, Isotani E, Olson E N, Lowell B B, Bassel-Duby R and Spiegelman B M. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 2002,418:797-801
    103.Liu Y L, Li D F, Gong L M, Yi G F, Gaines A M, and Carroll J A. Effects of fish oil supplementation on the performance and the immunological, adrenal, and somatotropic responses of weaned pigs after an Escherichia coli pipopolysaccharide challenge. J Anim Sci, 2003, 81: 2758-2765
    104.Long S D, and Pekala P H. Regulation of GLUT4 gene expression by arachidonic acid. J Biol Chem, 1996, 271:1138-1144
    105.Lu J, Mckinsey T A, Zhang C L, Olson E N. Regulation of skeletal MyoGenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell ,2000 , 6 (2) :233-244
    106.Luquet S, Lopez-Soriano J, Hoist D, Fredenrich A, Melki J, Rassoulzadegan M and Grimaldi P A. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. J FASEB, 2003, 17, 2299-2301
    107.McFarlane C, Plummer E, Thomas M. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappa B-independent, FoxO1-dependent mechanism. J Cell Physiol, 2006 , 209(2): 501-514
    108.McLennan LS. Neurogenic and MyoGenic regulation of skeletal muscle formation :a critical reevaluation. Prog Neurobiol, 1994,44 (2): 119-140
    109.McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass by a new TGF-β WTsuper-f amily member. Nature, 1997a, 387 (6628): 83-90
    110.Mcpherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA, 1997,94(23): 12457-12461
    111 .McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the Nationnal Academy Sciences of the USA, 1997b, 94 : 12457-12461
    112.Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A, Hart K, Schinner S, Sethi J K, Yeo G, Brand M D, Cortright, R N, O'Rahilly S, Montague C and Vidal-Puig A J. Characterization of the human, mouse and rat PGC1 beta gene in vitro and in vivo. Biochem J, 2003, 373: 155-165
    113.Melloul D, Stoffel M. Regulation of transcriptional coactivator PGC-1alpha. Sci Aging Knowledge Environ , 2004 , 2004(9): 9
    114.Michael L F, Wu Z, Cheatham R B, Puigserver P, Adelmant G, Lehman J J, Kelly D P, Spiegelman B M. Restoration of insulin-sensitive glucose transporter ( GLUT4 ) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA , 2001 , 98 (7): 3820-3825
    115.Michalik L , Wa hli W. Peroxisome proliferator-activatedreceptors: three isotypes for a multitude of functions. Curr Opin Biotechnol, 1999, 10(6): 564-570
    116.Naidu P S, Ludolph D C, To R Q, Hinterberger T J, Konieczny S F. MyoGenin and MEF2 function synergistically to activate the MRF4 promoter during MyoGenesis. Mol Cell Bio, 1995, 15 (5): 2707-2718
    117.Nakae J, Kitamura T, Kitamura Y. The forkhead transcription factor Foxo1 regulates adipocyte differentation. Dev Cell, 2003, 4(1): 119-129
    118.National Research Council. 1998. Nutrient Requirements of Swine. 10~(th) revised edition National Academy of Sciences, Washington, DC.
    
    119.Nemoto S, Fergusson M M and Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1 alpha. J Biol Chem, 2005, 280: 16456-16460
    120.Nigel J B. Molecules in focus myocyte enhancer factor 2 (MEF2). Int J Biochem Cell Biol, 1997, 29 (12): 1467-1470
    121.Nissena P M, Srensena I L, Vestergaarda M and Oksbjerga N. Effects of sow nutrition on maternal and foetal serum growth factors and on foetal myogenesis. Anim Sci, 2005, 80: 299-306
    122.Norrbom J, Sundberg C J, Ameln H. PGC-1αmRNA expression is influenced bymetabolic perturbation in exercising human skeletal muscle. J Appl Physiol, 2004, 96(1): 189-194
    123.Oksbjerg N, Henckel P, Rolph T. Effects of salbutajrnol, a/b-adrenergic aonist, on muscles of growing Pigs fed 2 different levels of dietary Protein 1: Musele fibre Properties and musele protein aceretion. J Anim Sci, 1994, 44:12-22
    124.Olson E N, Perry M, Schulz R A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol, 1995, 172 (1): 2-14
    125.Ono Y, Solomon M B, Evoek-Clover C M, Steele N C, Maruyama K. Effeets of porcine somatotropin administration on porcine museles located within different regions of the body. J Anim Sci. 1995:73:2282-2288
    126.Parsons S A. Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol, 2003, 23 (12): 4331-4343
    127.Pattullo M C, Cotter M A, Cameron N E, Barry J A. Effects of lengthened immobilization on functional and histochemical properties of rabbit tibialis anterior muscle. Exp Physiol, 1992, 77: 433-442
    128.Pette D, G Vrbova. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve, 1985, 8 (8): 676-689
    129.Pette D, Staron R S. Mammalian skeletal muscle fiber type transitions. Int Rev Cytol, 1997, 170: 143-223
    130.Peuker H, Conjard A, Putman C T and Pette D. Transient expression of myosin heavy chain MHCI in rabbit muscle during fast-to-slow transition. J Muscle Res Cell Moti, 1999,20: 147-154
    131.Puig O, Marr M T, Ruhf M L. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev, 2003, 17 (16): 2006-2020
    132.Puigserver P, Rhee J, Lin J, Wu Z, Yoon J C, Zhang C Y, Krauss S, Mootha V K, Lowell B B, Spiegelman B M. Cytokine stimulation of energy expenditure through P38 map kinase activation of PPAR-gamma coactivator-1. Mol Cell, 2001, 8(5): 971-982
    133.Puigserver P, Wu Z, Park C W. A cold - inducible coactivator of nuclear recep tors linked to adap tive thermogenesis. Cell, 1998, 92 (6): 829-839
    134.Rao A, Luo C, Hogan P G. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 1997, 15: 707-747
    135.Rehfeldt C, Kuhn J, Vanselow R, Furbass I F, Nurnberg G, Clelland A K, Stickland N C, Ender K. Maternal treatment with somatotropin during early gestation affects basic events of myogenesis in pigs. Cell Tissue Res, 2001, 306: 429-440
    136.Reya I, Lopez-Bote C J, Kerry J P, Lynch P B, Buckley D J, Morrissey P A. Modification of lipid composition and oxidation in porcine muscle and muscle microsomes as affected by dietary supplementation of n-3 with either n-9 or n-6 fatty acids and α-tocophery1 acetate. Anim feed sci and tech, 2004, 113: 223-238
    
    137.Rooke J A, Bland I M, Edwards S A. Effect of feeding tuna oil or soyabean oil as supplements to sows in late pregnancy on piglet tissue composition and viability. Brit J Nutr, 1998, 80:273-280
    
    138.Rooke J A, Bland I M, Edwards S A. Relationships between fatty acid status of sow plasma and that of umbilical cord and plasma and tissues of new-born piglets when sows were fed diets containing tuna oil or soyabean oil in late pregnancy. Brit J Nutr, 1999,82:213-221
    139.Rooke J A, Shanks M, Edwards S A. Effect of offering maize, linseed or tuna oils throughout pregnancy and lactation on sow and piglet tissue composition and piglet performance. J Anim Sci, 2000, 71: 289-299
    140.Rooke J A, Sinclair A G, Edwards S A. Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. Brit J Nutr, 2001a, 86: 21-30
    141.Rooke J A, Sinclair A G, Ewen M, Birnie L M. Responses in piglet tissue composition to increasing maternal intake of long chain n-3 polyunsaturated fatty acids. Proceedings of the Nutrition Society, 2001c, 60: 71-78
    142.Rooke J A, Sinclair A G, Ewen M. Changes in piglet tissue composition at birth in response to increasing maternal intake of long-chain n-3 polyunsaturated fatty acids are non-linear. Brit J Nutr, 2001b, 86: 461-470
    143.Russell A P, Hesselink M K, Lo S K. and Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. J FASEB 2005, 19: 986-988
    144.Ryall J G., Schertzer J D and Lynch G S. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 2008, 9 (4 ) :213-228
    
    145.Sandri M, Lin J, Handschin C, Yang W, Arany Z P, Lecker S H, Alfred L G and Bruce M. Spiegelman. PGC-1 protects skeletal muscle from atrophy by suppressing FoxO_3 action and atrophy-specific gene transcription. PNAS, 2006, 103(44): 16260-16265
    146.Schantz, P G. and Dhoot G K. Coexistence of slow and fast isoforms of cont ractile and regulatory proteins in human skeletal muscle fibres induced by endurance t raining. Acta Physiol Scand, 1987, 131 (1): 147-154
    147.Siriett V, Nicholas G, Berry C. Myostatin negatively regulates the expression of the steroid receptor co-factor ARA70. J Cell Physiol, 2006, 206(1) :255-263
    148.Song X M, Ryder J W, Kawano Y, Chibalin AV, Krook A and Zierath J R. Muscle fiber type specificity in insulin signal transduction. Am J Physiol, 1999, 277, R1690-1696
    149.Staron R S, Hagerman F C, Hikida R S, Murray T F, Hostler D P, Crill M T, Ragg K E, Toma K. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem, 2000, 48: 623-629
    150.Staron R S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol, 1994, 76 (3): 1247-1255
    151.Stevens L, Gohlsch B, Mounier Y, Pette D. Upregulation of myosin heavy chain MHC1 in rat muscles after unweighting and Clenbuterol treatment. Biochem Biophys Res Commun, 2000, 275: 418-421
    152.Stevens L, Sultan KR, Peuker H, Gohlsch B,Mounier Y, Pette D. Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol, 1999, 277: C1044-1049
    153.Sugiura T, Morimoto A and Murakami N. Effect s of endurance training on myosin heavy-chain isoforms and enzyme activity in the rat diaphragm. Pflugers Arch, 1992, 421 (1): 77-81
    154.Tanabe R, Muroya S, Chikuni K. Expression of Myosin Heavy Chain Isoforms in Porcine Muscles Determined by Multiplex PCR. J Food Sci, 1999, (64):222-225
    155.Tanabe R, Muroya S, Chikuni K. Expression of Myosin Heavy Chain Isoforms in Porcine Muscles Determined by Multiplex PCR. J Food Sci, 1999, (64):222-225
    156.Taouis, Mohammed, Carine Dagou, Ce'line Ster,Georges Durand, Miche' le Pinault, and Jacques Delarue.N-3 Polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab, 2002, 282: E664-671
    157.Taylor W E, Bhasin S, Artaza J. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab, 2001, 280(2): E221-228
    158.Van den B H, Heetkamp M W, Soede N M, Schrama J W, Kemp B. Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source. J Anim Sci, 2000, 78: 1520-1528
    159.Vosper H, Khoudoli G, Graham T, Palmer C. Peroxisome proliferator-activated recep tor agonists, hyperlip idaemia, and atherosclerosis. Pharm acol Ther, 2002, 95 (1): 47-62
    160.Wahli W. Peroxisome p roliferator2activated recep tors (PPARs):from metabolic control to ep idermalwound healing. Swiss Med Wkly, 2002, 132 (728): 83-91
    161. Wang L C and Kernel D. Recovery of type I fiber regionalization in gast rocnemius medialis of t he rat after reinnervation along original and foreign paths, with and wit hout muscle rotation. Neuro Science, 2002, 114 (3): 629-640
    162.Wang Y X, Lee C H, Tiep S. Peroxisome proliferator-activated receptorδ activates fat metabolism to prevent obesity. Cell, 2003, 113 (2): 159-70
    163.Wang Y X, Zhang C L, Yu R T, Cho H K, Nelson M C, Bayuga-Ocampo C R, Ham J, Kang H and Evans R M. Regulation of muscle fiber type and running endurance by PPARdelta. PLos Biol, 2004, 2: E294
    164. Watt M J, Southgate R J, Holmes A G and Febbraio M A. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol, 2004, (33): 533-544
    165.Wigmore P M, Stickland N C. Muscle development in large and small pig foetuses..J Anat, 1983, 137: 235-245
    166.Willoughby D S, Nelson M J. Myosin heavy - chain mRNA expression after a single session of heavy-resistance exercise. Med Sci Sports Exerc, 2002, 34(8): 1262-1269
    167.Windisch A, Gundersen K, Szabolcs MJ, Gruber H, LEmo T. Fast to slow transformation of denervated and elect rically stimulated rat muscle. J Physiol, 1998, 510:623-632
    168.Wu G, Fuller W, Baze T A, Cudd C, Meininger J, Thomas E S . Maternal nutrition and fetal development. J Nutr, 2004, 134: 2169-2172
    169.Wu G., Bazer F W, Wallace J M and Spencer T. E. Intrauterine growth retardation: Implications for the animal sciences. J Anim Sci. 2006, 84: 2316-2337
    170.Wu H, Olson E N. Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice. J Clin Invest, 2002 ,109 (10): 1327-1333
    171. Wu Z, Puigserver P, Andersson U. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98:115- 124
    172.Xu C, Wang L I, Cao Y L. PPARs: Target for lipid metabolism disorder and insulin resistance therapy. Chin Pharmacol Bull, 2004, 20 (3): 241-244
    173.Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001, 413(6852): 131-138
    174.Zak L J, Cosgrove H R, Aherne F X, Foxcroft G R. Pattern of feed intake and associated metabolic and endocrine changes differentially affect postweaning fertility in primiparous lactating sows. J Anim Sci, 1997, 75: 208-216
    175.Zetser A, Gredinger E, Bengal E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the MEF2C transcription factor. J Biol Chem ,1999 , 274 (8): 5193-5200
    176.Zhan Z. P., Huang F. R., Luo J., Dai J. J., Yan X. H., and Peng J. Duration of feeding linseed diet influences expression of inflammation related genes and growth performance of growing-finishing barrows.Journal of Animal Science. 2008 (Accepted)
    
    177.Zhao Ruqian, Yang Xiaojing, Xu Qinfu. Expression of GHR and PGC-1α in association with changes of MHC isoform types in longissimus muscle of Erhualian and LargeWhite pigs (Sus scrofa) during postnatal growth. J Anim sci, 2004, 79: 203-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700